2018-2019学年河南省洛阳国际学校七年级(下)期中数学试卷(最全解析)
- 格式:pdf
- 大小:1.92 MB
- 文档页数:20
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)下列四个实数中,是无理数的是()A.B.C.﹣D.2.(3分)在平面直角坐标系中,点P(﹣2019,2018)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短4.(3分)如图,直线AC和直线BD相交于点O,OE平分∠BOC.若∠1+∠2=80°,则∠3的度数为()A.40°B.50°C.60°D.70°5.(3分)的算术平方根是()A.B.C.D.6.(3分)如图,在△ABC中,点D,E分别为边AB,AC上的点,画射线ED.下列说法错误的是()A.∠B与∠2是同旁内角B.∠A与∠1是同位角C.∠3与∠A是同旁内角D.∠3与∠4是内错角7.(3分)如图,若实数m=﹣+1,则数轴上表示m的点应落在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上8.(3分)如图,下列条件中,不能判断AD∥BC的是()A.∠FBC=∠DAB B.∠ADC+∠BCD=180°C.∠BAC=∠ACE D.∠DAC=∠BCA9.(3分)下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A.4个B.3个C.2个D.1个二、填空题(每小题3分,共15分)10.(3分)的平方根是.11.(3分)如图,将三角形ABC沿直线AC平移得到三角形DEF,其中,点A和点D是对应点,点B和点E是对应点,点C和点F是对应点.如果AC=6,DC=2,那么线段BE的长是.12.(3分)在平面直角坐标系中,将点A(5,﹣8)向左平移得到点B(x+3,x﹣2),则点B的坐标为.13.(3分)如图,已知a∥b,a∥c,AB⊥BC,∠1=117°,则∠2=.14.(3分)如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,),第2次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(5,)…按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是.三、解答题(本大题共8个小题,满分75分)15.(10分)计算:(1)22﹣﹣(2)﹣3|﹣(2﹣)+16.(10分)求下列各等式中,x的值:(1)4x2=25;(2)3(x﹣4)3﹣24=0.17.(8分)某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:4点,公共自行车停车处;B点,公园大门;C点,便利店;D点,社会主义核心价值观标牌;E点,健身器械;F点,文化小屋,如果B点和D点的坐标分别为(2,﹣2).(3,﹣l).(l)请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A,C,E,F的坐标.18.(9分)如图,已知点A,D,C在直线EF上,点B在直线MN上,EF∥MN,∠BAC=52°,AB⊥BC,BC平分∠DBN.求∠ADB的度数.19.(9分)如图,在平面直角坐标系中,△ABC的顶点都在格点上,点B的坐标是(1,2).(1)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A'B'C'.请画出△A'B'C'并写出A',B′,C'的坐标;(2)在△ABC内有一点P(a,b),请写出按(1)中平移后的对应点P″的坐标.20.(9分)如图,已知AD⊥DF,EC⊥DF,∠1=∠3,∠2=∠4,求证:AE∥DF.(请在下面的解答过程的空格内填空或在括号内填写理由)证明:∵AD⊥DF,EC⊥DF,(已知)∴∠BFD=∠ADF=90°.()∴EC∥()∴∠EBA=(两直线平行,内错角相等)∵∠2=∠4,(已知)∴∠EBA=∠4.(等量代换)∴AB∥.()∴∠2+∠ADC=180°.()∴∠2+∠ADF+∠3=180°.∵∠1=∠3.(已知)∴∠2+∠ADF+∠1=180°.(等量代换)∴+∠ADF=180°.∴AE∥DF.()21.(10分)如图,在平面直角坐标系中,四边形ABCD的顶点都在格点上,其中A点坐标为(﹣2,﹣1),C点坐标为(3,3).(1)填空:点B到y轴的距离为,点B到直线AD的距离为;(2)求四边形ABCD的面积;(3)点M在y轴上,当△ADM的面积为12时,请直接写出点M的坐标.22.(10分)问题情境(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)下列四个实数中,是无理数的是()A.B.C.﹣D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.是无理数,故本选项符合题意;B.,是有理数,故本选项不合题意;C.,是有理数,故本选项不合题意;D.,是有理数,故本选项不合题意.故选:A.2.(3分)在平面直角坐标系中,点P(﹣2019,2018)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此判断出点P(﹣2019,2018)所在的象限是哪个即可.【解答】解:∵﹣2019<0,2018>0,∴在平面直角坐标系中,点P(﹣2019,2018)所在的象限是第二象限.故选:B.3.(3分)下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.【解答】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.4.(3分)如图,直线AC和直线BD相交于点O,OE平分∠BOC.若∠1+∠2=80°,则∠3的度数为()A.40°B.50°C.60°D.70°【分析】根据对顶角和邻补角的定义即可得到∠BOC的度数,再根据角平分线即可得出∠3的度数.【解答】解:∵∠1=∠2,∠1+∠2=80°,∴∠1=∠2=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠3=70°.故选:D.5.(3分)的算术平方根是()A.B.C.D.【分析】首先根据立方根的性质和求法,求出的值是多少;然后根据算术平方根的求法,求出的算术平方根是多少即可.【解答】解:=,∴的算术平方根是:=.故选:A.6.(3分)如图,在△ABC中,点D,E分别为边AB,AC上的点,画射线ED.下列说法错误的是()A.∠B与∠2是同旁内角B.∠A与∠1是同位角C.∠3与∠A是同旁内角D.∠3与∠4是内错角【分析】根据同位角、内错角以及同旁内角的概念解答即可.【解答】解:A.∠B与∠2是BC、DE被BD所截而成的同旁内角,故本选项正确;B.∠A与∠1不是同位角,故本选项错误;C.∠3与∠A是AE、DE被AD所截而成的同旁内角,故本选项正确;D.∠3与∠4是内错角AD、CE被ED所截而成的内错角,故本选项正确;故选:B.7.(3分)如图,若实数m=﹣+1,则数轴上表示m的点应落在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上【分析】直接利用的取值范围进而得出答案.【解答】解:∵实数m=﹣+1,∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.8.(3分)如图,下列条件中,不能判断AD∥BC的是()A.∠FBC=∠DAB B.∠ADC+∠BCD=180°C.∠BAC=∠ACE D.∠DAC=∠BCA【分析】根据平行线的判定方法一一判断即可.【解答】解:∵∠FBC=∠DAB,∴AD∥BC,∵∠ADC+∠BCD=180°,∴AD∥BC,∵∠BAC=∠ACE,∴AB∥CD,∵∠DAC=∠BCA,∴AD∥BC,故选:C.9.(3分)下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A.4个B.3个C.2个D.1个【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【解答】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.二、填空题(每小题3分,共15分)10.(3分)的平方根是±.【分析】直接根据正数的平方根的意义解答即可.【解答】解:的平方根是±.故答案为:±.11.(3分)如图,将三角形ABC沿直线AC平移得到三角形DEF,其中,点A和点D是对应点,点B和点E是对应点,点C和点F是对应点.如果AC=6,DC=2,那么线段BE的长是 4 .【分析】证明四边形BCFE是平行四边形即可解决问题.【解答】解:由平移变换的性质可知:BC∥EF,BC=EF,∴四边形BCFE是平行四边形,∴BE=CF,∵AC=DF=6,CD=2,∴CF=6﹣2=4,∴BE=4,故答案为4.12.(3分)在平面直角坐标系中,将点A(5,﹣8)向左平移得到点B(x+3,x﹣2),则点B的坐标为(﹣3,﹣8).【分析】先根据向左平移纵坐标不变得出x﹣2=﹣8,求出x,再代入x+3求出点B的横坐标即可.【解答】解:∵将点A(5,﹣8)向左平移得到点B(x+3,x﹣2),∴x﹣2=﹣8,解得x=﹣6,∴x+3=﹣6+3=﹣3,∴则点B的坐标为(﹣3,﹣8).故答案为(﹣3,﹣8).13.(3分)如图,已知a∥b,a∥c,AB⊥BC,∠1=117°,则∠2=27°.【分析】依据平行线的性质以及垂直的定义,即可得到∠2的度数.【解答】解:如图,∵a∥b,∠1=117°,∴∠3=180°﹣∠1=63°,∵AB⊥BC,∴∠4=90°﹣∠3=27°,又∵a∥b,a∥c,∴b∥c,∴∠2=∠4=27°,故答案为:27°.14.(3分)如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,),第2次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(5,)…按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是(1616,﹣2).【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为,0,﹣2,﹣2,0,,0,﹣2,﹣2,0,…,每5次一轮这一规律,进而求出即可.【解答】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别为,0,﹣2,﹣2,0,第6到10次运动纵坐标分别为为,0,﹣2,﹣2,0,…第5n+1到5n+5次运动纵坐标分别为,0,﹣2,﹣2,0,∵2019÷5=403…4,∴经过2019次运动横坐标为=4×403+4=1616,经过2019次运动纵坐标为﹣2,∴经过2019次运动后,电子蚂蚁运动到的位置的坐标是(1616,﹣2).故答案为:(1616,﹣2)三、解答题(本大题共8个小题,满分75分)15.