四川省南充市2011年中考数学真题试卷
- 格式:xls
- 大小:539.00 KB
- 文档页数:2
2011年中考数学试题(含答案)班级:姓名:全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是()A.4 B.2 C.-2 D.2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点3.下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6 C.(a2)3=a5 D.(a-b)2=a2-b24.如图2,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补5.下列说法正确的是()A.频数是表示所有对象出现的次数B.频率是表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)()A.-26°C B.-22°C C.-18°C D.22°C7.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是()A.r>15 B.15<r<20 C.15<r<25 D.20<r<259.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为()A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 23 24得分二、填空题:(每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.13.若A(1x,1y)、B(2x,2y)在函数12yx=的图象上,则当1x、2x满足_______________时,1y>2y.14.如图5,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.19.(本小题满分8分)图4图2图5图1图7图3图6惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区? (2)要使救灾物资一次性地运往灾区,共有哪几种运货方案? 20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理. 21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标. 22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上. (1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少米?(结果可保留根号) 23.(本小题满分10分) 阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a2-b2=(3b)2-b2=2b2=b·c .即a2-b2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a2-b2=bc 都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.24.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线. (1)求抛物线所对应的函数关系式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图8图9-1 图9-2 图9-3 图10图72011年中考数学试题参考答案及评分意见 说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同. 一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可; 12.3434+(或34+3);13.x1<x2<0或 0<x1<x2; 14.4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)x x - 4分 =22(2)x x --–2(2)x x -=12x - 5分 当x=1时,原式=121- 6分 = 1 7分说明:以上步骤可合理省略 . 18.(1) 内. 2分(2) 证法一:连接CD , 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形, 4分 又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , 6分 ∴ □DECF 为菱形. 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI=DG , DG=DH .∴DH=DI . 4分∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, 5分 ∴S□DECF=CE·DH =CF·DI , ∴CE=CF . 6分∴□DECF 为菱形. 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, 1分∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. 2分(2) 设安排甲种货车x 辆,则安排乙种货车(9–x)辆, 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ 5分解得:1.5≤x ≤5 6分注意到x 为正整数,∴x=2,3,4,5 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车2345乙种货车 7 6 5 48分说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程也给全分. 20.(1) 大双的设计游戏方案不公平. 1分可能出现的所有结果列表如下:1 23 4 4 8 12 551015或列树状图如下:4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13, 6分 ∵23≠13,∴大双的设计方案不公平. 