搅拌摩擦焊
- 格式:ppt
- 大小:5.81 MB
- 文档页数:43
搅拌摩擦焊的特点及应用搅拌摩擦焊是一种利用摩擦加工热和塑性变形原理实现的焊接方法。
它的特点在于焊接过程中不使用传统的焊接热源,而是通过直接对工件施加摩擦力来产生焊接热量。
下面将分别从特点和应用两个方面对搅拌摩擦焊进行详细介绍。
搅拌摩擦焊的特点如下:1. 无熔化和溶合:搅拌摩擦焊不需要熔化焊接材料,而是通过摩擦热和塑性变形来实现焊接。
因此,焊接过程中没有熔化和溶合现象,可以避免焊接材料的氧化、烧损和变质。
同时,焊接接头的化学成分保持不变,焊接区域不会出现气孔和夹杂物。
2. 低热输入和变形小:搅拌摩擦焊的焊接热输入相对较低,对于焊接材料的热影响区域较小。
因此,焊接过程中产生的热应力和残余应力较小,可以有效控制焊接接头的变形。
此外,由于焊接过程中材料处于固态状态,不会出现晶粒长大和固溶体析出的问题。
3. 高焊接质量和可靠性:由于搅拌摩擦焊焊接过程中不会出现气孔、夹杂物和缺陷等问题,因此焊接接头的质量较高。
同时,由于焊接接头的机械性能与基材的一致性较好,焊缝区域的强度通常高于基材的强度。
对于特殊材料,如铝合金、镁合金等,搅拌摩擦焊能够实现高强度焊接,提高焊接接头的可靠性。
4. 适应范围广:搅拌摩擦焊适用于多种材料的焊接,包括金属和非金属材料。
金属材料如铝合金、镁合金、钢材等可以通过搅拌摩擦焊实现焊接。
非金属材料如塑料、复合材料、陶瓷等也可以进行搅拌摩擦焊。
这种特性使得搅拌摩擦焊在航空航天、汽车制造、轨道交通等领域具有广阔的应用前景。
搅拌摩擦焊的应用主要包括以下几个方面:1. 铝合金焊接:铝合金是航空航天和汽车等行业常用的材料,传统焊接方法在焊接铝合金时存在困难。
而搅拌摩擦焊能够实现高强度、无缺陷的铝合金焊接,因此被广泛应用于铝合金结构件的制造。
2. 钢材焊接:搅拌摩擦焊也可以用于焊接钢材。
虽然钢材的焊接温度较高,但由于搅拌摩擦焊的热输入较低,因此不会产生较大的热影响区域和热应力。
同时,焊接接头的力学性能较好,适用于特殊场合对焊接接头强度和可靠性要求较高的钢材焊接。
搅拌摩擦焊搅拌摩擦焊(Friction Stir Welding ,简称FSW )是由英国焊接研究所于1991年提出的一种固态连[1]接方法。
与传统的熔化焊接方法相比较,搅拌摩擦焊具有晶粒细小、力学性能良好、焊接时不需使用保护气体、焊接后残余应力和变形小等优[2]点。
搅拌摩擦焊自提出以来,引起了各国学者和研究机构的广泛重视,成为了国内外的研究热点。
经过十几年的发展,搅拌摩擦焊这种新型固相焊接方法已经从技术研究层面迈向高层次的工程化和工业化应用阶段,成为铝及铝合金首选的连接工艺。
目前,搅拌摩擦焊在航空航天工业、造船业、汽车业等工业领域有了广泛的应用。
近年来,国内轨道车辆制造技术快速改进,搅拌摩擦焊技术开始用于铝合金车体制造。
搅拌摩擦焊铝合金车体的成功试制,标志着搅拌摩擦焊技术在国内轨道车辆工程化应用的开始。
1、搅拌摩擦焊工艺及接头组织性能特点1.1 搅拌摩擦焊焊接工艺过程[3]搅拌摩擦焊的焊接工艺如图1-1所示。
置于垫板上的对接工件通过夹具夹紧,以防止对接接头在焊接过程中松开。
一个带有特型焊针的搅拌焊头旋转并缓慢插入两块对接板材之间的焊缝处。
焊针的长度接近焊缝的深度,当旋转的焊针接触工件表面时,与工件表面快速摩擦产生的摩擦热使接触点材料的温度升高,强度降低。