(10分)计算:(1)22﹣﹣(2)﹣3|﹣(2﹣)+【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=4﹣4﹣5=﹣5;(2)原式=3﹣﹣2++=.16.(10分)求下列各等式中,x的值:(1)4x2=25;(2)3(x﹣4)3﹣24=0.【分析】(1)先分解因式,即可得出两个一元一次方程,求出即可.(2)先化成(x+1)3=﹣8的形式,再开立方,即可求出答案.【解答】解:(1)(2x+5)(2x﹣5)=0,2x+5=0,2x﹣5=0,x1=﹣,x2=.(2)3(x﹣4)3=24,(x﹣4)3=8,x﹣4=2,x=6.17.(8分)某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:4点,公共自行车停车处;B点,公园大门;C点,便利店;D点,社会主义核心价值观标牌;E点,健身器械;F点,文化小屋,如果B点和D点的坐标分别为(2,﹣2).(3,﹣l).(l)请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A,C,E,F的坐标.【分析】(1)根据B,D两点坐标建立平面直角坐标系即可.(2)根据点的位置写出坐标即可.【解答】解:(1)平面直角坐标系如图所示.(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4.2).18.(9分)如图,已知点A,D,C在直线EF上,点B在直线MN上,EF∥MN,∠BAC=52°,AB⊥BC,BC平分∠DBN.求∠ADB的度数.【分析】想办法求出∠DBN,利用平行线的性质即可解决问题.【解答】解:∵EF∥MN,∴∠ABM=∠CAB=52°,∵AB⊥BC,∴∠ABC=90°,∴∠CBN=90°﹣52°=38°,∵BC平分∠DBN,∴∠DBN=76°,∵EF∥MN,∴∠ADB=∠DBN=76°.19.(9分)如图,在平面直角坐标系中,△ABC的顶点都在格点上,点B的坐标是(1,2).(1)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A'B'C'.请画出△A'B'C'并写出A',B′,C'的坐标;(2)在△ABC内有一点P(a,b),请写出按(1)中平移后的对应点P″的坐标.【分析】(1)利用点平移的坐标变换规律写出A',B′,C'的坐标,然后描点即可;(2)利用(1)中的平移规律,把P点的横坐标加3,纵坐标减2得到P′点的坐标.【解答】解:(1)如图,△A'B'C'为所作,点A',B′,C'的坐标分别为(﹣1,1),(4,0),(2,﹣3);(2)点P(a,b)平移后的对应点P″的坐标为(a+3,b﹣2).20.(9分)如图,已知AD⊥DF,EC⊥DF,∠1=∠3,∠2=∠4,求证:AE∥DF.(请在下面的解答过程的空格内填空或在括号内填写理由)证明:∵AD⊥DF,EC⊥DF,(已知)∴∠BFD=∠ADF=90°.(垂直的定义)∴EC∥(AD)∴∠EBA=∠2 (两直线平行,内错角相等)∵∠2=∠4,(已知)∴∠EBA=∠4.(等量代换)∴AB∥CD.(同位角相等,两直线平行)∴∠2+∠ADC=180°.(两直线平行,同旁内角互补)∴∠2+∠ADF+∠3=180°.∵∠1=∠3.(已知)∴∠2+∠ADF+∠1=180°.(等量代换)∴∠EAD+∠ADF=180°.∴AE∥DF.(同旁内角互补,两直线平行)【分析】利用能内错角相等两直线平行,得到EC∥AD,再有两直线平行,内错角相等,得出∠EBA=∠2,等量代换得到∠EBA=∠4,利用同位角相等两直线平行,得到AB∥CD,再有两直线平行,同旁内角互补得到∠2+∠ADC=180°,等量代换得到∠EAD+∠ADF=180°,再根据同旁内角互补,两直线平行得到AE∥DF.【解答】证明::∵AD⊥DF,EC⊥DF,(已知)∴∠BFD=∠ADF=90°(垂直的定义),∴EC∥AD(内错角相等,两直线平行),∴∠EBA=∠2(两直线平行,内错角相等)∵∠2=∠4,(已知)∴∠EBA=∠4.(等量代换)∴AB∥DC(同位角相等,两直线平行),∴∠2+∠ADC=180°(两直线平行,同旁内角互补),∴∠2+∠ADF+∠3=180°,∵∠1=∠3(已知),∴∠2+∠ADF+∠1=180°(等量代换),∴∠EAD+∠ADF=180°,∴AE∥DF(同旁内角互补,两直线平行),故答案为:垂直的定义,AD,∠2,CD,同位角相等,两直线平行,两直线平行,同旁内角互补,∠EAD,同旁内角互补,两直线平行.21.(10分)如图,在平面直角坐标系中,四边形ABCD的顶点都在格点上,其中A点坐标为(﹣2,﹣1),C点坐标为(3,3).(1)填空:点B到y轴的距离为 1 ,点B到直线AD的距离为 3 ;(2)求四边形ABCD的面积;(3)点M在y轴上,当△ADM的面积为12时,请直接写出点M的坐标.【分析】(1)根据图形即可得到结论;(2)根据矩形和三角形的面积公式即可得到结论;(3)根据三角形的面积列方程即可得到结论.【解答】解:(1)根据图形可知,B(﹣1,2),∴点B到y轴的距离为1,点B到直线AD的距离为3;故答案为:1,3;(2)四边形ABCD的面积=6×4﹣×3×1﹣×4×1﹣×1×4=;(3)设点M的坐标(0,m),∵△ADM的面积为12,∴×6×|m|=12,∴m=±4,∴M(0,﹣4),(0,4).22.(10分)问题情境(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=80°问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.【分析】(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE =∠APQ﹣∠EPQ=∠β﹣∠α;(3)过P和N分别作FD的平行线,依据平行线的性质以及角平分线的定义,即可得到∠ANE与∠α,∠β之间的数量关系为∠ANE=(∠α+∠β).【解答】解:(1)如图1,过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°﹣125°﹣155°=80°,故答案为:80°;(2)①如图2,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β﹣∠α;理由:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)如图2,∠ANE与∠α,∠β之间的数量关系为∠ANE=(∠α+∠β).。
2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
2018-2019学年河南省洛阳市五校联考七年级(下)期中数学试卷一.选择题(共10小题)1.(3分)下列四个实数中,是无理数的是( ) A .3πB .25C .38-D .02.(3分)在平面直角坐标系中,点(2019,2018)P -所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(3分)下列选项中,不是运用“垂线段最短”这一性质的是( ) A .立定跳远时测量落点后端到起跳线的距离 B .从一个村庄向一条河引一条最短的水渠 C .把弯曲的公路改成直道可以缩短路程D .直角三角形中任意一条直角边的长度都比斜边短4.(3分)如图,直线AC 和直线BD 相交于点O ,OE 平分BOC ∠.若1280∠+∠=︒,则3∠的度数为( )A .40︒B .50︒C .60︒D .70︒5.(3分)下列说法中正确的是( ) A .36的平方根是6± B .16的平方根是2± C .|8|-的立方根是2-D .16的算术平方根是46.(3分)如图,在ABC ∆中,点D ,E 分别为边AB ,AC 上的点,画射线ED .下列说法错误的是( )A .B ∠与2∠是同旁内角 B .A ∠与1∠是同位角C .3∠与A ∠是同旁内角D .3∠与4∠是内错角7.(3分)如图,若实数71m =-+,则数轴上表示m 的点应落在( )A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上8.(3分)如图,下列条件中,不能判断//AD BC 的是( )A .FBC DAB ∠=∠ B .180ADC BCD ∠+∠=︒C .BAC ACE ∠=∠D .DAC BCA ∠=∠9.(3分)下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个10.(3分)在平面直角坐标系xOy 中,点(0,)A a ,(,12)B b b -,(23,0)C a -,012a b <<<,若OB 平分AOC ∠,且AB BC =,则a b +的值为( ) A .9或12B .9或11C .10或11D .10或12二.填空题(共5小题) 11.(3分)4的平方根是 ;49的算术平方根是 ;27-的立方根是 . 12.(3分)如图,将三角形ABC 沿直线AC 平移得到三角形DEF ,其中,点A 和点D 是对应点,点B 和点E 是对应点,点C 和点F 是对应点.如果6AC =,2DC =,那么线段BE 的长是 .13.(3分)在平面直角坐标系中,将点(5,8)A -向左平移得到点(3,2)B x x +-,则点B 的坐标为 .14.(3分)如图,已知//a b ,//a c ,AB BC ⊥,1117∠=︒,则2∠= .15.(3分)如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,3),第2次接着运动到点(2,0),第3次接着运动到点(2,2)-,第4次接着运动到点(4,2)-,第5次接着运动到点(4,0),第6次接着运动到点(5,3)⋯按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是 .三.解答题(共8小题) 16.(10分)计算: (1)22216(5)-(2)3|33|(23)14---+-17.(10分)求下列各等式中,x 的值: (1)2425x =; (2)33(4)240x --=.18.(8分)某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在88⨯的正方形网格中,各点分别为:4点,公共自行车停车处;B 点,公园大门;C 点,便利店;D 点,社会主义核心价值观标牌;E 点,健身器械;F 点,文化小屋,如果B 点和D 点的坐标分别为(2,2)-,(3,1)-. ()l 请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A ,C ,E ,F 的坐标.19.(9分)如图,已知点A ,D ,C 在直线EF 上,点B 在直线MN 上,//EF MN ,52BAC ∠=︒,AB BC ⊥,BC 平分DBN ∠.求ADB ∠的度数.20.(9分)如图,在平面直角坐标系中,ABC ∆的顶点都在格点上,点B 的坐标是(1,2). (1)将ABC ∆先向右平移3个单位长度,再向下平移2个单位长度,得到△A B C '''.请画出△A B C '''并写出A ',B ',C '的坐标;(2)在ABC ∆内有一点(,)P a b ,请写出按(1)中平移后的对应点P ''的坐标.21.