7分 (2) 小双的设计方案不公平. 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y=2kx 的图象经过点(1,1), ∴1=2k1分 解得k=2, 2分∴反比例函数的解析式为y=1x .3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A(12-,–2). 6分(3) P1(32,–2),P2(52-,–2),P3(52,2).(每个点各1分) 9分 22. (1) 在Rt △BPQ 中,PQ=10米,∠B=30°, 则BQ=cot30°×PQ =103,2分 又在Rt △APQ 中,∠PAB=45°, 则AQ=tan45°×PQ=10,即:AB=(103+10)(米); 5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B=30°,AB=103+10,∴ AE=sin30°×AB=12(103+10)=53+5, 7分∵∠CAD=75°,∠B=30°, ∴ ∠C=45°, 8分在Rt △CAE 中,sin45°=AEAC ,∴AC=2(53+5)=(56+52)(米) 10分 23. (1) 由题意,得∠A=90°,c=b ,a=2b , ∴a2–b2=(2b)2–b2=b2=bc . 3分(2) 小明的猜想是正确的. 4分理由如下:如图3,延长BA 至点D ,使AD=AC=b ,连结CD , 5分则ΔACD 为等腰三角形.∴∠BAC=2∠ACD ,又∠BAC=2∠B ,∴∠B=∠ACD=∠D ,∴ΔCBD 为等腰三角形,即CD=CB=a , 6分大双积 小双 图9-3图8图10答案图2图10答案图1又∠D =∠D ,∴ΔACD ∽ΔCBD , 7分 ∴AD CD CD BD =.即b aa b c =+.∴a2=b2+bc .∴a2–b2= bc 8分(3) a=12,b=8,c=10.10分24.(1) ∵以AB 为直径作⊙O′,交y 轴的负半轴于点C , ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC ,又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , 1分 ∴OA OCOC OB =. 又∵A(–1,0),B(9,0), ∴19OC OC=,解得OC=3(负值舍去). ∴C(0,–3),3分设抛物线解析式为y=a(x+1)(x –9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x –9),即y=13x2–83x –3. 4分 (2) ∵AB 为O′的直径,且A(–1,0),B(9,0), ∴OO′=4,O′(4,0), 5分∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,∴∠BCD=12∠BCE=12×90°=45°,连结O′D 交BC 于点M ,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5. ∴D(4,–5). 6分∴设直线BD 的解析式为y=kx+b (k≠0) ∴90,4 5.k b k b +=⎧⎨+=-⎩ 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y=x –9. 8分(3) 假设在抛物线上存在点P ,使得∠PDB=∠CBD ,解法一:设射线DP 交⊙O′于点Q ,则BQ CD =.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3). ∴把点C 、D 绕点O′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q1重合, 因此,点Q1(7,–4)符合BQ CD =, ∵D(4,–5),Q1(7,–4),∴用待定系数法可求出直线DQ1解析式为y=13x –193.9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②∵Q1(7,–4),∴点Q1关于x 轴对称的点的坐标为Q2(7,4)也符合BQ CD =. ∵D(4,–5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法二:分两种情况(如答案图2所示): ①当DP1∥CB 时,能使∠PDB=∠CBD . ∵B(9,0),C(0,–3).图10答案∴用待定系数法可求出直线BC 解析式为y=13x –3. 又∵DP1∥CB ,∴设直线DP1的解析式为y=13x+n .把D(4,–5)代入可求n= –193,∴直线DP1解析式为y=13x –193. 9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②在线段O′B 上取一点N ,使BN=DM 时,得ΔNBD ≌ΔMDB(SAS),∴∠NDB=∠CBD .由①知,直线BC 解析式为y=13x –3.取x=4,得y= –53,∴M(4,–53),∴O′N=O′M=53,∴N(173,0), 又∵D(4,–5),∴直线DN 解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法三:分两种情况(如答案图3所示): ①求点P1坐标同解法二. 10分②过C 点作BD 的平行线,交圆O′于G, 此时,∠GDB=∠GCB=∠CBD . 由(2)题知直线BD 的解析式为y=x –9,又∵ C (0,–3)∴可求得CG 的解析式为y=x –3, 设G (m,m –3),作GH ⊥x 轴交与x 轴与H ,连结O′G,在Rt △O′GH 中,利用勾股定理可得,m=7, 由D (4,–5)与G(7,4)可得, DG 的解析式为317y x =-,11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去]. 12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).说明:本题解法较多,如有不同的正确解法,请按此步骤给分.。
