自考机械设计基础重点
- 格式:doc
- 大小:555.00 KB
- 文档页数:12
机械设计基础背诵知识点机械设计是一门关于机械制造的学科,它涉及到机械零部件的设计、选择、计算和分析等方面的知识。
在机械设计的学习过程中,很多基础的知识点需要我们进行背诵。
下面将介绍一些机械设计基础的知识点。
1. 材料力学材料力学是机械设计的基础。
需要掌握材料的力学性质,包括拉伸强度、屈服强度、硬度等。
还要了解不同材料的特点以及它们的应用范围。
2. 分析力学分析力学是机械设计中的另一个重要知识点。
它涉及到物体的平衡、受力分析以及运动学等内容。
我们需要了解力的合成与分解、力矩的概念、平衡条件等基本概念。
3. 等效应力与疲劳在机械设计中,常常需要进行结构的强度计算。
等效应力理论是常用的一种计算方法,它可以将多个不同方向的应力合成为一个等效应力。
此外,疲劳是机械设计中非常重要的一个问题,我们需要了解疲劳寿命、疲劳裕度等概念。
4. 轴线零件设计轴线零件设计是机械设计中的一个重要内容。
我们需要了解轴线零件的选择与计算,包括轴的强度与刚度计算、连接方式的选择等。
5. 机械传动机械传动是机械设计中常见的一种结构形式。
我们需要了解不同传动装置的特点与适用范围,包括齿轮传动、带传动等。
6. 节气部件设计节气部件设计是机械设计中与流体传动相关的一个内容。
我们需要了解不同节气部件的设计原理与计算方法,包括调节阀、安全阀等。
7. 设备安装与调试设备安装与调试是机械设计中的最后一个环节,我们需要了解设备的安装方式以及调试过程中的一些注意事项。
上述只是机械设计中的一部分基础知识点,希望能够对你在学习机械设计过程中有所帮助。
机械设计是一个广阔的领域,需要我们不断学习与积累,才能够设计出高质量的机械产品。
机械设计基础重点机械设计基础是一门涉及众多知识和技能的学科,对于机械工程专业的学生以及从事相关工作的人员来说,掌握其重点内容至关重要。
一、机械零件的设计准则在机械设计中,零件的设计需要遵循一定的准则。
首先是强度准则,零件在工作时不能发生断裂或过大的塑性变形,要确保其能够承受所受到的载荷。
这就需要对零件进行受力分析,计算出应力,并与材料的许用应力进行比较。
其次是刚度准则,零件在受力时的变形量要控制在允许的范围内,以保证机器的正常工作精度和性能。
例如,机床主轴的变形过大就会影响加工精度。
还有耐磨性准则,对于那些有相对运动的零件表面,要保证其具有足够的耐磨性,以延长零件的使用寿命。
此外,还有可靠性准则,零件在规定的使用条件下和规定的时间内,能够正常工作的概率要达到一定的要求。
二、常用材料及选用机械零件常用的材料包括金属材料和非金属材料。
金属材料如钢、铸铁、铝合金等具有良好的力学性能,广泛应用于各类机械零件。
钢又分为碳素钢、合金钢等,不同类型的钢在性能和用途上有所差异。
铸铁具有良好的铸造性能和减震性能,常用于制造形状复杂、承受压力的零件。
铝合金重量轻、强度高,常用于航空航天等领域。
非金属材料如塑料、橡胶、陶瓷等也有各自的特点和应用场合。
塑料具有重量轻、耐腐蚀等优点,常用于制造轻载、要求防锈的零件。
在选用材料时,需要考虑零件的工作条件、载荷性质、尺寸和质量要求,以及材料的成本等因素。
三、连接连接是机械设计中的重要部分,包括螺纹连接、键连接、销连接等。
螺纹连接是应用最为广泛的连接方式之一。
要了解螺纹的类型、特点和参数,掌握螺纹连接的预紧和防松方法。
键连接用于实现轴与轮毂之间的周向固定,并传递转矩。
常见的键有平键、半圆键、楔键等,要根据不同的工作要求选择合适的键连接类型。
销连接主要用于定位、连接或传递不大的载荷。
四、传动传动部分包括带传动、链传动、齿轮传动等。
带传动具有结构简单、传动平稳、能缓冲吸振等优点,但传动比不准确、传动效率较低。
机械设计基础复习要点第一章平面机构运动简图一、基本概念:1、运动副:由两构件组成的可动联接。
三要素:两构件组成、直接接触、有相对运动2、约束:对物体运动的限制。
3、机构运动简图:根据机构的运动尺寸,按一定的比例尺定出各运动副的位置,用国标规定的运动副及常用机构运动简图的符号和简单的线条将机构的运动情况表示出来,与原机构运动特性完全相同的,表示机构运动情况的简化图形。
机构示意图:表示机构的运动情况,不严格地按比例来绘制的简图。
4、机构的自由度:机构中各构件相对于机架所具有的独立运动5、机构具有确定运动的条件:机构的原动件数应等于机构的自由度数6、复合铰链——两个以上的构件同在一处以转动副相联接。
(可以使机构的结构更紧凑)7、局部自由度——某些不影响整个机构运动的自由度。
(用来改善机构的运动摩擦状况)8、虚约束——在机构运动中,有些约束对机构自由度的影响是重复的(虽然对机构的运动不起限制作用,但对构件的强度和刚度的提高以及保证机构的顺利进行等是有利的)。
二、计算下列机构的自由度书后习题1-6第二章:平面连杆机构一、基本概念:平面连杆机构——许多刚性构件用低副联接组成的平面机构。
铰链四杆机构——全部回转副组成的平面四杆机构。
