2015年湖南省中学数学教师解题比赛高中组初赛试卷(解析)
- 格式:pdf
- 大小:145.11 KB
- 文档页数:7
2015年中学教师解题能力测评普通高中数学试卷本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟.第Ⅰ卷(选择题 共40分)注意事项:用钢笔或圆珠笔将题目做在答题卷上,做在试题卷上无效。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合}{[]}{12,2,0,2x A x x B y y x =-<==∈,则A B = A .[]0,2 B .()1,3 C .[)1,3 D .()1,42.设函数()()f x x R ∈满足()()sin f x f x x π+=+。
当0x π≤<时,()0f x =,则23()6f π= A .12 B.2C .0D .12- 3.平面向量(1,2),(4,2),()a b c ma b m R ===+∈ ,且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .24.已知}{2log sin 2θθθϕ∈=-,则tan log ()y x θ=-的单调性为A .减区间为(,0)-∞B .增区间为(,0)-∞C .无单调性D .以上都不对5.若{}n a 为无穷等比数列,其公比1q ≠,则下列数列中,一定不是等差数列的是A .{}1n n a a ++B .{}1n n a a +-C .{}1n n a a +D .1n n a a +⎧⎫⎨⎬⎩⎭6.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1), (2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和②7.如右图,已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b +=相切于点Q ,且点Q 为线段2PF 的中点,则下列关系式正确的为A .23a b =B 3b =C .2a b =D .2a =8.已知函数()()f x x R ∈是以4为周期的奇函数,当(0,2)x ∈时,2()ln()f x x x b =-+。
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q 满足条件BQ DP =,则PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t P Q t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2s in s in =+b a ωω知,1s in s in ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
2015数学高中联赛试题及答案一、选择题(每题5分,共30分)1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(2) \)的值。
A. -1B. -15C. 7D. 15答案:B2. 若\( a \),\( b \)是方程\( x^2 + 5x + 6 = 0 \)的两个根,求\( a^2 + b^2 \)的值。
A. 1B. 4C. 9D. 16答案:C3. 已知圆的方程为\( x^2 + y^2 = 9 \),点P(1,2)在圆上,求过点P的切线方程。
A. \( y = x + 1 \)B. \( y = -x + 3 \)C. \( x + y - 3 = 0 \)D. \( x - y + 1 = 0 \)答案:C4. 若\( \sin \alpha + \cos \alpha = \sqrt{2} \),求\( \sin2\alpha \)的值。
A. 1B. \( \sqrt{2} \)C. -1D. -\( \sqrt{2} \)答案:A5. 已知等差数列\( \{a_n\} \)的首项为2,公差为3,求第10项的值。
A. 37B. 38C. 39D. 40答案:A6. 已知三角形ABC的三边长分别为3,4,5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A二、填空题(每题5分,共20分)7. 若\( \log_{2}8 + \log_{4}16 = x \),求\( x \)的值。
答案:38. 已知\( \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{100} \)的和为S,求S的值。
答案:小于5但大于4.59. 若\( \frac{1}{x} + \frac{1}{y} = \frac{1}{6} \)且\( x + y = 12 \),求\( x \)和\( y \)的值。
2015年全国高中数学联合竞赛一试试题(a卷)解答集锦全国高中数学联合竞赛一试试题(A卷)高中数学联赛篇一:2015年全国高中数学联赛试题一、填空题:本大题共8小题,每小题8分,满分64分1.设a,b为不相等的实数,若二次函数f(x) x2 ax b满足f(a) f(b),则f(2)的值为2.若实数满足cos tan ,则1 cos4 的值为sin3.已知复数数列{zn}满足z1 1,zn 1 zn 1 ni(n 1,2,3, ),其中i为虚数单位,zn 表示zn的共轭复数,则z2015的值为4.在矩形ABCD中,AB 2,AD 1,边DC(包含点D,C)上的动点P与CB延长线上(包含点B)的动点Q满足DP BQ,则向量PA与向量PQ的数量积PA PQ的最小值为5.在正方体中随机取3条棱,它们两两异面的概率为6.在平面直角坐标系xOy中,点集K (x,y)(x 3y 6)(3x y 6) 0所对应的平面区域的面积为7.设为正实数,若存在a,b( a b 2 ),使得sin a sin b 2,则的取值范围是8.