南充市二〇一一高中阶段学校招生统一考试数学试卷一、选择题:(本大题共个小题,每小题分,共分).计算()的结果是()()()()()瓶,各种饮料的销售量如下表:()甲品牌()乙品牌()丙品牌()丁品牌.如图,直线经过点‖,,∠,下列结论成立的是()()∠()∠()∠()∠.某学校为了了解九年级体能情况,随机选取名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在~之间的频率为()()()()().下列计算不正确的是()() ()( )() ︳︳ ().方程()()的解是()()()(),(),.小明乘车从南充到成都,行车的平均速度()和行车时间()之间的函数图像是().当分式的值为时,的值是()()()()().在圆柱形油槽内装有一些油。
截面如图,油面宽为分米,如果再注入一些油后,油面上升分米,油面宽变为分米,圆柱形油槽直径为()()分米()分米()分米()分米.如图,⊿和⊿均为等腰直角三角形,点在一条直线上,点是的中点,下列结论:①∠;②⊿⊿≧⊿;③⊥;④.正确结论的个数是()()个()个()个()个二、填空题:(本大题共个小题,每小题分,共分)计算(∏) .某灯具厂从万件同批次产品中随机抽取了件进行质检,发现其中有件不合格,估计该厂这一万件产品中不.合格品约为件.如图,是⊙是切线,为切点,是⊙的直径,若∠,则∠度。
过反比例函数(≠)图象上一点,分别作轴,轴的垂线,垂足分别为,如果⊿的面积为.则的值为 .三、(本大题共个小题,每小题分,共分).先化简,再求值:(),其中.在一个不透明的口袋中装有张相同的纸牌,它们分别标有数字,,,。
随机地摸取出一张纸牌然后放回,在随机摸取出一张纸牌,()计算两次摸取纸牌上数字之和为的概率;()甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。
这是个公平的游戏吗?请说明理由。
.如图,四边形是等腰梯形,∥,点在上,且,连接.求证:.四、(本大题共个小题,每小题分,共分).关于的一元二次方程的实数解是和.()求的取值范围;()如果<且为整数,求的值。
2011年四川省南充市中考数学试卷—解析版一、选择题:(本大题共10个小题,每小题3分,共30分)1、(2011•南充)计算a+(﹣a)的结果是()A、2aB、0C、﹣a2D、﹣2a考点:整式的加减。
分析:本题需先把括号去掉,再合并同类项,即可得出正确答案.解答:解:a+(﹣a),=a﹣a,=0.故选B.点评:本题主要考查了整式的加减,在解题时要注意去括号,再合并同类项是解题的关键.2、(2011•南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12 32 13 43建议学校商店进货数量最多的品牌是()A、甲品牌B、乙品牌C、丙品牌D、丁品牌考点:众数。
专题:常规题型。
分析:根据众数的意义和定义,众数是一组数据中出现次数最多的数据,则进货要进销售量最多的品牌.解答:解:在四个品牌的销售量中,丁的销售量最多.故选D.点评:本题属于基础题,考查了确定一组数据的众数的能力.一些学生往往对这个概念掌握不清楚,而误选其它选项.3、(2011•南充)如图,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()A、∠C=60°B、∠DAB=60°C、∠EAC=60°D、∠BAC=60°考点:平行线的性质。
专题:几何图形问题。
分析:根据平行线的性质,根据内错角相等,逐个排除选项即可得出结果.解答:解:A、无法判断,故本选项错误,B、∠B=60°,∴∠DAB=60°,故本选项正确,C、无法判断,故本选项错误,D、无法判断,故本选项错误,故选B.点评:本题考查了两直线平行,内错角相等的性质,难度适中.4、(2011•南充)某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A、0.1B、0.17C、0.33D、0.4考点:频数(率)分布直方图。
四川省南充市中考数学试卷及答案(满分100分,考题时间90分钟)一、选择题(本大题共8个小题,每小题3分,共24分)每小题都有代号为A 、B 、C 、D 的四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1. 计算22--的结果是( A ).(A )0 (B )-2 (C )-4 (D )4 2. 下面调查统计中,适合做全面调查的是( D ).(A )雪花牌电冰箱的市场占有率 (B )蓓蕾专栏电视节目的收视率 (C )飞马牌汽车每百公里的耗油量 (D )今天班主任张老师与几名同学谈话3. 如图,立体图形由小正方体组成,这个立体图形有小正方体( C ). (A )9个 (B )10个(C )11个 (D )12个 4. 如果分式2xx-的值为0,那么x 为( D ). (A )-2 (B )0 (C )1 (D )25. 如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适...的是( B ). (A )20双 (B )30双 (C )50双 (D )80双6. 一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ). (A )30海里(B )40海里 (C )50海里 (D )60海里(第6题) (第7题) (第8题)小正方体 立体图形 (第3题)7. 如图是一个零件示意图,A 、B 、C 处都是直角,MN 是圆心角为90º的弧,其大小尺寸如图标示.MN 的长是( ). (A )π(B )32π (C )2π (D )4π8. 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ).(A )②④ (B )①④ (C )②③ (D )①③二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填写在题中横线上.9. 计算: 20120072-⎛⎫+ ⎪⎝⎭=__________.10. 据四川省统计信息网《1季度四川民营经济发展状况解析》,1季度四川民营经济增加(第12题)请判断扇形统计图中对应组别名称:A 对应______,B 对应_______,C 对应______. 11. 已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是____.12. 