铰链四杆机构的组成:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧2314连杆:—摇杆—摆动只能在一定角度范围内—曲柄—能作整周回转、连架杆:机架: 铰链四杆机构的基本型式:曲柄摇杆机构 双曲柄机构 双摇杆机构铰链四杆机构的演化形式:改变构件的相对长度、取不同的构件为机架、扩大转动副的半径演化为偏心轮机构曲柄存在条件1、最短杆与最长杆的长度之和应小于或等于其余两杆长度之和。
2、曲柄是由最短杆与其邻边组成。
急回运动:输出构件摆回的速度大于其工作行程的速度,输出构件的这种运动性质称为急回运动(曲柄摇杆机构、偏置曲柄滑块机构、摆动导杆机构有急回特性)行程速比系数:用来表明急回运动的急回程度死点位置:连杆与从动件共线。
第一章平面机构的自由度和速度分析1.1运动副及其分类运动副的定义:两个构件直接接触而又能产生一定相对运动的联接称为运动副。
运动副的基本特征为:(1)两个构件直接接触。
(2)能产生一定形式的相对运动。
分类:运动副可按其接触形式分为:(A) 高副(即点和线接触的运动副)(B) 低副(即面接触的运动副)转动副和移动副。
轮齿之间的平面高副轴颈与轴承之间的平面转动副滑块与导槽之间的平面移动副运动副按所能产生的相对运动的形式分为高副、转动副、移动副、球面副和螺旋副等等。
球1与球2组成的球面副,相对运动为球面运动。
运动副的常用代表符号如下图:运动链与机构:两个以上的构件通过运动副的联接所构成的系统称为运动链。
机构中的构件按照运动状况可分为:固定构件(机架)、原动件(主动件)、从动件(中间构件和工作构件)平面机构运动简图的绘制方法与过程: 定义:用简单的线条和符号来代表构件和运动副,并按一定的比例表示各个运动副的相对位置,这种表明机构中各构件间相对运动关系的简单图形称为机构运动简图。
构件与运动副的基本画法:1.两个活动构件组成转动副的表示方法2.两个活动构件组成移动副的表示方法3.两个活动构件组成高副的表示方法为了准确地反映构件间原有的相对运动:表示回转副的小圆,其圆心必须与相对回转轴重合;表示移动副的滑块、导杆或导槽,其导路必须与相对移动的方向一致;表示平面高副的曲线,其曲率中心的位置必须与构件的实际轮廓相符。
构件的表示方法1.两个运动副元素的构件的表示方法2.多个运动副元素的构件的表示方法三个运动副元素的构件,可用三条直线连接三个运动副所组成的三角形表示。
平面机构运动简图的绘制过程:1、分析机构的运动。
首先找出机构的原动件、机架和从动件,从原动件开始,依传动顺序分析各从动件,搞清运动传递的具体过程,从而确定出该机构的各运动副的类型和数目。
如下图2、选择合理的视图。
清楚地表达各个构件的相对运动关系。
3、选择适当的比例尺绘图。
自由度F=3N-2P1-PH传动比:i=n1/n2=O2P/O1P V标准中心距:安装时使分度圆与节圆重合的一对标准齿轮的中心距a=m(z1+z2)/2带传动受力分析螺栓连接强度计算改错寿命计算Lh=(10^6/60n)*(C/P)^亿亩次闹球轴承3 滚子轴承10/3斜齿轮受力分析模数m=p/π分度圆直径d=mz打滑和滑动区别弹性滑动是由于带传动时的拉力差引起的,只要传递圆周力,就存在着拉力差,所以弹性滑动是不可避免的;而打滑是由于过载引起的,只要不过载,就可以避免打滑,所以,打滑是可以避免的打滑:有效拉力达到或超过带与小带轮之间摩擦力总和时,带将沿整个接触面滑动虚约束:机构中与其他约束相重复,对机构运动不起独立限制作用的约束在机构中采用虚约束的目的是为了改善机构的工作情况和受力情况轨迹重合、导路平行、轴线重合、距离恒定、对称结构、公法线重合连杆机构;低副,面接触,承受压强小,磨损较轻,结构简单。
运动精度不高,运动产生惯性难以平衡。
平面四杆机构:曲柄摇杆机构、双曲柄机构、双摇杆机构曲柄存在的条件:1、连架杆或机架是最短杆2、最短杆与最长杆长度之和应小于等于其他两杆之和。
杆长条件最短杆两端均为周转副最小传动角出现在主动曲柄与机架共线的两位置之一,重叠共线、延伸共线死点(转折点)机构的从动件与连杆共线两位置处,出现了传动角=0的情况,机构在此位置启动,无论驱动力多大,也不能使从动曲柄转动,这种位置成为死点机构的倒置:铰链四杆机构倒置曲柄滑块机构倒置正弦机构的倒置齿轮传动优点:传动效率高,瞬时传动比稳定,寿命长缺点:制造需专用机床及设备,成本较高,振动和噪声大,不宜用于轴间距离大的传动平行轴齿轮传动、相交轴齿轮传动、交错轴齿轮传动1、简述齿廓啮合基本定律。
不论齿廓在任何位置接触,过接触点所做的公法线一定通过连心线上一定点,才能保证传动比恒定不变两齿轮的传动比与固定点分两齿轮连心线的两线段长成反比渐开线的特性:(4)渐开线的形状取决于基圆的大小。
机械设计基础老师给的重点
1、机器的4个组成部分机器、机构定义;机器的3大特征,机
构的2个特点
2、自由度的计算
3、曲柄存在的条件和会利用结论判断机构
4、凸轮机构压力角、运动规律
5、键的类型、截面尺寸、长度分别有什么确定
6、螺栓轴向扩大0.3倍,为什么?