(9分)如图,已知AD DF ⊥,EC DF ⊥,13∠=∠,24∠=∠,求证://AE DF .(请在下面的解答过程的空格内填空或在括号内填写理由) 证明:AD DF ⊥,EC DF ⊥,(已知) 90BFD ADF ∴∠=∠=︒.( )//(EC ∴ )EBA ∴∠= (两直线平行,内错角相等)24∠=∠,(已知) 4EBA ∴∠=∠.(等量代换) //AB ∴ .( ) 2180ADC ∴∠+∠=︒.( )23180ADF ∴∠+∠+∠=︒.13∠=∠.(已知) 21180ADF ∴∠+∠+∠=︒.(等量代换) ∴ 180ADF +∠=︒.//AE DF ∴.( )22.(10分)如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到△11OA B ,在OAB ∆内一点(1,1)M 经过平移后的对应点为1(3,5)M -.(1)画出△111O A B ;(2)点1B 到y 轴的距离是 个单位长度; (3)求△111O A B 的面积.23.(10分)问题情境(1)如图1,已知//AB CD ,125PBA ∠=︒,155PCD ∠=︒,求BPC ∠的度数.佩佩同学的思路:过点P 作//PG AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠= .问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ∠=︒,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出APE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由; 拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.2018-2019学年河南省洛阳市五校联考七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.(3分)下列四个实数中,是无理数的是( )A .3πB C D .0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解答】解:A .3π是无理数;B 5=,是整数,属于有理数;C 2=-,是整数,属于有理数;D .0是整数,属于有理数;故选:A .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008⋯(每两个8之间依次多1个0)等形式. 2.(3分)在平面直角坐标系中,点(2019,2018)P -所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此判断出点(2019,2018)P -所在的象限是哪个即可. 【解答】解:20190-<,20180>,∴在平面直角坐标系中,点(2019,2018)P -所在的象限是第二象限.故选:B .【点评】此题主要考查了点的坐标,以及点所在的象限的判断,要熟练掌握. 3.(3分)下列选项中,不是运用“垂线段最短”这一性质的是( ) A .立定跳远时测量落点后端到起跳线的距离B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.【解答】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点评】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.4.(3分)如图,直线AC和直线BD相交于点O,OE平分BOC∠∠.若1280∠+∠=︒,则3的度数为()A.40︒B.50︒C.60︒D.70︒【分析】根据对顶角和邻补角的定义即可得到BOC∠∠的度数,再根据角平分线即可得出3的度数.【解答】解:12∠=∠,1280∠+∠=︒,∴∠=∠=︒,1240∴∠=︒,140BOC又OE平分BOC∠,∴∠=︒÷=︒.3140270故选:D.【点评】本题考查了邻补角、对顶角的应用,解题时注意运用:对顶角相等,邻补角互补,即和为180︒.5.(3分)下列说法中正确的是( ) A .36的平方根是6± B .16的平方根是2± C .|8|-的立方根是2-D .16的算术平方根是4【分析】A 、根据平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据绝对值的定义、立方根的定义即可判定D 、根据算术平方根的定义即可判定.【解答】解:A 、366=,6的平方根是6±,故选项错误;B 、16的平方根是2±,故选项正确;C 、|8|8-=,8的立方根2-,故选项错误;D 、164=,4的算术平方根是2,故选项错误.故选:B .【点评】本题考查了平方根与算术平方根的概念:一个非负数的正的平方根,即为这个数的算术平方根.易错点:算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的关键.6.(3分)如图,在ABC ∆中,点D ,E 分别为边AB ,AC 上的点,画射线ED .下列说法错误的是( )A .B ∠与2∠是同旁内角 B .A ∠与1∠是同位角C .3∠与A ∠是同旁内角D .3∠与4∠是内错角【分析】根据同位角、内错角以及同旁内角的概念解答即可.【解答】解:A .B ∠与2∠是BC 、DE 被BD 所截而成的同旁内角,故本选项正确;B .A ∠与1∠不是同位角,故本选项错误;C .3∠与A ∠是AE 、DE 被AD 所截而成的同旁内角,故本选项正确;∠是内错角AD、CE被ED所截而成的内错角,故本选项正确;D.3∠与4故选:B.【点评】本题主要考查了同位角、内错角以及同旁内角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.7.(3分)如图,若实数71m=-+,则数轴上表示m的点应落在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上【分析】直接利用71-+的取值范围进而得出答案.【解答】解:实数71m=-+,∴-<<-,m21∴在数轴上,表示m的点应落在线段BC上.故选:B.【点评】此题主要考查了实数与数轴,正确得出71-+的取值范围是解题关键.8.(3分)如图,下列条件中,不能判断//AD BC的是()A.FBC DAB∠+∠=︒ADC BCD∠=∠B.180 C.BAC ACE∠=∠∠=∠D.DAC BCA【分析】根据平行线的判定方法一一判断即可.【解答】解:FBC DAB∠=∠,∴,AD BC//ADC BCD∠+∠=︒,180AD BC∴,//∠=∠,BAC ACE∴,//AB CD∠=∠,DAC BCA∴,//AD BC故选:C .【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(3分)下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A .4个B .3个C .2个D .1个【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【解答】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,1±,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D .【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.10.(3分)在平面直角坐标系xOy 中,点(0,)A a ,(,12)B b b -,(23,0)C a -,012a b <<<,若OB 平分AOC ∠,且AB BC =,则a b +的值为( )A .9或12B .9或11C .10或11D .10或12【分析】由题意可得点A 在y 正半轴上,点B 在第一象限,点C 在x 轴上,由OB 平分AOC ∠,可求6b =,由两点距离公式可求a 的值,即可得a b +的值.【解答】解:点(0,)A a ,(,12)B b b -,(23,0)C a -,012a b <<<,∴点A 在y 正半轴上,点B 在第一象限,点C 在x 轴上, OB 平分AOC ∠,12b b ∴=-6b ∴=过点B 作BH x ⊥轴,BG y ⊥轴,则BH BG =AB BC =,Rt ABG Rt CBH(HL)∴∆≅∆AG CH ∴=|6||236|a a ∴-=--3a ∴=或59a b ∴+=或11故选:B .【点评】本题考查了坐标与图形的性质,熟练运用两点距离公式是本题的关键.二.填空题(共5小题)11.(3分)4的平方根是 2± ;49的算术平方根是 ;27-的立方根是 . 【分析】分别根据平方根、算术平方根、立方根的定义计算即可.【解答】解:4的平方根是2±;49的算术平方根是23; 27-的立方根是3-.【点评】他主要考查了平方根、算术平方根、立方根的定义,比较简单.12.(3分)如图,将三角形ABC 沿直线AC 平移得到三角形DEF ,其中,点A 和点D 是对应点,点B 和点E 是对应点,点C 和点F 是对应点.如果6AC =,2DC =,那么线段BE 的长是 4 .【分析】证明四边形BCFE 是平行四边形即可解决问题.【解答】解:由平移变换的性质可知://BC EF ,BC EF =,∴四边形BCFE 是平行四边形,BE CF ∴=,6AC DF ==,2CD =,624CF ∴=-=,4BE ∴=,故答案为4.【点评】本题考查平移变换,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)在平面直角坐标系中,将点(5,8)A -向左平移得到点(3,2)B x x +-,则点B 的坐标为 (3,8)-- .【分析】先根据向左平移纵坐标不变得出28x -=-,求出x ,再代入3x +求出点B 的横坐标即可.【解答】解:将点(5,8)A -向左平移得到点(3,2)B x x +-,28x ∴-=-,解得6x =-, 3633x ∴+=-+=-,∴则点B 的坐标为(3,8)--.故答案为(3,8)--.【点评】本题考查了坐标与图形变化-平移,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.(3分)如图,已知//a b ,//a c ,AB BC ⊥,1117∠=︒,则2∠= 27︒ .【分析】依据平行线的性质以及垂直的定义,即可得到2∠的度数.【解答】解:如图,//a b ,1117∠=︒,3180163∴∠=︒-∠=︒,AB BC ⊥,490327∴∠=︒-∠=︒,又//a b ,//a c ,//b c ∴,2427∴∠=∠=︒,故答案为:27︒.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.15.(3分)如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,3),第2次接着运动到点(2,0),第3次接着运动到点(2,2)-,第4次接着运动到点(4,2)-,第5次接着运动到点(4,0),第6次接着运动到点(5,3)⋯按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是 (1616,2)- .