焊针在外力作用下不断顶锻和挤压接缝两边的材料,直至轴肩紧密接触工1-接缝;2-搅拌头前沿;3-前进侧;4-母材;5-搅拌针;6-搅拌头后沿;7-焊缝;8-搅拌头旋转方向;9-后退侧图1-1 搅拌摩擦焊焊接工艺过程件表面为止。
这时,由旋转轴肩和焊针产生的摩擦热在轴肩下面和焊针周围形成大量的塑化层。
当工件相对焊针移动或焊针相对工件移动时,在焊针侧面和旋转方向上产生的机械搅拌和顶锻作用下,焊针的前表面把塑化的材料移送到焊针后表面。
这样,焊针沿着接缝前进时,搅拌焊头前头的对接接头表面被摩擦加热至轴向压力 前进方向12 34 56789超塑性状态。
结果,焊针摩擦接缝,破碎氧化膜,搅拌焊头后方的磨碎材料。
搅拌摩擦焊焊接工装的故障分析与维修方法一、搅拌摩擦焊简介搅拌摩擦焊是一种高效的固态焊接工艺,适用于各种金属材料的接合。
在搅拌摩擦焊工艺中,焊接头与工件表面之间的摩擦力和挤压力产生摩擦热,达到材料塑性流动的温度,实现焊接。
然而,由于搅拌摩擦焊的复杂性,工装在使用过程中可能会出现故障,影响焊接质量。
二、故障分析1. 工装移动不灵活:工装在搅拌摩擦焊过程中需要进行多轴运动,如果工装的传动部件受损或润滑不良,可能导致工装移动不灵活。
2. 搅拌头异常:搅拌摩擦焊的关键部件是搅拌头,如果搅拌头受损或磨损过度,将严重影响焊接质量。
3. 温度控制不准确:搅拌摩擦焊需要控制焊接区域的温度,如果温度控制不准确,将导致焊接质量下降。
4. 焊接压力异常:焊接压力是影响焊接质量的重要参数,如果焊接压力异常,可能导致焊接头与工件之间的不良接触,影响焊接效果。
三、维修方法1. 定期保养:定期对搅拌摩擦焊工装进行保养,包括清洁、润滑和检查传动部件等,确保工装的正常运行。
2. 更换损坏部件:一旦发现工装的传动部件、搅拌头等关键部件损坏或磨损严重,应及时更换,确保焊接质量。
3. 调整温度控制:根据焊接工艺要求,调整搅拌摩擦焊设备的温度控制参数,确保焊接区域的温度稳定在合适的范围内。
4. 调整焊接压力:根据焊接工件的要求,调整搅拌摩擦焊设备的焊接压力参数,确保焊接压力稳定,保证焊接质量。
通过对搅拌摩擦焊工装故障的分析和相应的维修方法,可以有效提高焊接质量,延长设备使用寿命,确保生产过程的顺利进行。
只有在实践中不断总结经验,才能更好地发挥搅拌摩擦焊工艺的优势,为工件的制造提供更可靠的保障。
搅拌摩擦焊搅拌摩擦焊,是一种新型的焊接技术,也被称为搅拌摩擦联接。
它是通过在焊接区域旋转和挤压两个金属工件来产生热量和塑性变形,从而使两个工件达到联接的目的。
与传统的焊接技术相比,搅拌摩擦焊具有许多优点,如焊接速度快、焊缝质量高、金属变形小等。
本文将详细介绍搅拌摩擦焊的原理、应用和发展趋势。
一、搅拌摩擦焊的原理搅拌摩擦焊的原理是在两个金属工件之间施加旋转和挤压力,产生热量和塑性变形,从而使两个工件达到联接的目的。
搅拌摩擦焊的焊接区域主要由以下几个部分组成:1. 摩擦区:是指两个金属工件之间产生的热量和塑性变形的区域,也是焊接区域的主要部分。
在摩擦区,由于热量和挤压力的作用,金属工件的表面会产生摩擦热,从而使金属表面熔化和塑性变形。
在摩擦区,金属工件的晶粒也会受到影响,产生细化和变形,从而提高焊缝的质量。
2. 搅拌区:是指焊接区域中金属工件被挤压和旋转产生的区域。
在搅拌区,金属工件的晶粒也会受到影响,产生细化和变形,从而提高焊缝的质量。
3. 热影响区:是指焊接区域中受到热影响但未受到塑性变形的金属区域。
在热影响区,金属工件的晶粒也会受到影响,但不会产生细化和变形。