7、带传动的类型,临界打滑的条件,渐开线的5个性质及组成
8、齿轮根切的原因失效形式
直、斜、锥齿及涡轮蜗杆的条件
涡轮蜗杆的设计准则,包括最后的热处理
9、联轴器的选择
10、滑动和滚动轴承的失效形式
11、滚动轴承的几个类型及代号(3、5、6、7)及意义
12、轴间载荷的分类
13、回移件中静、动平衡的条件
14、荆轮机构齿式;摩擦式无级变速
15、蜗栓强度计算中既有轴向力又有预紧力作用时的计算
16、周转轮子的组成部分
17、蜗栓防松的类型
分析题
1、斜、锥齿轮、蜗杆传动系统中为使某轴承受的轴向力能抵消一
部分,试设计此轴系统
2、动压润滑的形成条件
计算题
1、自由度计算(复合铰链、局部自由度、虚约束)并判断机构是
否有确定的相对运动
2、斜齿轮的参数计算(带计算器)
3、周转轮子传动比的计算
4、滚动轴承内部轴向力合纵轴向力计算
设计题
1、四杆机构的压力角、传动角以及最小传动角的标注
2、轴的改错
常见有错误的地方
1键位于同一母线上2轴承端盖与机架间要有垫圈3轴承内圈的定位,轴肩或套筒的高度低于齿轮内圈4齿轮的宽度比周肩宽一点5轴承端盖与轴有间隙
温馨提醒:不要只看重点,老师都是狐狸!!!。
机械设计基础重点
一、
1、机器的特征,什么是机构?构件是什么单元?零件是什么单元?
机器的组成。
2、自由度计算,运动副的概念和分类,速度瞬心的定义和位置,机
构具有确定运动的条件是什么?
3、四杆机构的类型、曲柄存在的条件、压力角和传动角的概念、会
计算最小传动角和在图上标出压力角。
4、凸轮机构常见运动规律存在何种冲击、压力角大小与什么因素有关、会图解法设计凸轮轮廓,尤其要清楚基圆、偏距圆的概念、会
画图标出凸轮的转角、压力角、位移。
5、渐开线的形成与性质、渐开线直、斜齿轮的数计算、压力角计算方式(cosa k=r b/r k),直、斜、锥齿轮的正确啮合条件及标准参数位于何处。
仿形、范成法加工齿轮的原理和优缺点。
根切的原因,
何为变位、何为变位齿轮。
斜、锥齿轮的当量齿数。
6、轮系的分类:定义、周转(差动等)、复合,传动比(一定要会计算)
7、常用的间歇运动机构为什么?运动特性系数
8、什么是周期性和非周期性的速度波动及调节的方法及原理。
9、平衡的种类及原理和方法。
二、计算题
1、自由度计算,要判断机构是否有确定的运动,复合铰链,局部自
由度,虚约束要标出。
2、判断四杆机构的类型(利用曲柄存在条件)找极位夹角、四杆机构如何演化成曲柄摇杆机构、会找最小传动角,按急回特性设计四杆机构(曲柄摇杆、曲柄滑块及导杆机构)
3、凸轮机构会画基圆、偏距圆、压力角和转过至某一点的转角
4、直、斜参数的计算a’cos a’=a cos a (要记住cosak=rb/rk)
5、复合轮系传动比要会计算。
机械设计基础重点一、协议关键信息1、机械设计基础涵盖的主要知识领域机械原理机械零件机械传动机械结构设计2、学习机械设计基础的目标掌握基本设计理论和方法具备初步的设计能力能够进行简单机械系统的分析和改进3、教学资源与参考资料推荐教材在线课程相关设计手册4、考核方式与评估标准考试成绩占比作业完成情况项目实践表现二、机械设计基础的知识领域11 机械原理111 机构的结构分析机构的组成要素运动副的类型和特点机构的自由度计算112 平面连杆机构平面四杆机构的基本类型和特性平面四杆机构的设计方法113 凸轮机构凸轮机构的类型和特点从动件的运动规律凸轮轮廓曲线的设计114 齿轮机构齿轮的基本参数和几何尺寸计算齿轮的啮合原理和传动比计算齿轮的失效形式和设计准则115 轮系轮系的类型和特点定轴轮系、周转轮系和复合轮系的传动比计算116 其他常用机构间歇运动机构螺旋机构带传动机构12 机械零件121 连接零件螺纹连接的类型、特点和强度计算键连接的类型和选择销连接的作用和类型122 传动零件带传动的工作原理、类型和设计计算链传动的特点和设计计算齿轮传动的受力分析和强度计算蜗杆传动的特点和设计计算123 轴轴的类型和结构设计轴的强度计算和刚度计算124 轴承滑动轴承的类型、结构和润滑滚动轴承的类型、代号和选择滚动轴承的寿命计算和组合设计13 机械传动131 机械传动的类型和特点机械传动的分类各类机械传动的优缺点和适用场合132 机械传动系统的方案设计传动比的分配原则传动系统的布局和优化133 机械传动的效率和功率计算传动系统的效率计算方法功率传递和匹配14 机械结构设计141 机械结构设计的基本原则满足功能要求保证强度和刚度便于制造和装配考虑经济性和可靠性142 机械零件的结构工艺性铸造零件的结构设计锻造零件的结构设计机械加工零件的结构设计143 机械装配结构设计装配基准的选择装配连接方式的选择装配顺序的安排三、学习机械设计基础的目标21 掌握基本设计理论和方法熟悉机械设计中的力学分析方法掌握材料选择和热处理的原则学会运用标准和规范进行设计22 具备初步的设计能力能够独立完成简单机械零件的设计能够进行机械传动系统的方案设计和参数计算具备一定的创新设计思维23 能够进行简单机械系统的分析和改进对现有机械系统进行性能分析和评估提出改进方案和优化措施具备解决实际工程问题的能力四、教学资源与参考资料31 推荐教材《机械设计基础》(作者:具体作者姓名)《机械设计》(作者:具体作者姓名)32 在线课程在线课程平台名称上的相关课程知名高校的公开课33 相关设计手册《机械设计手册》《机械零件设计手册》五、考核方式与评估标准41 考试成绩占比期末考试成绩占总成绩的X%平时测验成绩占总成绩的X%42 作业完成情况按时完成作业的质量和数量作业中的创新性和独立思考能力43 项目实践表现参与项目实践的积极性和团队合作能力项目成果的质量和创新性以上协议内容仅供参考,您可以根据实际需求进行修改和完善。