【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,41+,42+,42+,44+,44+,每5次一轮,每次比前一次起始多430,2-,2-,030,2-,2-,0,⋯,每5次一轮这一规律,进而求出即可.【解答】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:41+,42+,42+,44+,44+,⋯∴第51n +到55n +次运动横坐标分别为:41n +,42n +,42n +,44n +,44n +, 30,2-,2-,0,第6到1030,2-,2-,0,⋯第51n +到55n +0,2-,2-,0,201954034÷=⋯,∴经过2019次运动横坐标为440341616=⨯+=,经过2019次运动纵坐标为2-,∴经过2019次运动后,电子蚂蚁运动到的位置的坐标是(1616,2)-.故答案为:(1616,2)-【点评】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三.解答题(共8小题)16.(10分)计算:(1)22(2)3|(2--+ 【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式445=--5=-;(2)原式1322= 32=. 【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(10分)求下列各等式中,x 的值:(1)2425x =;(2)33(4)240x --=.【分析】(1)先分解因式,即可得出两个一元一次方程,求出即可.(2)先化成3(1)8x +=-的形式,再开立方,即可求出答案.【解答】解:(1)(25)(25)0x x +-=,250x +=,250x -=,152x =-,252x =. (2)33(4)24x -=,3(4)8x -=,42x -=,6x =.【点评】本题考查了平方根和立方根的运用.掌握平方根和立方根的定义是解题的关键.18.(8分)某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在88⨯的正方形网格中,各点分别为:4点,公共自行车停车处;B 点,公园大门;C 点,便利店;D 点,社会主义核心价值观标牌;E 点,健身器械;F 点,文化小屋,如果B 点和D 点的坐标分别为(2,2)-,(3,1)-.()l 请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A ,C ,E ,F 的坐标.【分析】(1)根据B ,D 两点坐标建立平面直角坐标系即可.(2)根据点的位置写出坐标即可.【解答】解:(1)平面直角坐标系如图所示.(2)点A ,C ,E ,F 的坐标分别为(1,3)--,(2,3)-,(0,1),(4.2).【点评】本题考查作图-应用与设计,点的坐标等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(9分)如图,已知点A ,D ,C 在直线EF 上,点B 在直线MN 上,//EF MN ,52BAC ∠=︒,AB BC ⊥,BC 平分DBN ∠.求ADB ∠的度数.【分析】想办法求出DBN ∠,利用平行线的性质即可解决问题.【解答】解://EF MN ,52ABM CAB ∴∠=∠=︒,AB BC ⊥,90ABC ∴∠=︒,905238CBN ∴∠=︒-︒=︒, BC 平分DBN ∠,76DBN ∴∠=︒,//EF MN ,76ADB DBN ∴∠=∠=︒.【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(9分)如图,在平面直角坐标系中,ABC ∆的顶点都在格点上,点B 的坐标是(1,2).(1)将ABC ∆先向右平移3个单位长度,再向下平移2个单位长度,得到△A B C '''.请画出△A B C '''并写出A ',B ',C '的坐标;(2)在ABC ∆内有一点(,)P a b ,请写出按(1)中平移后的对应点P ''的坐标.【分析】(1)利用点平移的坐标变换规律写出A ',B ',C '的坐标,然后描点即可;(2)利用(1)中的平移规律,把P 点的横坐标加3,纵坐标减2得到P '点的坐标.【解答】解:(1)如图,△A B C '''为所作,点A ',B ',C '的坐标分别为(1,1)-,(4,0),(2,3)-;(2)点(,)P a b 平移后的对应点P ''的坐标为(3,2)a b +-.【点评】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.(9分)如图,已知AD DF ⊥,EC DF ⊥,13∠=∠,24∠=∠,求证://AE DF .(请在下面的解答过程的空格内填空或在括号内填写理由)证明:AD DF ⊥,EC DF ⊥,(已知) 90BFD ADF ∴∠=∠=︒.( 垂直的定义 )//(EC ∴ )EBA ∴∠= (两直线平行,内错角相等)24∠=∠,(已知) 4EBA ∴∠=∠.(等量代换) //AB ∴ .( )2180ADC ∴∠+∠=︒.( )23180ADF ∴∠+∠+∠=︒.13∠=∠.(已知) 21180ADF ∴∠+∠+∠=︒.(等量代换) ∴ 180ADF +∠=︒.//AE DF ∴.( )【分析】利用能内错角相等两直线平行,得到//EC AD ,再有两直线平行,内错角相等,得出2EBA ∠=∠,等量代换得到4EBA ∠=∠,利用同位角相等两直线平行,得到//AB CD ,再有两直线平行,同旁内角互补得到2180ADC ∠+∠=︒,等量代换得到180EAD ADF ∠+∠=︒,再根据同旁内角互补,两直线平行得到//AE DF .【解答】证明::AD DF ⊥,EC DF ⊥,(已知) 90BFD ADF ∴∠=∠=︒(垂直的定义), //EC AD ∴(内错角相等,两直线平行), 2EBA ∴∠=∠(两直线平行,内错角相等)24∠=∠,(已知) 4EBA ∴∠=∠.(等量代换) //AB DC ∴(同位角相等,两直线平行), 2180ADC ∴∠+∠=︒(两直线平行,同旁内角互补), 23180ADF ∴∠+∠+∠=︒,13∠=∠(已知), 21180ADF ∴∠+∠+∠=︒(等量代换), 180EAD ADF ∴∠+∠=︒,//AE DF ∴(同旁内角互补,两直线平行), 故答案为:垂直的定义,AD ,2∠,CD ,同位角相等,两直线平行,两直线平行,同旁内角互补,EAD ∠,同旁内角互补,两直线平行.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.(10分)如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到△11OA B ,在OAB ∆内一点(1,1)M 经过平移后的对应点为1(3,5)M -.(1)画出△111O A B ;(2)点1B 到y 轴的距离是 6 个单位长度;(3)求△111O A B 的面积.【分析】(1)利用M 点和M '点的坐标关系确定平移的方向与距离,然后利用此平移规律写出A 、B 、O 的对应点1A 、1B 、1O 的坐标,然后描点即可;(2)利用点的坐标的意义求解;(3)用一个矩形的面积分别减去三个三角形的面积去计算△111O A B 的面积.【解答】解:(1)如图,△111O A B 为所作;(2)点1B 到y 轴的距离是6个单位长度;故答案为6;(3)△111O A B 的面积111462414639222=⨯-⨯⨯-⨯⨯-⨯⨯=. 【点评】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.(10分)问题情境(1)如图1,已知//AB CD ,125PBA ∠=︒,155PCD ∠=︒,求BPC ∠的度数. 佩佩同学的思路:过点P 作//PG AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠= 80︒ .问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ∠=︒,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出APE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【解答】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ∠+∠=︒,180C CPG ∠+∠=︒,又125PBA ∠=︒,155PCD ∠=︒,36012515580BPC ∴∠=︒-︒-︒=︒,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;②如图3,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:过P 作//PQ DF ,//DF CG ,//PQ CG ∴,QPA β∴∠=∠,QPE α∠=∠,APE APQ EPQ βα∴∠=∠-∠=∠-∠;(3)如图2,ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠.【点评】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.。
洛阳市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列说法:①;②数轴上的点与实数成一一对应关系;③-2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A. 2个B. 3个C. 4个D. 5个【答案】C【考点】实数及其分类,实数在数轴上的表示,实数的运算,无理数的认识【解析】【解答】解:①=10,故说法错误;②数轴上的点与实数成一一对应关系,故说法正确;③-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与- 的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②③④⑥共4个.故答案为:C.【分析】根据二次根式的性质,一个数的平方的算术平方根等于它的绝对值;数轴上的点与实数成一一对应关系;一个正数有两个平方根,这两个平方根互为相反数,=4,-2是4的一个平方根;实数分为有理数和无理数,故任何实数不是有理数就是无理数;两个无理数的和不一定是无理数;无理数是无限不循环的小数,故无理数都是无限小数;根据这些结论即可一一判断。
2、(2分)下列变形中不正确的是()A.由得B.由得C.若a>b,则ac2>bc2(c为有理数)D.由得【答案】C【考点】不等式及其性质【解析】【解答】解:A、由前面的式子可判断a是较大的数,那么b是较小的数,正确,不符合题意;B、不等式两边同除以-1,不等号的方向改变,正确,不符合题意;C、当c=0时,左右两边相等,错误,符合题意;D、不等式两边都乘以-2,不等号的方向改变,正确,不符合题意;故答案为:C【分析】A 由原不等式可直接得出;B 、C、D 都可根据不等式的性质②作出判断(注意:不等式两边同时除以或除以同一个负数时,不等号的方向改变。