二、搅拌摩擦焊的应用搅拌摩擦焊的应用非常广泛,可以用于焊接各种金属材料,如铝合金、镁合金、钛合金、铜、钢等。
它在航空、汽车、船舶、铁路、电子、建筑等领域都有着广泛的应用。
1. 航空领域:搅拌摩擦焊可以用于制造航空器的结构件,如机翼、尾翼、机身等。
它可以提高焊缝质量,减少金属变形,从而提高航空器的性能和安全性。
2. 汽车领域:搅拌摩擦焊可以用于制造汽车的车身、底盘、发动机等部件。
它可以提高焊缝质量,减少金属变形,从而提高汽车的性能和安全性。
3. 船舶领域:搅拌摩擦焊可以用于制造船舶的船体、船舶设备等部件。
它可以提高焊缝质量,减少金属变形,从而提高船舶的性能和安全性。
4. 铁路领域:搅拌摩擦焊可以用于制造铁路车辆的车体、车轮等部件。
它可以提高焊缝质量,减少金属变形,从而提高铁路车辆的性能和安全性。
搅拌摩擦焊工艺及其应用1 搅拌摩擦焊的定义与原理搅拌摩擦焊是一种非常新颖的金属连接技术,其原理是将金属材料在高速旋转的条件下不断挤压与摩擦热而使金属材料发生塑性变形进而在次冷却时形成均匀的焊缝。
搅拌摩擦焊是一种采用振荡摩擦进行的钎焊技术。
摩擦过程中,金属材料被强制变形,形成皱纹和复杂的微细组织结构,这就是焊接区域。
这一过程不需要额外的附加材料,因此也被称为固态钎焊。
搅拌摩擦焊的原理是通过搅拌和摩擦的相互作用,为金属轴套表面提供局部加热来处理金属本身。
在摩擦过程中,摩擦产生的热量会使金属材料温度升高,而旋转工具逐渐伸进焊缝,在相对运动的作用下,产生了强烈的塑性变形以及显著的变形应变。
在形成初期焊缝时,相对运动引起的压力会把材料从环形清隙中抽出,形成时生成混味均匀的焊接界面。
这些过程中摩擦加热导致局部熔化,接长和冷却会使金属变形,并形成一个均匀的、与母材相似的焊缝。
2 搅拌摩擦焊的工艺流程及其特点2.1 搅拌摩擦焊的工艺流程(1)工件准备:首先需要准备待焊接的工件。
工件通常是板材、管材、棒材等形状,可以是相同材质,也可以是不同材质。
(2)夹紧工件:将工件夹紧在专用的工件夹具中,以保证工件在搅拌摩擦焊过程中不会移动或震动。
(3)起始摩擦:在工件接头处的摩擦面上施加旋转摩擦力,使工件表面熔融并形成可焊接的状态。
(4)搅拌摩擦:在不断施加旋转摩擦力的情况下,摩擦头沿着工件的接合面移动,搅拌工件的金属组织,从而形成焊接。
(5)升温保压:在搅拌摩擦焊完成后,保持摩擦头的位置不动,使焊缝部位升温到一定程度,再施加一定的保压力,使焊缝固化。
(6)退火处理:对焊接完成后的工件进行退火处理,可以进一步提高焊接质量和性能。
2.2 搅拌摩擦焊的特点(1)搅拌摩擦焊是一种无焊接接头凸出、无端部凸出的焊接方法,焊缝起伏很小,对焊接部件外观和尺寸精度要求较高的场合比较适用。
(2)搅拌摩擦焊过程中没有明显的电弧和喷溅现象,不需要额外的保护气体,易于操作。
摩擦焊的类型摩擦焊是一种常见的金属焊接方法,利用摩擦热来实现金属的连接。
根据焊接过程中的不同情况,摩擦焊可以分为多种类型,包括摩擦搅拌焊、摩擦搅拌摩擦焊、摩擦摩擦焊和摩擦摩擦搅拌焊等。
本文将依次介绍这些类型的摩擦焊方法。
1. 摩擦搅拌焊摩擦搅拌焊是一种通过摩擦热和机械搅拌来实现金属焊接的方法。
在摩擦搅拌焊过程中,焊接材料被加热至可塑状态,然后通过机械搅拌使焊接面处于良好的接触状态,从而实现焊接。
这种焊接方法适用于焊接材料的塑性较好的情况,可以实现高强度的焊接接头。
2. 摩擦搅拌摩擦焊摩擦搅拌摩擦焊是在摩擦搅拌焊的基础上进一步改进的焊接方法。