第一章机械设计基础概论一.机器的组成:1.按机器的各部分功能分析:机器由四大部分组成:动力部分,工作部分,传动部分,控制部分;2.按机器的构成分析:机器是由一个或几个机构和动力源组成。
机构是由若干个构件通过可动联接(零件之间有相对运动的联接)面组成的具有确定运动的组合体。
构件是由一个或若干个零件通过刚性联接而组成,它是运动的单元体。
机械零件是加工的单元体。
机器和机构统称为机械。
第二章平面机构运动简图及自由度度一.运动副:两构件直接接触并能产生相对运动的活联接称为运动副。
分为高副和低副,高副:以点或线接触所形成的运动副称为高副,如凸轮副和齿轮副;低副:以面接触所形成的运动副称为低副,如转动副,移动副。
第二节.平面机构的自由度:一个自由构件在平面中,有三个自由度。
沿X,Y轴移动和绕Z轴转动。
二.平面运动副对构件的约束:每个低副引入两个约束,每个高副引入一个约束。
三.平面机构的自由度:设一个平面机构有N个构件,其中必有一个构件为机架,故活动构件数为n,其中P L个低副,P H个高副,则这些运动副引入的约束为2P L+P H,若用F表示自由度,则F=3n-2P L-P H,这就是平面自由度计算公式。
也称为平面机构的结构公式。
四.机构具有确定运动的条件:机构的自由度数目必须与主动件数目相等。
自由度F要大于零。
五.复合铰链、局部自由度和虚约束1. 复合铰链:由两个以上的构件通过转动副并联在一起所构成的铰链称为复合铰链。
用K 个构件构成的复合铰链其转动副数目应为K-1。
2.局部自由度:在机构中常用一种与整个机构运动无关的。
局部的独立运动,称为局部自由度,在计算机构自由度时应除去不计。
3.虚约束:机构中某些运动副所引入的约束可能与其他运动副所起到的限制作用是一致的,这种对机构不起真正约束作用的约束称为虚约束,在计算自由度时也应除去不计。
平面机构的虚约束常出现在以下场合中:1)两构件组成多个平行的移动副时,只有一个移动副起作用;2)两构件间组成多个轴线重合的转动副,只有一个转动副起作用;3)传递机构中的对称部分。
《机械设计基础》重点总结机械设计基础是一门研究机械中常用机构和通用零部件工作原理、结构特点、设计方法以及机械传动系统设计的学科。
它是机械工程类专业的重要基础课程,对于我们理解和掌握机械系统的设计与应用具有重要意义。
下面我将为大家总结这门课程的重点内容。
一、平面机构的结构分析1、运动副及其分类运动副是指两构件直接接触并能产生相对运动的活动连接。
根据接触形式的不同,运动副分为低副和高副。
低副包括转动副和移动副,高副则包括齿轮副、凸轮副等。
2、平面机构的运动简图用简单的线条和符号来表示机构的组成和运动情况的图形称为机构运动简图。
绘制机构运动简图时,要准确表示出各构件之间的相对运动关系和运动副的类型。
3、平面机构的自由度计算自由度是指机构具有独立运动的数目。
平面机构的自由度计算公式为:F = 3n 2PL PH,其中 n 为活动构件的数目,PL 为低副的数目,PH 为高副的数目。
机构具有确定运动的条件是自由度等于原动件的数目。
二、平面连杆机构1、铰链四杆机构的基本类型铰链四杆机构包括曲柄摇杆机构、双曲柄机构和双摇杆机构。
其类型取决于各杆的长度关系和机架的选择。
2、铰链四杆机构的演化形式通过改变构件的形状、相对长度以及运动副的尺寸等,可以将铰链四杆机构演化成曲柄滑块机构、导杆机构、摇块机构和定块机构等。
3、平面连杆机构的运动特性包括急回特性、压力角和传动角等。
急回特性可以提高工作效率,压力角越小、传动角越大,机构的传动性能越好。
三、凸轮机构1、凸轮机构的类型按凸轮的形状可分为盘形凸轮、移动凸轮和圆柱凸轮;按从动件的端部形状可分为尖顶从动件、滚子从动件和平底从动件。
2、凸轮机构的运动规律常用的运动规律有等速运动规律、等加速等减速运动规律、余弦加速度运动规律和正弦加速度运动规律等。
不同的运动规律适用于不同的工作场合。
3、凸轮机构的设计设计凸轮机构时,需要根据工作要求确定凸轮的基圆半径、滚子半径、从动件的行程和运动规律等参数。