河南省洛阳市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题,下列各题中只有一个选项是正确的,请将正确答案的番号选 (共12题;共24分)1. (2分) (2020七下·建湖月考) 如图,下列说法正确的是()A . ∠2和∠4是同位角B . ∠2和∠4是内错角C . ∠1和∠A是内错角D . ∠3和∠4是同旁内角.2. (2分)(2011·宁波) 下列计算正确的是()A . a6÷a2=a3B . (a3)2=a5C .D .3. (2分)、、5三个数的大小关系是()A .B .C .D .4. (2分)下列运算正确的是()A . a2+a2=a4B . (ab)2=a2bC . (a2)3=a6D . a a2=a25. (2分)在平面直角坐标系中,若点P(m+3,m-1)在第四象限,则m的取值范围为()A . -3<m<1B . m>1C . m<-3D . m>-36. (2分) (2018·清江浦模拟) 点A在数轴上表示+2,从A点沿数轴向左平移3个单位到点B,则点B所表示的数是()A . ﹣1B . 3C . 5D . ﹣1 或37. (2分)(2018·仙桃) 如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A . 1B . 1.5C . 2D . 2.58. (2分)为了改善住房条件,小亮的父母考察了某小区的A,B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是().A .B .C .D .9. (2分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A . (0,3)B . (5,0)C . (1,4)D . (8,3)10. (2分)在 3.14,,π和这四个实数中,无理数是()A . 3.14和B . π和C . 和D . π和11. (2分) (2016七下·迁安期中) 如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A . 相等B . 互余或互补C . 互补D . 相等或互补12. (2分) (2017七下·大同期末) 若将点向左平移3个单位,再向下平移4个单位,得到点B,则点B的坐标为().A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2017七下·洪泽期中) 请你写一个关于x,y的二元一次方程组________,使得它的解为.14. (1分)(2011·宁波) 如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________度.15. (1分)已知a、b为有理数,m、n分别表示5﹣的整数部分和小数部分,且am+bn=9,则a+b=________.16. (1分)在平面直角坐标系中,将点A(4,1)向左平移________ 单位得到点B(﹣1,1).17. (1分) (2019七上·宁津期末) 已知|x|=3,y2=16,xy<0,则x﹣y=________.18. (1分) (2017八上·萍乡期末) 如图,如果所在位置的坐标为(﹣1,﹣2),所在位置的坐标为(2,﹣2),那么,所在位置的坐标为________.三、用心解一解 (共7题;共64分)19. (10分) (2018七上·龙江期末) 解方程(组):(1);(2)20. (5分) (2019七下·宜春期中) 若关于x、y的二元一次方程组和有相同的解,求的值.21. (5分)已知 m 是的小数部分,n是的整数部分,求(m-n)2的值.22. (16分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:________;(4)求△A′B′C′的面积.23. (10分)(2018·河源模拟) 某校准备购买一批学习用品作为奖品奖励优秀学生,已知买2本笔记本和1本练习本需要18元,买1本笔记本和2本练习本需要12元.(1)求购买1本笔记本,1本练习本各需要多少元;(2)现学校决定用不超过1200元,购买笔记本和练习本共300本,问最多能购买笔记本多少本?24. (5分)如图,射线OA∥射线CB,∠C=∠OAB=100°.点D、E在线段CB上,且∠DOB=∠BOA,OE平分∠DOC.(1)试说明AB∥OC的理由;(2)试求∠BOE的度数;(3)平移线段AB;①试问∠OBC:∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律.②若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC的度数.25. (13分) (2016七下·青山期中) 已知,在平面直角坐标系中,AB⊥x轴于点B,点A(a,b)满足+|b﹣2|=0,平移线段AB使点A与原点重合,点B的对应点为点C.(1)则a=________,b=________;点C坐标为________;(2)如图1,点D(m,n)在线段BC上,求m、n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.参考答案一、选择题,下列各题中只有一个选项是正确的,请将正确答案的番号选 (共12题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、用心解一解 (共7题;共64分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、24-1、25-1、25-2、25-3、。
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.计算a6÷a2的结果是( )A.a3 B.a4 C.a8 D.a122.二元一次方程2x+y=11的非负整数解有( )A.1个 B.2个 C.6个 D.无数个3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A、C两点之间 B.E、G两点之间C.B、F两点之间 D.G、H两点之间4.方程3x+2y=1和2x=y+3的公共解是( )A. B. C. D.5.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c…;a+b+c 就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是( )A.①② B.②③ C.①③ D.①②③6.已知方程组的解满足x+y=3,则k的值为( )A.10 B.8 C.2 D.﹣87.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是( )A. B.C .D .8.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片的小正方形卡片((a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣15,则小正方形卡片的面积是( )A .10B .8C .2D .5二、填空题(每题3分,共30分)9.某细胞的直径约为0.0000102米,用科学记数法表示为 米. 10.计算:1012﹣992= .11.若(a ﹣2)x |a |﹣1+3y =1是二元一次方程,则a = .12.已知(m +n )2=7,(m ﹣n )2=3,则m 2+n 2= .13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= °.14.设A =(x ﹣3)(x ﹣7),B =(x ﹣2)(x ﹣8),则A 、B 的大小关系为 .15.如图,面积为3cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC 长的2倍,则△ABC 纸片扫过的面积为 .16.如果4x 2﹣mxy +9y 2是一个完全平方式,则m =.17.如果方程组的解中x 与y 的值相等,那么a 的值是 .18.对于正整数m ,若m =pq (p ≥q >0,且p ,q 为整数),当p ﹣q 最小时,则称pq 为m 的“最佳分解”,并规定f (m )=(如:12的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f (12)=).关于f (m )有下列判断:①f (27)=3;②f (13)=;③f (2018)=;④f (2)=f (32);⑤若m 是一个完全平方数,则f (m )=1.其中,正确判断的序号是 . 三、解答题(共96分) 19.(8分)计算(1)(3.14﹣π)0+(﹣4)2﹣()﹣1(2)(x ﹣3)2﹣(x +2)(x ﹣2)20.(8分)因式分解 (1)a 2﹣25 (2)xy 2﹣4xy +4x 21.(8分)解方程组 (1) (2)22.(8分)先化简再求值:4(a +2)2﹣7(a +3)(a ﹣3)+3(a ﹣1)2,其中a 是最小的正整数. 23.(8分)如图,EG ⊥BC 与点G ,∠BFG =∠DAC ,AD 平分∠BAC ,试判断AD 与BC 的位置关系,并说明理由.24.(8分)小明和小丽同解一个二元一次方程组,小明正确解得,小丽因抄错了c ,解得.已知小丽除抄错c 外没有发生其他错误,求a +b +c 的值.25.(12分)拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a 2+7ab +2b 2,并通过拼图对多项式3a 2+7ab +2b 2因式分解:3a 2+7ab +2b 2= . (3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(x >y ),结合图案,指出以下关系式:(1)xy =;(2)x +y =m ;(3)x 2﹣y 2=m •n ;(4)x 2+y 2=其中正确的关系式的个数有( ) A .1个 B .2个 C .3个 D .4个. 26.(12分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. ∵m 2+2mn +2n 2﹣6n +9=0∴m 2+2mn +n 2+n 2﹣6n +9=0∴(m +n )2+(n ﹣3)2=0∴m +n =0,n ﹣3=0∴m =﹣3,n =3 根据你的观察,探究下面的问题:(1)若x 2+4x +4+y 2﹣8y +16=0,求的值.(2)试说明不论x ,y 取什么有理数时,多项式x 2+y 2﹣2x +2y +3的值总是正数.(3)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a +8b ﹣41,且c 比a 、b 都大,求c 的取值范围.27.