在摩擦搅拌摩擦焊过程中,除了利用摩擦热和机械搅拌来实现焊接外,还引入了摩擦热对焊接面进行加热,从而提高焊接接头的质量。
这种焊接方法适用于焊接材料的热导率较低的情况,可以实现高质量的焊接接头。
3. 摩擦摩擦焊摩擦摩擦焊是一种通过摩擦热和摩擦力来实现金属焊接的方法。
在摩擦摩擦焊过程中,焊接材料被加热至可塑状态,然后通过摩擦力使焊接面处于良好的接触状态,从而实现焊接。
这种焊接方法适用于焊接材料的塑性较好的情况,可以实现高效率的焊接。
4. 摩擦摩擦搅拌焊摩擦摩擦搅拌焊是在摩擦摩擦焊的基础上进一步改进的焊接方法。
在摩擦摩擦搅拌焊过程中,除了利用摩擦热和摩擦力来实现焊接外,还引入了机械搅拌来提高焊接接头的质量。
这种焊接方法适用于焊接材料的热导率较低的情况,可以实现高质量的焊接接头。
摩擦焊的不同类型在实际应用中具有各自的特点和优势。
摩擦搅拌焊适用于焊接材料的塑性较好的情况,可以实现高强度的焊接接头;摩擦搅拌摩擦焊适用于焊接材料的热导率较低的情况,可以实现高质量的焊接接头;摩擦摩擦焊适用于焊接材料的塑性较好的情况,可以实现高效率的焊接;摩擦摩擦搅拌焊适用于焊接材料的热导率较低的情况,可以实现高质量的焊接接头。
摩擦焊的不同类型都是通过利用摩擦热和力学作用来实现金属焊接的方法。
这些方法在焊接过程中具有各自的特点和优势,可以根据具体的焊接需求选择合适的类型。
1搅拌摩擦焊概览搅拌摩擦焊(Friction Stir Welding,FSW)作为一种固相连接技术,在1991年由英国焊接研究所(The Welding Institute, TWI)发明。
与传统熔化焊相比,FSW无需添加焊丝、不需要保护气体,焊接过程无污染、无烟尘、无辐射,焊接接头残余应力低,因此具有焊接效率高、焊接变形小、能耗低、设备简单、焊接过程安全等一系列优点。
经过20多年的发展,FSW已经在航空航天、轨道交通、舰船等领域得到了广泛应用。
搅拌摩擦焊的原理如图1所示。
高速旋转的搅拌头扎入被焊工件内,旋转的搅拌针与被焊材料发生摩擦并使其发生塑化,轴肩与工件表面摩擦生热并用于防止塑性状态的材料溢出。
在焊接过程中,工件要刚性固定在背部垫板上,搅拌头边高速旋转边沿工件的接缝与工件相对移动,在搅拌头锻压力的作用下形成焊缝,最终实现被焊工件的冶金结合。
图1 搅拌摩擦焊接原理搅拌摩擦焊广泛适用于各类材料,目前已成功实现了铝、镁等低熔点金属及合金、铜合金、钛合金、钢铁材料、金属基复合材料以及异种金属(铝/铜、铝/镁、铝/钢等)的焊接。
在传统技术的基础上,搅拌摩擦焊有了五大创新发展:双轴肩搅拌摩擦焊、静轴肩搅拌摩擦焊、搅拌摩擦点焊、复合能场搅拌摩擦焊、搅拌摩擦增材制造。
双轴肩搅拌摩擦焊(Bobbin Tool Friction Stir Welding,BT-FSW)与传统FSW相比,其搅拌头为上、下轴肩结构,两个轴肩通过搅拌针连接,下轴肩取代了传统FSW的背部刚性支撑垫板,对工件进行自支撑,实现中空部件的焊接。
其焊接原理如图2所示。
上、下双轴肩的结构在焊接过程中降低了接头厚度方向的温度梯度,减小了接头组织不均匀性,可实现根部全焊透的焊接。
图2 双轴肩搅拌摩擦焊接原理1.上轴肩2.前进侧3.熔合线4.后退侧5.工件6.搅拌针7.下轴肩静轴肩搅拌摩擦焊(Stational Shoulder Friction Stir Welding,SS-FSW)采用轴肩与搅拌针分体式设计,在焊接过程中内部搅拌针处于旋转状态,而外部轴肩不转动,仅沿焊接方向行进。