自由度F=3n-2PL-PHn:活动机构,pl:低副通过面接触ph:高副通过点或线接触F必须大于0曲柄摇杆机构有急回特性反行程摆动速度必然大于正行程和死点位置从动件出现卡死和运动不确定现象,死点应加以克服,利用构件的惯性来保证机构顺利通过死点凸轮与从动件之间依靠弹簧力、重力、沟槽接触来维持;凸轮从动件的三种常用运动规律为:等速运动、等加速等减速运动和摆线运动;常见间隙机构:槽轮机构运动系数T必须>0,径向槽的系数z大于等于3,T总小于1/2,如使T大于1/2,须在构件1安装多个圆角,棘轮,不完全齿轮,凸轮间隙运动间隙凸优点:运转可靠,工作平稳,可用作高速间隙运动;在机器中安装飞轮的目的:调节机器速度的周期性波动非周期性波动通过调速器调节一般把飞轮安装在机器的高速轴上;调节机器速度波动目的:机器速度的波动带来一系列不良影响,如在运动副中产生动压力,引起机械振动,降低机器效率和产品质量等;因此,必须设法调节其速度,使速度波动限制在该类机器容许的范围内.静平衡条件: P53 动平衡:P54螺纹连接的主要类型:螺栓、双头螺柱、螺钉、螺母、垫圈;常用的连接螺纹为单线三角形右旋螺纹;细牙螺纹特点:螺距较小,细牙普通螺纹的螺栓的抗压强度较高;一般适用薄壁零件及受冲压零件的联接;但细牙不耐磨,易滑扣不宜经常拆卸,故广泛适用粗牙;螺纹连接防松原理:1、利用摩擦力在螺纹间保持一定的摩擦力,且摩擦力尽可能不随载荷大小而变化2、机械方法1.用机械装置把螺母和螺栓连在一起2.消除它们之间相对转动的可能性,这个方法最为可靠螺纹防松的根本问题在于:增加螺纹联接的轴向力;键连接:松连接由平键,半圆键,轴,轮毅组成、紧连接楔键,轴,轮毅;平键连接的工作面为两侧面,楔键连接的工作面是上下面;键的主要功用是传递转矩;带传动的工作原理:依靠带与带轮间的摩擦力传递运动带传动设计依据:在保证不打滑的条件下,应带有一定的疲劳强度和寿命;如果超出这一临界值,带与带轮间将产生打滑,致使传动失效;带传动的主要失效形式:打滑和疲劳损坏;为防止打滑,为了保证所需的圆周力F,对带传动的包角进行限制,小带轮的包角a应不小于120度;F0过小,带的传动能力下降,F0过大,虽可提高传动能力,但带易松弛使寿命下降带传动中带的应力由拉应力、离心应力、弯曲应力组成;其中最大应力出现在紧边进入小带轮处链传动:由具有特殊齿廓的主动链轮,从动轮和一条闭合的链条组成;这种传动是以链条作中间挠性件,靠链条和链轮轮齿连续不断地啮合来传递功率,因此它是啮合传动;链传动优点:可用于两轴中心距较大的传动a最大值为8m;传动效率高,可达;与带传动相比,它的传动比能保持不变;作用在轴上压力F比带传动小,F=F;结构紧凑;缺点:瞬时传动比不恒定,传动稳定性较差;无过载保护作用;安装精度要求过高;链传动失效形式:在链传动中,如果能按照推荐的润滑方式进行润滑,当速度较低时,多由于链板的疲劳断裂而失效;当速度较高,则由于滚子、套筒的冲击疲劳断裂而失效;速度更高,则由于销轴和套筒的胶合而失效;链条的链节数一般为偶数,小链轮齿数为奇数;在齿根部分靠近节线处最易出现疲劳点蚀;渐开齿轮的可分性:由于制造、安装的不准确性以及轴承的磨损,均可使齿轮传动的中心距与设计值不符,当两齿轮制成之后,其分度圆直径和基圆直径均已确定,因而传动比i就确定,故中心距值虽略有改变,但对传动比并不发生影响,即渐开齿轮的可分性;这个特性在实用中具有很重要意义;根切:用范成法加工齿轮时,如果齿轮的齿数太少,则切削道具的齿顶就会切去轮齿根部的一部分的现象;避免根切措施:1、限制齿轮最少齿数,要使所设计的齿轮齿数大于不产生根切的最小齿数Zmin=17 2、采用变位齿轮;一对外啮合斜齿轮正确啮合的条件:模数和压力角分别相等;两轮分度圆上的螺旋角大小相等且方向相反即一为左旋,另一必为右旋与直齿相比,斜齿轮啮合会产生轴向力,一般通过角接触轴承来承受;重合度大,运动平稳;在斜齿轮中以法面模数为标准模数;进行强度计算和选择铣刀时,采用当量齿数,斜齿轮和锥齿轮的当量齿数大于其实际齿数;Mn 为法向模数,Mt 为端面模数用铣刀或滚刀制造斜齿圆柱齿轮时,刀具的进刀方向垂直于法面,因而齿轮的法向模数和刀具模数相同;在斜齿圆柱齿轮传动中,β角愈大,重合度愈大,传动情况良好;但轴向力大,影响轴承组合及传动效率;若β角过小时,将失去斜齿的优点;一般螺旋角β=8-12°,计算时可初选10-12°;蜗杆传动优点:1、一级传动就可得到很大的传动比2、工作平稳无噪声3、可以自锁,这对于某些设备是很有意义的;缺点:1、传动效率低2、因效率低,发热大,不适用于功率过大长期连续工作处3、可以自锁,这对于某些设备是很有意义的;为了减少滚刀的规格数量,固定蜗杆分度圆直径d1为标准值,且与模数m 相搭配;对于轴交角为90°的蜗杆传动,涡轮分度圆螺旋角β等于蜗杆分度圆柱的导程角γ且旋向相同,即同为左旋或右旋,常用于右旋;蜗杆传动比i=n1/n2=z2/z1≠d2/d1轮系:采用由一系列互相啮合的齿轮将主动轮与从动轮连接起来的传动;分为:定轴轮系轮系中所有齿轮轴线均为固定、行星轮系轮系传动比公式P241定轴轮系用途:1、可获得大的传动比2、可连接相距较远的两轴3、可获得多种传动比的传动4、可改变从动轮的转向轴:心轴只承受弯矩,不承受转矩的轴如自行车轮轴转轴既承受弯矩又承受转矩的轴,是机器中最常见的轴传动轴主要承受转矩作用,根据几何轴线形状,可分为直轴和曲轴 