(12分)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.28.(12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减计算即可. 【解答】解:a6÷a2=a6﹣2=a4.故选:B.【点评】本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.2.【分析】最小的非负整数为0,把x=0,x=1,x=2,x=3…依次代入二元一次方程2x+y=11,求y值,直至y为负数,从而得到答案.【解答】解:最小的非负整数为0,当x=0时,0+y=11,解得:y=11,当x=1时,2+y=11,解得:y=9,当x=2时,4+y=11,解得:y=7,当x=3时,6+y=11,解得:y=5,当x=4时,8+y=11,解得:y=3,当x=5时,10+y=11,解得:y=1,当x=6时,12+y=11,解得:y=﹣1(不合题意,舍去)即当x≥6时,不合题意,即二元一次方程2x+y=11的非负整数解有6个,故选:C.【点评】本题考查解二元一次方程,正确掌握代入法是解题的关键.3.【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. 【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.【分析】组成方程组求解即可.【解答】解:解方程组得,故选:D.【点评】本题主要考查了二元一次方程的解,解题的关键是正确求出方程组的解.5.【分析】由于将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式,由于将代数式中的任意两个字母互相替换,代数式不变,根据这个定义分别将①②③进行替换,看它们都有没有改变,由此即可确定是否完全对称式. 【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.【点评】此题是一个阅读材料题,考查了完全平方公式,难点在于读懂题意,然后才能正确利用题意解决问题.6.【分析】理解清楚题意,运用三元一次方程组的知识,解出K的数值.【解答】解:由题意可得,2×①﹣②得y=k﹣,②﹣③得x=﹣2,代入③得y=5,则k﹣=5,解得k=8.故选:B.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【分析】此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.【点评】此题是追及问题.注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 8.【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣15,整理得,b2=5,则小正方形卡片的面积是5,故选:D.【点评】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键. 二、填空题(每题3分,共30分)9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000102=1.02×10﹣5,故答案为:1.02×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】直接利用平方差公式分解因式进而计算得出即可.【解答】解:1012﹣992=(101+99)×(101﹣99)=400.故答案为:400.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式是解题关键.11.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0. 【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.14.【分析】根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案. 【解答】解:∵A=(x﹣3)(x﹣7)=x2﹣10x+21,B=(x﹣2)(x﹣8)=x2﹣10x+16, ∴A﹣B=x2﹣10x+21﹣(x2﹣10x+16)=5>0,∴A>B,故答案为:A>B.【点评】本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.15.【分析】根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,△ABC 纸片扫过的面积为四边形ABDF 的面积=5个△ABC 的面积; 【解答】解:∵平移的距离是边BC 长的两倍, ∴BC =CE =EF ,∴四边形ACED 的面积是三个△ABC 的面积; ∴△ABC 纸片扫过的面积=S四边形ABFD=5×3=15cm 2,【点评】【点评】考查了平移的性质,考查了平移的性质,考查了平移的性质,本题的关键是得出四边形本题的关键是得出四边形ACED 的面积是三个△ABC 的面积.然后根据已知条件计算.16.【分析】这里首末两项是2x 和3y 这两个数的平方,那么中间一项为加上或减去2x 和3y 积的2倍.【解答】解:∵4x 2﹣mxy +9y 2是一个完全平方式, ∴﹣mxy =±2×2x ×3y , ∴m =±12.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 17.【分析】把y =x 代入方程组求出a 的值即可. 【解答】解:把y =x 代入方程组得:,解得:,则a 的值是3, 故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.【分析】先分解因数,进而找出最佳分解,即可得出结论. 【解答】解:①∵27的分解有27×1,9×3, ∴9×3为27的最佳分解,则f (12)==,故说法①错误;②∵13的分解有13×1,∴13×1为13的最佳分解,则f (13)=,故说法②正确;③∵2018的分解有2018×1,1009×2,∴1009×2为2018的最佳分解,则f (2018)=,故说法③错误;④∵2的分解有2×1,∴2×1为2的最佳分解,则f (2)=,∵32的分解有32×1,16×2,8×4,∴8×4为32的最佳分解,则f (22)==,∴f (2)=f (32),故说法④正确;⑤∵m 是一个完全平方数,设m =n 2(m >0),∴n ×n 为m 的最佳分解,则f (m )==1,故说法⑤正确,∴正确判断的序号为②④⑤,故答案为②④⑤.【点评】此题主要考查了新定义,分解因数,完全平方数的特点,能正确分解因数是解本题的关键.三、解答题(共96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(1)原式=1+16﹣2=15;(2)原式=x 2﹣6x +9﹣x 2+4=﹣6x +13.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【分析】(1)两项考虑平方差公式;(2)提取公因式x后,再用完全平方公式.【解答】解:(1)原式=(a+5)(a﹣5);(2)原式=x(y2﹣4y+4)=x(y﹣2)2.【点评】本题考查了因式分解的平方差公式和完全平方公式.题目比较简单,掌握公式是关键.21.【分析】(1)用代入法求解方程组比较简便;(2)变形2x+y=1,可用代入法求解,亦可①×2﹣②用加减法求解.【解答】解:(1),把②代入①,得2(1﹣y)+4y=5,解得,y=,把y=代入②,得x=1﹣=﹣.∴原方程组的解为.(2)由①,得y=1﹣2x③,把③代入②,得5x+2(1﹣2x)=3,解得x=1把x=1代入③,得y=1﹣2×1=﹣1.所以原方程组的解为.【点评】本题考查的是二元一次方程组的解法,题目相对简单,掌握代入、加减消元法是解决本题的关键.22.【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【解答】解:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a 2+16a +16﹣7a 2+63+3a 2﹣6a +3=10a +82,最小的正整数是1,则a =1,原式=10+82=92,.【点评】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可. 23.【分析】根据角平分线的定义可得∠BAD =∠DAC ,从而可得∠BFG =∠BAD ,再根据同位角相等,两直线平行可得EG ∥AD ,然后根据EG ⊥BC 即可证明AD ⊥BC .【解答】解:AD ⊥BC .理由如下:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFG =∠DAC ,∴∠BFG =∠BAD ,∴EG ∥AD ,∴∠EGC =∠ADC ,又∵EG ⊥BC ,∴∠EGC =90°,∴∠ADC =90°,∴AD ⊥BC .【点评】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键. 24.【分析】因为小明的解正确,所以可以代入任何一个方程,代入①可求c 的值,代入②得a ﹣b =2;因为小丽抄错了c ,因此可以代入②中,得a ﹣3b =1,建立方程组,可以得出a 、b 的值,从而求出结论.【解答】解:将代入cx ﹣3y =﹣2①得,c +3=﹣2,c =﹣5, 将代入ax +by =2②得,a ﹣b =2③, 将代入②得,2a ﹣6b =2,a ﹣3b =1④,将③,④联立,, 解之得,所以.【点评】本题考查了二元一次方程组的解,要求方程组的字母系数,通常采用代入法,将正确的解代入即可.25.【分析】(1)看图即可得出所求的式子;(2)画出的矩形边长分别为(3a+b)和(a+2b)即可;(3)根据图中每个图形的面积之间的关系即可判断出正确的有几个.【解答】解:(1)由分析知:图③所表示的等式为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)示意图如下3a2+7ab+2b2=(3a+b)(a+2b);(3)D.【点评】此题考查利用图形面积研究因式分解,同时也加深了对多项式乘多项式的理解. 26.【分析】(1)已知等式利用完全平方公式整理配方后,求出x与y的值,即可求出所求;(2)原式配方变形后,利用非负数的性质判断即可;(3)已知等式利用完全平方公式配方后,利用非负数的性质求出a与b的值,即可求出c的范围.【解答】解:(1)已知等式整理得:(x+2)2+(y﹣4)2=0,可得x+2=0,y﹣4=0,解得:x=﹣2,y=4,则原式=﹣2;(2)∵(x﹣1)2≥0,(y+1)2≥0,∴原式=(x﹣1)2+(y+1)2+1≥1>0,则不论x,y取什么有理数时,多项式x2+y2﹣2x+2y+3的值总是正数;(3)已知等式整理得:(a﹣5)2+(b﹣4)2=0,可得a﹣5=0,b﹣4=0,解得:a=5,b=4,则c的范围是5<c<9.【点评】此题考查了配方法的应用,非负数的性质:偶次幂,以及三角形三边关系,熟练掌握完全平方公式是解本题的关键.27.【分析】(1)设每辆小客车能坐x人,每辆大客车能坐y人,根据题意可得等量关系:3辆小客车座的人数+1辆大客车座的人数=105人;1辆小客车座的人数+2辆大客车座的人数=110人,根据等量关系列出方程组,再解即可;(2)①根据题意可得小客车m辆运的人数+大客车n辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金150元,大客车每辆租金250元分别计算出租金即可.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出二元一次方程或方程组.28.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得 t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点评】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。