点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM =BN ,点O 是正八边形的中心,则∠MON =____度. OA BCM N (第12题)三、(本大题共2个小题,每小题6分,共12分)13. 化简:22221422x x x x x x +⋅----.14. 如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.四、(本大题共2个小题,每小题6分,共12分)15. 某商场举行“庆元旦,送惊喜” 抽奖活动,10000个奖券中设有中奖奖券200个.(1)小红第一个参与抽奖且抽取一张奖券,她中奖的概率有多大?(2)元旦当天在商场购物的人中,估计有2000人次参与抽奖,商场当天准备多少个奖品较合适?16. 在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.图① 图②ABCD FE五、(本大题共2个小题,每小题8分,共16分)17. 如图是某城市一个主题雕塑的平面示意图,它由置放于地面l 上两个半径均为2米的半圆与半径为4米的⊙A 构成.点B 、C 分别是两个半圆的圆心,⊙A 分别与两个半圆相切于点E 、F ,BC 长为8米.求EF 的长.18. 平面直角坐标系中,点A 的坐标是(4,0),点P 在直线y =-x +m 上,且AP =OP =4.求m 的值.六、(本题满分8分)19. 某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表: 类 别 电视机 洗衣机 进价(元/台) 1800 1500 售价(元/台)20001600元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用) (2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)得分评卷人得分评卷人AOxyA E Fl BC七、(本题满分8分)20. 如图, 等腰梯形ABCD 中,AB =15,AD =20,∠C =30º.点M 、N 同时以相同速度分别从点A 、点D 开始在AB 、AD (包括端点)上运动.(1)设ND 的长为x ,用x 表示出点N 到AB 的距离,并写出x 的取值范围. (2)当五边形BCDNM 面积最小时,请判断△AMN 的形状.八、(本题满分8分)21. 如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C . (1)求点C 的坐标,并画出抛物线的大致图象. (2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值.(3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.D南充市二OO七年高中阶段学校招生统一考题数学试题参照答案及评分意见说明:1.正式阅卷前务必认真阅读参照答案和评分意见,明确评分标准,不得随意拔高或降低标准.2.全卷满分100分,参照答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.3.参照答案和评分意见仅是解答的一种,如果考生的解答与参照答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.4.要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.一、选择题(本大题共8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A D C D B B C B二、填空题(本大题共4个小题,每小题3分,共12分)9.5;10.第一产业,第三产业,第二产业;11.-3;12.45.三、(本大题共2个小题,每小题6分,共12分)13.解:原式221(2)(2)(2)2x xx x x x x+=⋅-+---………………………………(3分)222(2)(2)x xx x-=---………………………………(5分)22.(2)x=-………………………………(6分)14.解:AD是△ABC的中线.………………………………(1分)理由如下:在Rt△BDE和Rt△CDF中,∵BE=CF,∠BDE=∠CDF,∴Rt△BDE≌Rt△CDF.………………………………(5分)∴BD=CD.故AD是△ABC的中线.………………………………(6分)四、(本大题共2个小题,每小题6分,共12分)15.解:(1)小红中奖的概率20011000050==;………………………………(3分)(2)1200050⨯=40,因此商场当天准备奖品40个比较合适.………………………………(6分)16.解:设金色纸边的宽为x分米,根据题意,得(2x+6)(2x+8)=80. ………………………………(3分)解得:x 1=1,x 2=-8(不合题意,舍去).答:金色纸边的宽为1分米. ………………………………(6分) 五、(本大题共2个小题,每小题8分,共16分)17. 解:∵ ⊙A 分别与两个半圆相切于点E 、F ,点A 、B 、C 分别是三个圆的圆心,∴ AE =AF =4,BE =CF =2,AB =AC =6. ………………………………(3分) 则在△AEF 和△ABC 中,∠EAF =∠BAC ,4263AE AF AB AC ===. ∴ △AEF ∽△ABC .………………………………(6分)故EF AE BC AB =.则 EF =AE BC AB ⋅=216833⨯=. …………………………(8分) 18. 解:由已知AP =OP ,点P 在线段OA 的垂直平分线PM 上. ………………(2分) 如图,当点P 在第一象限时,OM =2,OP =4.在Rt △OPM 中,PM== ……………………(4分) ∴ P (2,.∵ 点P 在y =-x +m 上,∴ m =2+………………………………(6分)当点P 在第四象限时,根据对称性,P '((2,-.∵ 点P'在y =-x +m 上,∴ m =2- ………………………………(8分) 则m 的值为2+2-六、(本题满分8分) 19. 解:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩ ………………………………(3分)解不等式组,得 1333≤x ≤1393. ………………………………(5分)即购进电视机最少34台,最多39台,商店有6种进货方案. ………………(6分) (2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000. ………………(7分) ∵ 100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元. ………………………………(8分) 七、(本题满分8分) 20. 解:(1)过点N 作BA 的垂线NP ,交BA 的延长线于点P . ………………(1分)由已知,AM =x ,AN =20-x .∵ 四边形ABCD 是等腰梯形,AB ∥CD ,∠D =∠C =30º, ∴ ∠PAN =∠D =30º.在Rt △APN 中,PN =AN sin ∠PAN =12(20-x ), 即点N 到AB 的距离为12(20-x ).………………………………(3分)∵ 点N 在AD 上,0≤x ≤20,点M 在AB 上,0≤x ≤15,∴ x 的取值范围是 0≤x ≤15. ………………………………(4分) (2)根据(1),S △AMN =12AM •NP =14x (20-x )=2154x x -+. ……(5分)∵ 14-<0,∴ 当x =10时,S △AMN 有最大值. …………………………(6分)又∵ S 五边形BCDNM =S 梯形-S △AMN ,且S 梯形为定值,∴ 当x =10时,S 五边形BCDNM 有最小值. …………………………(7分) 当x =10时,即ND =AM =10,AN =AD -ND =10,即AM =AN . 则当五边形BCDNM 面积最小时,△AMN 为等腰三角形. …………(8分)八、(本题满分8分) 21. 解:(1)由已知,得 A (2,0),B (6,0),∵ 抛物线216y x bx c =++过点A 和B ,则 221220,61660,6b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得4,32.b c ⎧=-⎪⎨⎪=⎩ 则抛物线的解析式为 214263y x x =-+. 故 C (0,2). …………………………(2分)(说明:抛物线的大致图象要过点A 、B 、C ,其开口方向、顶点和对称轴相对准确)…………………………(3分)(2)如图①,抛物线对称轴l是x=4.∵Q(8,m)抛物线上,∴m=2.过点Q作QK⊥x轴于点K,则K(8,0),QK=2,AK=6,∴AQ=…………………………(5分)又∵B(6,0)与A(2,0)关于对称轴l对称,∴PQ+PB的最小值=AQ=(3)如图②,连结EM和CM.由已知,得EM=OC=2.CE是⊙M的切线,∴∠DEM=90º,则∠DEM=∠DOC.又∵∠ODC=∠EDM.故△DEM≌△DOC.∴OD=DE,CD=MD.又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.则OE∥CM.…………………………(7分)设CM所在直线的解析式为y=kx+b,CM过点C(0,2),M(4,0),∴40,2,k bb+=⎧⎨=⎩解得1,22,kb⎧=-⎪⎨⎪=⎩直线CM的解析式为122y x=-+.又∵直线OE过原点O,且OE∥CM,则OE的解析式为y=12-x.…………………………(8分)。
第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33 (C )34 (D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MEDCBA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有ABCDEF G (第7题)AB CDEA.1个B.2个C.3个D.4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若∠A=30∘,AB=AC,则∠BDE的度数为何?A.45 B.52.5 C.67.5 D.75【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A.2:1 B.3:2 C.4:3 D.5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmC.17cm D.16cm或17cm【答案】D7. (2011四川凉山州,8,4分)如图,在ABC△中,13AB AC==,10BC=,点D 为BC的中点,D E D E AB⊥,垂足为点E,则D E等于()A.1013B.1513C.6013D.7513【答案】C 8.二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .224. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
四川省成都市2011年中考数学试卷—解析版一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.1、(2011•成都)4的平方根是()A、±16B、16C、±2D、2考点:平方根。
专题:计算题。
分析:由于某数的两个平方根应该互为相反数,所以可用直接开平方法进行解答.解答:解:∵4=(±2)2,∴4的平方根是±2.故选C.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2、(2011•成都)如图所示的几何体的俯视图是()A、B、C、D、考点:简单几何体的三视图。
专题:应用题。
分析:题干图片为圆柱,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:圆柱的主视图为长方形,左视图为长方形,俯视图为圆形.故选D.点评:本题考查了圆柱体的三视图,考查了学生的空间想象能了及解决问题的能力.3、(2011•成都)在函数自变量x的取值范围是()A、B、C、D、考点:函数自变量的取值范围。
专题:计算题。