轴没有标准的结构形式,轴的外形多是阶梯状的圆柱体;轴的基本要求,为什么不宜过大:1、为了降低轴上不同直径衔接处的应力集中,提高轴的抗疲劳能力,相邻轴近的变化不宜过大,定位轴肩和轴环的高度要适当,轴径变化处的过渡圆角应尽可能大;2、为了保证轴上的零件能紧靠轴肩定位,轴上圆角半径r 应小于零件孔的倒角C 3、为了保证轴上零件的正常工作,其轴向和周向都必须固定;22)(T M M e α+=引入α修正系数的原因是:弯曲应力按脉动循环变化,扭剪应力不同,需修正计算;α是将扭转切应力转换成与弯曲应力变化特征相同的扭转切应力时的折合系数;向心轴承:承受与轴的轴线方向相垂直的载荷,推力轴承:承受与轴的轴线方向相一致的载荷;根据表面摩擦性质分为:滑动轴承和滚动轴承润滑剂作用:减少摩擦损失,减轻工作表面的磨损、冷却和吸振等;尽可能地使润滑剂充满摩擦面间;液体:润滑油,半固体:润滑脂;非全液体摩擦滑动轴承采用磨损的条件性计算作为设计依据,即在按强度及结构要求定出主要尺寸以后,进行轴承工作面上的压强及压强和速度乘积的验算;轴承压强的验算的目的:限制轴承的压强保证其润滑,减少磨损;轴承压强和速度乘积的验算的目的:为了保证轴承运转不产生过多的热量,以控制温升,保证完好的边界膜和防止粘着磨损;滚动轴承:外圈、内圈、滚动体、保持架滚动轴承失效形式:疲劳点蚀和塑性变形对于转动的滚动轴承,通常用基本额定动载荷C表示轴承抗疲劳点蚀的能力,计算它的寿命;对一个轴承而言,达到基本额定寿命的可靠度为90%,相应的失效概率为10%;在基本额定动载荷作用下,轴承可以工作10的六次方转而不发生疲劳失效,其可靠度为90%联轴器和离合器的作用:用来连接两轴、传递运动和转矩的部件;由联轴器连接的两根轴或传动件只有当机器停车时,经过拆卸后,才能把它们分开;而用离合器联接,则在机器运转中就能方便地将它们分开或接合;宜采用挠性联轴器的目的:由于制造、安装误差或工作时的变形等原因,不可能保证被联接的两轴严格对中;工作方式:无弹性元件挠性联轴器靠联轴器中刚性零件间的活动度来补偿轴的偏移和位移:弹性元件挠性联轴器靠联轴器中弹性元件的变形来补偿轴的偏移和位移;弹簧的特征:刚性小,弹性高,受外力后能有相当大的变形,而随着载荷的卸除,变形消失,能恢复原状;弹簧功用:1、缓冲及减振2、控制机构的运动或零件的位置3、贮存能量4、测量力和转矩弹簧旋绕比:C=D2/d弹簧丝截面的最大应力:T=T1+T2=8FC1+C/πd21、滚动轴承代号:3:圆锥滚子5:推力球轴承6:深沟球7:角接触球轴承直径代号:0、1特轻2轻系列3中4重5轻宽6中宽6308:内径为40mm,深沟球轴承,中系列,0级公差,0组游隙 7211c/p5:内径55mm,角接触球轴承,轻系列,接触角a=15°,5级公差,0组游隙;7000C接触角a=15°,7000AC接触角a=25°,7000B接触角a=40°2、轮齿的主要失效形式有:轮齿折断,齿面磨粒磨损,齿面点蚀,齿面胶合3、弹性滑动:打滑:由于某种原因,机器出现过载,则圆周力不能克服从动轮的阻力矩,带将沿轮面发生全面滑动,从动轮转速急剧降低甚至不动的现象;打滑不仅使带丧失工作能力,而且使带急剧磨损发热;打滑带传动的主要失效形式之一,因此在设计带传动时,应保证带传动不发生打滑;由于带的紧边与松边拉力不等,使带的两边弹性变形不等所引起带与轮面的微量相对滑动称为弹性滑动;它是带传动所固有的物理现象,是不可避免的;弹性滑动的大小与带的紧,松边拉力差有关;带的型号一定时,带传递的圆周力愈大,弹性滑动愈大;当外载荷所产生的圆周力大于带与小带轮接触狐上的全部摩擦力时,弹性滑动就转变为前面提到的打滑;显然,打滑是过载引起的,是一种可以而且尽量避免的滑动现象;4、轮齿计算准则:上面的介绍了齿轮的几种失效形式,但在工程实践中,对于一般用途的齿轮传动,通常只作齿根弯曲疲劳强度及齿面接触疲劳强度的计算;对闭式齿轮传动,若一对齿轮或其中一齿轮的齿面硬度为≤350HBS的软齿面时,其齿面接触疲劳强度较低,故按接触疲劳强度的设计公式确定齿轮的主要尺寸,然后再按齿根弯曲疲劳强度进行校核;若一对硬齿面齿轮,且齿面硬度较高时,其齿面接触疲劳强度较高,其齿根弯曲疲劳强度可能相对较低,则可按弯曲疲劳强度的设计公式确定齿轮的主要尺寸,再校核其齿面疲劳强度;对开式齿轮传动,其主要失效形式是磨粒磨损和弯曲疲劳折断;因目前磨损还无法计算,故按弯曲疲劳强度计算出磨数m.考虑到磨损后齿轮变薄,一般把计算的模数增大10%-15%,再取相近的标准值;因磨粒磨损速率远比齿面疲劳裂纹扩展速率快,即齿面疲劳裂纹还未扩展即被磨去;所以,一般开式传动不会出现疲劳点蚀,因而也无法验算接触强度;必考5、进行热平衡计算的目的:涡轮传动由于摩擦损失大,效率较低,因而发热量很大;若热量不能散逸,将使润滑油的粘度降低,润滑油从啮合齿间被挤出,进而导致胶合;因而对连续工作的闭式涡轮传动进行热平衡计算是十分必要的;当发热量大于散热量,改善方法:1、增加散热面积A 2、提高表面传热系数h 措施:1、在箱壳外铸出散热片2、在涡轮上装置风扇3、此外箱壳外面不涂漆;1、自由度计算第一章2、螺栓计算P94例题一3、带传动计算P188例题三P190例题四4、轴向载荷P308例题五5、力的组合七考一。