河南省洛阳市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·余姚模拟) 2018年1月份,宁波部分中小学爆发大规模流感疫情,流感病毒的形状一般为球形,直径大约为0.000000102米,该直径用科学记数法表示为()米A . 1.02×10﹣7B . 1.02×107C . 1.02×10﹣8D . 1.02×1082. (2分)给出下列说法:两条直线被第三条直线所截,同位角相等;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;相等的两个角是对顶角;从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有()A . 0个B . 1个C . 2个D . 3个3. (2分)化简 -3a+(3a-2)的结果是()A . -6a-2B . 6a-2C . 2D . -24. (2分)若x2a-3b+2y5a+b-10=11=0是二元一次方程,那么的a、b值分别是()A . 2,1B . 0,-1C . 1,0D . 2,-35. (2分)(2019·海港模拟) 下列计算中,正确的是()A . =±2B . 2+ =2C . a2·a4=a8D . (a3)2=a66. (2分) (2017七下·江苏期中) 下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()A . 1个B . 2个C . 3个D . 4个7. (2分)计算:22014﹣(﹣2)2015的结果是()A . 24029B . 3×22014C . ﹣22014D . ()20148. (2分) (2020七下·萧山期末) 有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式总能分解成两个一次因式积的形式;③若,则可以取的值有3个;④关于,的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是 .其中正确的说法是A . ①④B . ①③④C . ②③D . ①②9. (2分)下列各式计算结果正确的是()A . x+x=x2B . (2x)2=4xC . x+1)2=x2+1D . x•x=x210. (2分)(2020·杭州模拟) 如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,以点B为圆心,适当长为半径画弧交边于D,E两点(按照A,D,E,C依次排列,且D、E不重合).过D、E点分别作AB和BC的垂线段交于F、G两点,如果线段DF=x,EG=y,则x、y的关系式为()A . 20x-15y=B . 20x-15y=C . 15x-20y=D . 15x-20y=二、填空题 (共6题;共6分)11. (1分) (2019七下·赣榆期中) =________.12. (1分) (2019七下·丰城期末) 将一副三角板按如图放置,小明得到下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=30°;④如果∠CAD=150°,则∠4=∠C;那么其中正确的结论有________.13. (1分) (2020八下·重庆月考) 若,,,则代数式的值为________.14. (1分)(2020·雄县模拟) 如图,在中,,将折叠,使点,分别落在点,处(点,都在所在的直线上),折痕为,则等于________.15. (1分) (2017七下·常州期末) 若实数x、y满足方程组,则代数式2x+3y﹣4的值是________.16. (1分) (2016七下·盐城开学考) 小明根据市自来水公司的居民用水收费标准,制定了如图所示的水费计算数值转换机示意图,根据数值转换机程序,小明输入他家这个月的用水量,结果显示应缴水费70元,那么小明家这个月的用水量为________ m3 .三、解答题 (共8题;共78分)17. (10分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由∵∠1=∠2________∠1=∠4________∴∠2=∠4(________)∴________∥________(________)∴∠C=∠ABD________∵∠C=∠D(________)∴∠D=∠ABD________∴DF∥AC________.18. (10分)计算:(1)﹣2﹣(﹣)0+2sin60°﹣|﹣3|;(2)(x+1)2﹣(x+2)(x﹣2)19. (10分) (2017七下·姜堰期末) 解下列方程组或不等式组(1)(2)20. (10分)(2020·定安模拟) 计算:(1);(2) .21. (5分) (2016八上·思茅期中) 先化简再求值:4(m+1)2﹣(2m+5)(2m﹣5),其中m=﹣3.22. (15分)(2019·天心模拟) 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线上是否存在点M,使得∠MAC=2∠MCA,若存在,求出M点坐标.若不存在,说明理由.23. (7分) (2020八上·通榆期末) 如图,边长为a,b的长方形,它的周长为14,面积为10,(1)填空:a+b=________ ,ab=________ 。
2018-2019学年七年级第二学期期中数学试卷一、选择题1.下列方程中,是二元一次方程的是( )A .46x y +=B .690xy +=C .324x y z -=D .2x l y=+ 2.若a b <,则下列各式中一定成立的是( )A .11a b +>+B .11a b ->-C .33a b ->-D .22a b > 3.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( ) A .①3⨯+②2⨯ B .①3⨯-②2⨯ C .①5⨯+②3⨯ D .①5⨯-②3⨯4.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x y +的值为( ) A .9 B .7 C .5 D .35.如果(3)26m x m +>+的解集为2x <,则m 的取值范围是( )A .0m <B .3m <-C .3m >-D .m 是任意实数6.如图,直线//a b ,175∠=︒,235∠=︒,则3∠的度数是( )A .75︒B .55︒C .40︒D .35︒7.若2(2)|3|0a b -+-=,则以a 、b 为边长的等腰三角形的周长为( )A .6B .7C .8D .7或88.一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形9.在下列四组多边形的地板砖中:①正三角形与正方形;②正三角形与正十边形;③正方形与正六边形;④正方形与正八边形.将每组中的两种多边形结合,能密铺地面的是( )A .①②③B .①②④C .③④D .①④10.如图,宽为60cm 的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为()A.60cm B.120cm C.312cm D.576cm 二、填空题(共5小题,共15分)11.已知方程321x y-=,用含x的式子表示y,则y=.12.已知2|2|(342)0x y x y-+--=,则x=,y=.13.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是.14.如图所示,123456∠+∠+∠+∠+∠+∠=度.15.对于X、Y定义一种新运算“*”:*X Y aX bY=+,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*515=,4*728=,那么2*3=.三、解答题(共8小题,共75分)16.(1)解方程组:425x yx y-=⎧⎨+=⎩(2)解不等式:2132x x->-.17.解不等式组513(1)131722x xx x+>-⎧⎪⎨--⎪⎩…,并把它的解集在数轴上表示出来.18.如图,五边形ABCDE中,//AE CD,107A∠=︒,121B∠=︒,求C∠的度数.19.当m,n分别取何值时,方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩的解相同?20.已知方程组35123x y kx y k+=+⋯⎧⎨+=⋯⎩①②的解x,y满足2x y+=,求k的值.21.如图,在ABC∆中,AD是BC边上的中线,ADC∆的周长比ABD∆的周长多5cm,AB 与AC的和为13cm,求AC的长.22.在各个内角都相等的多边形中,一个外角等于一个内角的13,求这个多边形的每一个内角的度数和它的边数.23.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘(010)n n<<名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?参考答案一、选择题(共10小题,共30分)1.下列方程中,是二元一次方程的是( )A .46x y +=B .690xy +=C .324x y z -=D .2x l y=+ 【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 解:A 、是二元一次方程,故此选项正确;B 、是二元二次方程,故此选项错误;C 、是三元一次方程,故此选项错误;D 、是分式方程,故此选项错误;故选:A .2.若a b <,则下列各式中一定成立的是( )A .11a b +>+B .11a b ->-C .33a b ->-D .22a b > 【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.解:A 、两边都加1,不等号的方向不变,故A 不符合题意;B 、两边都减1,不等号的方向不变,故B 不符合题意;C 、两边都乘以3-,不等号的方向改变,故C 符合题意;D 、两边都除以2,不等号的方向不变,故D 不符合题意;故选:C .3.