对四位数abcd(1 a 9,0 b,c,d 9),若a b,b c,c d,则称abcd为P类数,若a b,b c,c d,则称abcd为Q类数,用N(P),N(Q)分别表示P类数与Q类数的个数,则N(P) N(Q)的值为二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤9.(本题满分16分)若实数a,b,c满足2a 4b 2c,4a 2b 4c,求c的最小值.10.(本题满分20分)设a1,a2,a3,a4是4个有理数,使得31 aa1 i j 4 24, 2, , ,1,3 ,求a1 a2 a3 a4的值. ij 28x211.(本题满分20分)在平面直角坐标系xOy中,F1,F2分别是椭圆y2 1的左、右焦点,2设不经过焦点F1的直线l与椭圆交于两个不同的点A,B,焦点F2到直线l的距离为d,如果直线AF1,l,BF1的斜率依次成等差数列,求d的取值范围.2015年全国高中数学联合竞赛加试试题(A卷)一、(本题满分40分)设a1,a2, ,an(n 2)是实数,证明:可以选取1, 2, , n 1, 1 ,使n2 得ai iai (n 1) ai . i 1 i 1 i 1二、(本题满分40分)设S A1,A2, ,An ,其中A1,A2, ,An是n个互不相同的有限集合(n 2),满足对任意的Ai,Aj S,均有Ai Aj S,若k minAi 2.证明:存在x Ai,1 i ni 1nn2n2使得x属于A1,A2, ,An中的至少n个集合(这里X表示有限集合X 的元素个数).k 上一点,点K在线段AP上,使得三、(本题满分50分)如图,ABC内接于圆O,P为BCBK平分ABC,过K,P,C三点的圆与边AC交于D,连接BD交圆于点E,连接PE并延长与边AB交于点F.证明:ABC 2 FCB.(解题时请将图画在答卷纸上)四、(本题满分50分)求具有下述性质的所有正整数k:(kn)!对任意正整数n,2(k 1)n 1不整除.n!高中数学联赛篇二:高中数学联赛基本知识集锦高中数学联赛基本知识集锦一、三角函数常用公式由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++,于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q 满足条件BQ DP =,则PQ PA ⋅的最小值为 . 答案34.解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l)(其中02t ≤≤),则由||||DP BQ =u u u r u u u r 得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---u u u r u u u r,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥u u u r u u u r .当12t =时,min 3()4PA PQ ⋅=u u u r u u u r .5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤.有36x y +≤,故先考虑1K 在第一象限中的部分,此时这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O 为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 .答案:9513[,)[,)424w ∈+∞U .解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式.当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况: (i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞U . 8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
教师解题析题比赛试卷 LELE was finally revised on the morning of December 16, 20202015年教师技能比武之解题析题初中科学试题卷考试须知:1.全卷分试题卷和答题卷,答题卷分解题卷和析题卷两部分,全卷满分为100分,考试时间120分钟。
2.请用钢笔或圆珠笔将学校、姓名、考号填写在答题卷密封线内规定的位置上。
解、析题的答案分别做在解题卷和析题卷的规定位置上。
考后将试题卷与答题卷全部收回。
3.本卷可能用到的相对原子质量:H —1 O —16 Cu —64 Fe —56 Ca —40 Na —23解题部分(共60分)一、填空题(每空1分,共25分)1.学校的作息时间一般随着一年四季的变化,而进行相应的调控,以适应昼夜长短的变化。
今天我们所处季节的白昼时间比冬季要 ▲ (填“长”或“短”),造成一年中白昼时间长短现象的主要原因是地球的 ▲ (填“自转”或“公转”)。
2.人体在新陈代谢过程中每时每刻会产生代谢废物,这些废物主要是通过泌尿系统以尿液的形式排出体外。
如图所示是肾脏的结构和功能单位——肾单位,箭头表示形成尿液的两个主要过程,请据图回答。
(填序号)(1)右表中的三种液体取自肾单位的不同部 位,分析三种液体的部分成分含量,其中X 液体取自于图中所示的▲ 。
(填序号)(2)某人在一次尿检中,检测到有少量红细胞,这是尿液形成中的 ▲ 过程发生了异常。
(填序号)3.某药品部分说明书如图,阅读后回答:(1)根据营养素在消化道内被消化的先后顺序,药品“内层包衣”里的酶是 ▲ ;(2)胰酶中的胰脂肪酶能帮助脂肪最终消化为▲ ; (3)该药品嚼碎后服用会影响药效,原因是 ▲ 。
【成 份】每片含胰酶300毫克,胃蛋白酶13毫克。
【性 状】本品为肠溶衣与糖衣的双层包衣片。
【适应症状】消化不良,食欲缺乏。
【注意事项】服用时切勿嚼碎……4.如图为探究通电直导线周围磁场分布的实验。