机械设计基础知识点一、 绪论1、机器:用来变换或传递能量、物料、信息的机械装置;2、机构:把一个或几个构件的运动,变换成其他构件所需的具有确定运动的构件系统;3、构件是指组成机械的运动单元;零件指组成机械的制造单元;二、 机械设计基础知识1、 失效:机械零件丧失工作能力或达不到设计要求性能时,称为失效;2、零件失效形式及原因:1) 断裂失效:零件在受拉压弯剪扭等外载荷作用,某一危险截面应力超过零件的强度极限发生的断裂、2) 变形失效:作用于零件上的应力超过材料的屈服极限,则零件将产生塑性变形、3) 表面损伤失效:零件的表面操作破坏主要是腐蚀、磨损和接触疲劳;3、应力和应力循环特性:可用min max /σσ=r 来表示变应力的不对称程度;r=+1为静应力;r=0为脉动循环变应力;r=-1为对称循环变应力,-1<r<+1为不对称循环变应力;4、零件设计准则:强度准则、刚度准则、耐磨性准则、振动稳定性准则、耐热性准则、可靠性准则;5、机械零件材料选择的基本原则:1) 材料的使用性能应满足工作要求力学、物理、化学、2) 材料的工艺性能满足制造要求铸造性、可锻性、焊接性、热处理性、切削加工性、3) 力求零件生产的总成本最低相对价格、资源状况、总成本;6、摩擦类型:按摩擦表面间的润滑状态不同分为:干摩擦、边界摩擦、流体摩擦、混合摩擦;7、磨损:由于机械作用或伴有物理化学作用,运动副表面材料不断损失的现象称为磨损,分类:粘着磨损、磨粒磨损、表面疲劳磨损、腐蚀磨损;8、常用润滑剂:润滑油、润滑脂9、零件结构工艺性的基本要求:毛坯选择合理、结构简单合理、制造精度及表面粗糙度规定适当;三、 平面机构基础知识1、 运动副:两构件直接接触,并保持一定相对运动,则将此两构件可动连接称之为运动副;按照接触形式,通常把运动副分为低副和高副两类;2、平面机构的自由度:机构能产生独立运动的数目称为机构的自由度;设平面机构中共有n 个活动构件,在各构件尚未构成运动副时,它共有3n 个自由度;而当各构件构成运动副后,设共有个低副和个高副,则机构的自由度为F=3n-2-H L P P -;3、机构具有确定运动的条件:机构自由度应大于0,且机构的原动件的数目应等于机构的自由度的数目;当机构不满足这一条件时,如果机构的原动件数小于机构的自由度,机构的运动不能确定;如果原动件数大于机构的自由度,机构不能产生运动,并将导致机构中最薄弱环节的损坏4、复合铰链、局部自由度、虚约束各自的引入5、瞬心:两构件互作平面相对运动时,在任一瞬时都可以认为它们是绕某一点作相对转动;该点即为两构件的速度瞬心;6、三心定理:作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上;四、平面连杆机构1、平面连杆机构基本类型:按两连架杆的运动形式将铰链四杆分为三种:曲柄摇杆机构、双曲柄机构、双摇杆机构;2、平面四杆机构的演化:1)曲柄摇杆机构、2)曲柄滑块机构、3)导杆机构、4)摇块机构、5)定块机构、6)偏心轮机构、7)双滑块机构;3、铰链四杆机构有周转副的条件是:1)最短杆与最长杆的长度之和小于或等于其他两杆的长度之和;2)组成该周转副的两杆中必有一杆为四杆中的最短杆;4、不同形式的获得条件:1)当最短杆为机架时,机架上有两个周转副,故得双曲柄机构;2)当最短杆为连架杆时,机架上有一个周转副,该四杆机构将成为曲柄摇杆机构;3)当最短杆为连杆时,机架上没有周转副,得到双摇杆机构;5、急回动动特性:摇杆在摆去与摆回时的速度不同的性质;6、行程速度变化系数K:K=180°+θ/180°-θ机构在两个极位时,原动件AB所处两个位置之间的锐角θ称为极位夹角θ角越大,K值越大,机构的急回特性也越显着7、压力角:从动件驱动力F与力作用点绝对速度所夹锐角;压力角的余角称为传动角;为了保证机构据传动性能良好,设计通常应使minγ≥40°;在传递力矩较大时,则应使minγ≥50°,对于一些受力很小或不常使用的操作机构,则可允许传动角小些,只要不发生自锁即可;8、死点:设摇杆CD为主动件,则当机构处于图示两个位置之一时,连杆与从动曲柄共线,出现了传动角等于0度的情况;这时主动什CD通过连杆作用于从动件AB 上的力恰好通过其回转中心,所以不能使构件AB转动而出现“顶死”现象;机构的此种位置称为死点;五、凸轮机构1、由于加速度发生无穷大突变而产生的冲击称为刚性冲击,由于加速度的有限值突变产生的冲击称为柔性冲击;2、基圆:以凸轮轮廓曲线的最小向径0r为半径所作的圆称为凸轮的基圆;3、压力角:从动件运动方向与力F之间所夹的锐角即为压力角;4、滚子半径的选择:设理论轮廓曲线外凸部分的最小曲率半径为min