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( ) A .①3⨯+②2⨯ B .①3⨯-②2⨯ C .①5⨯+②3⨯ D .①5⨯-②3⨯【分析】利用加减消元法消去y 即可.解:用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①5⨯+②3⨯, 故选:C .4.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x y +的值为( ) A .9 B .7 C .5 D .3【分析】方程组两方程相加求出x y +的值即可.解:612328x y x y +=⎧⎨-=⎩①②, ①+②得:4420x y +=,则5x y +=,故选:C .5.如果(3)26m x m +>+的解集为2x <,则m 的取值范围是( )A .0m <B .3m <-C .3m >-D .m 是任意实数【分析】由原不等式变形为(3)2(3)m x m +>+,解该不等式的下一步是两边都除以x 的系数(3)m +,题中给出的解集是2x <,改变了不等号的方向,所以x 的系数是小于0的,据此可以求得m 的取值范围.解:由不等式(3)26m x m +>+,得(3)2(3)m x m +>+,(3)26m x m +>+Q 的解集为2x <,30m ∴+<,解得,3m <-;故选:B .6.如图,直线//a b ,175∠=︒,235∠=︒,则3∠的度数是( )A .75︒B .55︒C .40︒D .35︒【分析】根据平行线的性质得出4175∠=∠=︒,然后根据三角形外角的性质即可求得3∠的度数.解:Q 直线//a b ,175∠=︒,4175∴∠=∠=︒,234∠+∠=∠Q ,342753540∴∠=∠-∠=︒-︒=︒.故选:C .7.若2(2)|3|0a b -+-=,则以a 、b 为边长的等腰三角形的周长为( )A .6B .7C .8D .7或8【分析】先根据非负数的性质得到a 、b 的长,再分为两种情况:①当腰是2,底边是3时,②当腰是3,底边是2时,求出即可.解:2(2)|3|0a b -+-=Q ,20a ∴-=,30b -=,解得2a =,3b =,①当腰是2,底边是3时,三边长是2,2,3,此时符合三角形的三边关系定理, 即等腰三角形的周长是2237++=;②当腰是3,底边是2时,三边长是3,3,2,此时符合三角形的三边关系定理, 即等腰三角形的周长是3328++=.故选:D .8.一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【分析】此题可以利用多边形的外角和和内角和定理求解.解:设所求正n 边形边数为n ,由题意得(2)1803602n -︒=︒⨯g解得6n =.则这个多边形是六边形.故选:C .9.在下列四组多边形的地板砖中:①正三角形与正方形;②正三角形与正十边形;③正方形与正六边形;④正方形与正八边形.将每组中的两种多边形结合,能密铺地面的是( )A .①②③B .①②④C .③④D .①④【分析】平面密铺关键是看拼在同一顶点处的几个角能否构成周角,会计算正多边形的每一个角的大小,两个条件同时判断每一小题是否符合题意,综合后只有①④成立. 解:①Q 正三角形的内角为60︒,正方形的内角为90︒,3∴个正三角形和2个正方形可以密铺;②Q 正三角形的内角为60︒,正十边形内角144︒,∴正三角形和正十边形无法密铺;③正方形的内角为90︒,正六边形的内角为120︒,∴正方形和正六边形无法密铺;④Q 正方形的内角为90︒,正八边形的内角为145︒,1∴个方形和2个正八边形可以密铺,综合所述①、④两种情况都可密铺,故选:D .10.如图,宽为60cm 的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为( )A .60cmB .120cmC .312cmD .576cm【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽60=,小长方形的长2⨯=小长方形的长+小长方形的宽4⨯,根据这两个等量关系,可列出方程组,再求解.解:设一个小长方形的长为xcm ,宽为ycm ,由图形可知,6024x y x x y+=⎧⎨=+⎩, 解得:4812x y =⎧⎨=⎩.所以一个小长方形的周长为:2(4812)120()cm +=.故选:B .二、填空题(共5小题,共15分)11.已知方程321x y -=,用含x 的式子表示y ,则y2 . 【分析】把x 看做已知数求出y 即可. 解:方程321x y -=, 解得:312x y -=, 故答案为:312x - 12.已知2|2|(342)0x y x y -+--=,则x = 2 ,y = .【分析】利用非负数的性质列出方程组,求出方程组的解即可得到x 与y 的值. 解:2|2|(342)0x y x y -+--=Q ,∴20342x y x y -=⎧⎨-=⎩①②, ②-①2⨯得:2x =,把2x =代入①得:1y =,故答案为:2;113.已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是63x <„ . 【分析】根据题意列出不等式组,再求解集即可得到x 的取值范围. 解:依题意有351122x x >⎧⎪⎨-⎪⎩„, 解得563x <„. 故x 的取值范围是563x <„. 故答案为:563x <„. 14.如图所示,123456∠+∠+∠+∠+∠+∠= 360 度.【分析】分析图形,根据“三角形的外角等于与它不相邻的两个内角和”可知能把,1∠,2∠,3∠,4∠,5∠,6∠全部转化到2∠,3∠所在的四边形中,利用四边形内角和为360度可得答案.解:如图所示,158∠+∠=∠Q ,467∠+∠=∠,又2378360∠+∠+∠+∠=︒Q ,123456360∴∠+∠+∠+∠+∠+∠=︒15.对于X 、Y 定义一种新运算“*”: *X Y aX bY =+,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*515=,4*728=,那么2*3= 2 .【分析】本题是一种新定义运算题目.首先要根据运算的新规律,得出3515a b +=①4728a b +=②,①(②-①)即可得出答案.解:*X Y aX bY =+Q ,3*515=,4*728=,3515a b ∴+=①4728a b +=②,②-①213a b =+=③,①-③232a b =+=,而2*3232a b =+=.三、解答题(共8小题,共75分)16.(1)解方程组:425x y x y -=⎧⎨+=⎩ (2)解不等式:2132x x ->-. 【分析】(1)用加减消元法求出方程组的解.(2)根据一元一次不等式的解法,去分母,去括号,移项,合并,系数化为1即可得解.解:(1)425x yx y-=⎧⎨+=⎩①②,①+②得:39x=,3x=,代入①得:34y-=,1y=-.则原方程组的解为31xy=⎧⎨=-⎩.(2)去分母得,263(2)x x>--,去括号得,2636x x>-+,移项、合并得,512x>,系数化为1得,125 x>.17.解不等式组513(1)131722x xx x+>-⎧⎪⎨--⎪⎩„,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式513(1)x x+>-,得:2x>-,解不等式131722x x--„,得:4x„,则不等式组的解集为24x-<„,将解集表示在数轴上如下:18.如图,五边形ABCDE中,//AE CD,107A∠=︒,121B∠=︒,求C∠的度数.【分析】过点B在B的右侧作//BF AE,根据平行线的性质求解.解:过点B在B的右侧作//BF AE.//BF AEQ,107A∠=︒,18010773ABF∴∠=︒-︒=︒,121B∠=︒Q,12148FBC ABF∴∠=︒-∠=︒,又//AE CD,//BF AE,//BF CD∴,180132C FBC∴∠=︒-∠=︒.19.当m,n分别取何值时,方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩的解相同?【分析】联立不含m与n的方程组成方程组,求出解代入剩下方程求出m与n的值即可.解:联立得:32453x yx y-=⎧⎨-+=⎩①②,①+②3⨯得:1313y=,解得:1y=,把1y=代入②得:2x=,代入得:27 4319m nm n+=⎧⎨-=⎩,解得:4m=,1n=-.20.已知方程组35123x y kx y k+=+⋯⎧⎨+=⋯⎩①②的解x,y满足2x y+=,求k的值.【分析】①-②可得21x y+=,与2x y+=建立方程组,解出x、y的值,代入②可得k的值.解:①-②得:21x y+=,∴212x y x y +=⎧⎨+=⎩, 解得:31x y =⎧⎨=-⎩, 把3x =,1y =-代入②可得:3k =.21.如图,在ABC ∆中,AD 是BC 边上的中线,ADC ∆的周长比ABD ∆的周长多5cm ,AB 与AC 的和为13cm ,求AC 的长.【分析】根据中线的定义知CD BD =.结合三角形周长公式知5AC AB cm -=;又13AC AB cm +=.易求AC 的长度.解:AD Q 是BC 边上的中线,D ∴为BC 的中点,CD BD =.ADC ∆Q 的周长ABD -∆的周长5cm =.5AC AB cm ∴-=.又13AB AC cm +=Q ,9AC cm ∴=.即AC 的长度是9cm .22.在各个内角都相等的多边形中,一个外角等于一个内角的13,求这个多边形的每一个内角的度数和它的边数.【分析】已知关系为:一个外角=一个内角13⨯,隐含关系为:一个外角+一个内角180=︒,由此即可解决问题.解:设该多边形为n 边形Q 多边形一个外角等于一个内角的13, ∴多边形的一个外角1180454=︒⨯=︒,一个内角18045135=︒-︒=︒, Q 多边形的内角和为360︒,∴多边形的边数360845︒==︒, 答:该多边形每一个内角的度数为135︒,该多边形为八边形.23.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘(010)n n <<名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【分析】(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;(2)设调熟练工m 人,根据一年的安装任务列出方程整理用m 表示出n ,然后根据人数m 是整数讨论求解即可.解:(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车,根据题意得282314x y x y +=⎧⎨+=⎩, 解之得42x y =⎧⎨=⎩. 答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m 人,由题意得,12(42)240m n +=,整理得,102n m =-,010n <<Q ,∴当1m =,2,3,4时,8n =,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.。