分析:让被开方数为非负数列式求值即可.解答:解:由题意得:1﹣2x≥0,解得x≤.故选A.点评:考查求函数自变量的取值范围;用到的知识点为:函数有意义,二次根式的被开方数为非负数.4、(2011•成都)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为()A、20.3×104人B、2.03×105人C、2.03×104人D、2.03×103人考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵20.3万=203000,∴203000=2.03×105;故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、(2011•成都)下列计算正确的是()A、x+x=x2B、x•x=2xC、(x2)3=x5D、x3÷x=x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
2011年全国各地中考数学试卷试题分类汇编第12章反比例函数一、选择题1. (2011广东汕头,6,4分)已知反比例函数kyx=的图象经过(1,-2).则k=.【答案】-22.(2011湖南邵阳,5,3分)已知点(1,1)在反比例函数kyx=(k为常数,k≠0)的图像上,则这个反比例函数的大致图像是()【答案】C提示:反比例函数过第一象限(也可由点(1,1)求得k=1),故选C。
3.(2011江苏连云港,4,3分)关于反比例函数4yx=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【答案】D4. (2011甘肃兰州,15,4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k kyx++=的图象上。
若点A的坐标为(-2,-2),则k的值为A.1 B.-3 C.4 D.1或-3【答案】D5. (2011湖南怀化,5,3分)函数2y x =与函数1y x-=在同一坐标系中的大致图像是【答案】D6. (2011江苏淮安,8,3分)如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D7. (2011四川乐山10,3分)如图(6),直线 6y x =- 交x 轴、y 轴于A 、B 两点,P是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。
则AF BE ⋅=A .8B .6C .4D .【答案】A8. (2011湖北黄石,3,3分)若双曲线y=x k 12-的图象经过第二、四象限,则k 的取值范围是 A.k >21 B. k <21 C. k =21D. 不存在 【答案】B9. (2011湖南邵阳,5,3分)已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图像上,则这个反比例函数的大致图像是( )【答案】C10. (2011贵州贵阳,10,3分)如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是(第10题图)(A )-1<x <0 (B )-1<x <1(C )x <-1或0<x <1 (D )-1<x <0或x >111. (2011广东茂名,6,3分)若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->m B .2-<mC .2>mD .2<m【答案】B12.(2011江苏盐城,6,3分)对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C13. (2011山东东营,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A. S 1<S 2<S 3B. S 1>S 2>S 3C. S 1=S 2>S 3D. S 1=S 2<S 3 【答案】D14. (2011福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y x =C .3y x =-D .1y x =图115. (2011江苏扬州,6,3分)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A. (-3,2)B. (3,2)C. (2,3)D. (6,1) 【答案】A16. (2011山东威海,5,3分)下列各点中,在函数6y x=-图象上的是( ) A .(-2,-4) B .(2,3)C .(-1,6)D .1(,3)2-【答案】C17. (2011四川南充市,7,3分) 小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )【答案】B.18. (2011浙江杭州,6,3)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( )A .102x x <-<<或B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或【答案】D19. (2011浙江台州,9,4分)如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( )A. -3,1B. -3,3C. -1,1D.3,-1【答案】A20. (2011浙江温州,4,4分)已知点P (-l ,4)在反比例函数(0)ky k x=≠的图象上,则k 的值是( ) A .14-B .14C .4D .-4【答案】D21. (2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为A .2y x=B .2y x=-C .12y x=D .12y x=-【答案】B22. (2011广东湛江12,3分)在同一直角坐标系中,正比例函数y x =与反比例函数2y x=的图像大致是A B C D【答案】B23. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作PQ ∥x 轴交图象于点P,Q ,连接OP,OQ.则以下结论 ①x <0时,x2y =, ②△OPQ 的面积为定值, ③x >0时,y 随x 的增大而增大 ④MQ=2PM⑤∠POQ 可以等于90°图5—2图5—1PQM其中正确的结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤【答案】B24. (2011山东枣庄,8,3分)已知反比例函数xy 1=,下列结论中不正确的是( ) A.图象经过点(-1,-1) B.图象在第一、三象限C.当1>x 时,10<<yD.当0<x 时,y 随着x 的增大而增大 【答案】D25. ( 2011重庆江津, 6,4分)已知如图,A 是反比例函数xky =的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( ) A.3 B.-3 C.6 D.-6·【答案】C ·26. (2011湖北宜昌,15,3分)如图,直线y=x +2与双曲线y=xm 3在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )(第15题图) 【答案】B 二、填空题1. (2011浙江金华,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y = kx,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是.(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是.【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-4第6题图2. (2011广东东莞,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 【答案】-23. (2011山东滨州,18,4分)若点A(m ,-2)在反比例函数4y x=的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________. 【答案】x ≤-2或x>04. (2011四川南充市,14,3分)过反比例函数y=xk(k≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B,C ,如果⊿ABC 的面积为3.则k 的值为 .【答案】6或﹣6.5. (2011宁波市,18,3分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y =2x(x >0)的图像上,顶点A 1、B 1分别在x 轴和y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2x(x >0)的图象上,顶点A 3在x 轴的正半轴上,则点P 3的坐标为【答案】(3+1,3-1)6. (2011浙江衢州,5,4分)在直角坐标系中,有如图所示的t ,R ABO AB x ∆⊥轴于点B ,(0)kx x=>的图像经过AO 的中点C ,且与【答案】382(,)7. (2011浙江绍兴,13,5分) 若点12(1,),(2,)A y B y 是双曲线3y x=上的点,则 1y 2y (填“>”,“<”“=”).【答案】>8. (2011浙江丽水,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y = k x,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是.(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是.【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-49. (2011湖南常德,5,3分)如图1所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________. 【答案】3y x10.(2011江苏苏州,18,3分)如图,已知点A 的坐标为(3,3),AB ⊥x 轴,垂足为B ,连接OA ,反比例函数y=xk(k>0)的图象与线段OA 、AB 分别交于点C 、D.若AB=3BD ,以点C 为圆心,CA 的45倍的长为半径作圆,则该圆与x 轴的位置关系是___________(填“相离”、“相切”或“相交”)【答案】相交11. (2011山东济宁,11,3分)反比例函数1m y x-=的图象在第一、三象限,则m 的取值范围是 . 【答案】x >112. (2011四川成都,25,4分)在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小.若该反比例函数的图象与直线y x =-都经过点P ,且OP =,则实数k=_________.【答案】37. 13. (2011安徽芜湖,15,5分)如图,在平面直角坐标系中有一正方形AOBC ,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(4-ABC ,则k 的值为 .【答案】414. (2011广东省,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 【答案】-215. (2011江苏南京,15,2分)设函数2y x=与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________. 【答案】12-16. (2011上海,11,4分)如果反比例函数ky x=(k 是常数,k ≠0)的图像经过点(-1,2),那么这个函数的解析式是__________. 【答案】2y x=-17. (2011湖北武汉市,16,3分)如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE面积的5倍,则k =_____.【答案】1218. (2011湖北黄冈,4,3分)如图:点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.【答案】-419. (2011湖北黄石,15,3分)若一次函数y=kx +1的图象与反比例函数y =x1的图象没有公共点,则实数k 的取值范围是 。
2011年全国各地100份中考数学试卷分类汇编第33章直线与圆的位置关系一、选择题1. (2011宁波市,11,3分)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB与P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现A.3次B.5次C.6次D.7次【答案】B2. (2011浙江台州,10,4分)如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PB切⊙O于点B,则PB的最小值是()A.13B.5C. 3D.2【答案】B3. (2011浙江温州,10,4分)如图,O是正方形ABCD的对角线BD上一点,⊙O边AB,BC都相切,点E,F分别在边AD,DC上.现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是( )D.22A.3 B.4 C.22【答案】C4. (2011浙江丽水,10,3分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()x y110B CAA .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1) 【答案】C5. (2011浙江金华,10,3分)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )xy110B CAA .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1) 【答案】C6. (2011山东日照,11,4分)已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ba ab的是( ) 【答案】C7. (2011湖北鄂州,13,3分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( ) A .30° B .45° C .60° D .67.5°【答案】D8. (2011 浙江湖州,9,3)如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CDAO PB第13题图CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是 A .12B .1C .2D .3【答案】C9. (2011台湾全区,33)如图(十五),AB 为圆O 的直径,在圆O 上取异于A 、B 的一点C ,并连接BC 、AC .若想在AB 上取一点P ,使得P 与直线BC 的距离等于AP 长,判断下列四个作法何者正确?A .作AC 的中垂线,交AB 于P 点 B .作∠ACB 的角平分线,交AB 于P 点C .作∠ABC 的角平分线,交AC 于D 点,过D 作直线BC 的并行线,交AB 于P 点 D .过A 作圆O 的切线,交直线BC 于D 点,作∠ADC 的角平分线,交AB 于P 点 【答案】D10.(2011甘肃兰州,3,4分)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于A .20°B .30°C .40°D .50°【答案】C11. (2011四川成都,10,3分)已知⊙O 的面积为29cm π,若点0到直线l 的距离为cm π,则直线l 与⊙O 的位置关系是C(A)相交 (B)相切 (C)相离 (D)无法确定 【答案】CABDOC12. (2011重庆綦江,7,4分) 如图,PA 、PB 是⊙O 的切线,切点是A 、B ,已知∠P =60°,OA =3,那么∠AOB 所对弧的长度为( )A .6лB .5лC .3лD .2л【答案】:D13. (2011湖北黄冈,13,3分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )[来源:学,科,网Z,X,X,K] A .30° B .45° C .60° D .67.5°【答案】D14. (2011山东东营,12,3分)如图,直线333y x =+与x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与点O 。
2011全国各省市中考数学真题分类汇编- 一元二次方程(附答案)一、选择题1.(2011广东中考)一元二次方程()22x x x -=-的根是………………【 】A.-1B. 2C. 1和2D. -1和22.(2011武汉市中考)若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是( ) A.4. B.3. C.-4. D.-3.3.(2011A .2=x4.(2011A. 2210x x+= C. (1)(2)x x -+5.(2011送了2070A. (1)x x -= C. 2(1)x x +7.(2011·济宁A.-1 B.08.(2011成都市中考)已知关于的一元二次方程有两个实数根,则下列关于判别式 24n mk-的判断正确的是( )(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥9.(2011威海市中考)关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0B .8C .4±D . 0或810.(2011舟山市中考)一元二次方程0)1(=-x x 的解是( ▲ ) (A )0=x (B )1=x(C )0=x 或1=x(D )0=x 或1-=x11.(2011台湾中考)關於方程式95)2(882=-x 的兩根,下列判斷何者正確?( ) (A)一根小於1,另一根大於3 (B)一根小於-2,另一根大於2(C)兩根都小於12.(2011b 4+之值为何?((A) 2 (B) 513.(2011黄石β满足( )A. 1α<<14.(2011毕节是( )A 、1(160+C 、1(160-15.(2011泉州A. 416.(2011福州A.C.17.(2011(A )218.(2011湘潭市中考)一元二次方程0)5)(3(=--x x 的两根分别为( ) A. 3, -5 B. -3,-5 C. -3,5 D.3,5二、填空题1.(2011苏州市中考)已知a 、b 是一元二次方程2210x x --=的两个实数根,则代数式()()2a b a b ab -+-+的值等于 .2.(2011德州市中考)若1x ,2x 是方程210x x +-=的两个根,则2212x x +=__________.3.(2011泰安市中考)方程03522=++x x 的解是 。