ρ,滚子半径为T r ,则相应位置实际轮廓曲线的曲率半径'ρ为'ρ=min ρ-T r ; 且有1) 当min ρ>T r 时,'ρ>0,实际轮廓曲线为一平滑曲线,从动件的运动不会出现失真;2) 当min ρ=T r 时,'ρ=0,实际轮廓曲线出现尖点,尖点极易磨损,磨损后,会使从动件的运动出现失真;3) 当min ρ<T r 时,'ρ<0,实际轮廓曲线出现相交,图中交点以上的轮廓曲线在实际加工时会被切去,使从动件的运动出现严重的失真,这在实际生产中是不允许的;六、 齿轮传动1、齿廓啮合基本定律:一对传动齿轮的瞬时角速比与其连心线被齿廓接触点公法线所分割的两段长度成反比,这个规律称为齿廓啮合基本定律;2、渐开线定义及其性质:当一直线沿某圆作纯滚动时,此直线上任意一点K 的轨迹称为该圆的渐开线,这个圆称为渐开线的基圆,该直线称为渐开线的发生线; 性质:1) 发生线在基圆上滚过的长度等于基圆上被滚过的弧长;2) 渐开线上任意一点的公法线必与基圆相切;3) 渐开线上各点的曲率半径不同,离基圆远,曲率半径越大,渐开线越平缓;4) 渐开线的形状取决于基圆的大小,同一基圆上的渐开线形状相同,不同基圆上的渐开线形状不同,基圆越大,渐开线越平直,基圆半径为无穷大时,渐开线为直线;5) 渐开线是从基圆开始向外展开的,故基圆内无渐开线;6) 渐开线上各点的压力角不相等,离基圆越远,压力角越大;3、渐开线齿廓的啮合特性:1) 四线合一啮合线、过啮合点的公法线、基圆的公切线和正压力作用线四线合一;2) 啮合线为一直线,啮合角为一定值;3) 中心距可调性;4、渐开线标准齿轮正确啮合条件:m1=m2=m,α1=α2=α;5、齿轮连续传动的条件是1/21≥=b p B B εPb 表示基圆齿距,ε越大,表示多对轮齿同时啮合的概率越大,齿轮传动越平稳;6、根切现象:用范成法加工齿轮,当刀具的齿顶线与啮合线的交点超出啮合极限点时,会出现轮齿根部的渐开线齿廓被刀具切去一部分的现象,称为根切;7、最少齿数:根切的产生与齿轮的齿数相关,齿数越少,越容易产生根切;标准齿轮欲避免根切,其齿数必须大于或等于不发生根切时的最少齿数,对于正常齿制的齿轮,最小为17,短齿制齿轮为14,若要求齿轮的齿数小于最少齿数而又不发生根切,则应采用变位齿轮;8、变位齿轮:以切削标准齿轮的位置为基准,将刀具的位置沿径向移动一段距离,这一距离称为刀具的变位量,以xm 表示;其中m 为模数,x 为变位系数;并规定刀具远离轮坯中心的变位系数为正,刀具靠近轮坯中心的变位系数为负;当刀具变位后,与分度圆相切的不是刀具的中线,而是刀具节线,这样切出的齿轮称为变位齿轮;9、轮齿常见的失效形式:1) 轮齿折断 2) 齿面点蚀 3) 齿面胶合 4) 齿面磨损5) 塑性变形;10、斜齿圆柱齿轮传动的正确啮合条件:n n n n n n m m m αααββ====-=212121;;m 、α分别代表两轮的法面模数和法面压力角;11、直齿圆锥齿轮正确啮合的条件:m1=m2=m,α1=α2=αm 、α分别代表两轮的大端模数和压力角;12、蜗杆传动正确啮合的条件是:ααα====2121;t a t a m m m m 、α分别代表蜗杆轴向模数、蜗轮端面模数和蜗杆轴向压力角、蜗轮端面压力角;13、齿轮传动的润滑方式:浸油润滑、喷油润滑七、 轮系1、平面定轴轮系传动比的计算公式:; 周转轮系传动比的计算公式:H n H m H n H m Hmn i ωωωωωω--==齿数连乘积转化轮系中所有主动轮齿数连乘积转化轮系中所有从动轮±= 2、轮系的应用:1) 实现相距较远的两轴之间的传动;2) 实现变速传动;3) 获得大的传动比;4) 实现换向传动;5) 实现运动的合成与分解;八、 带传动与链传动1、打滑现象:当传动的功率P 增大时,有效接力也相应增大,即要求带和带轮接触面上有更大的摩擦力来维持传动;但是,在一定的初拉力下,带和带轮接触面上所能产生的摩擦力有一极限值,称为临界摩擦力或临界有效拉力;当传递的圆周力超过该极限值时,带就在带轮上打滑,即所谓的打滑现象;2、带中最大应力发生在绕入小带轮的点处,其值为:3、带传动的弹性滑动:1) 传动带是弹性体,受力后会产生弹性伸长,带传动工作时,和松边的拉力不等,因而弹性伸长也不同;2) 带在绕过主动轮时,作用在带上的拉力逐渐减小,弹性伸长量也相应减小;3) 因而带在随主动轮前进的同时,沿着主动轮渐渐身后收缩滑动,而在带动从动轮旋转时,情况正好相反,即一边带动从动轮旋转,一边尚其表面向前拉伸滑动;4) 这种由于带的弹性和接力差引起的带在带轮上的滑动,称为带的弹性滑动;4、带的打滑是两个完全不同的概念;弹性滑动是带传动工作时的固有特性,只要主动轮一驱动,紧边和松边就产生拉力差,弹性滑动不可避免;而打滑是因为过载引起的全面滑动,是可以采取措施避免的;5、带传动的包角要求:小带轮包角/a 57.3×﹚d -﹙d ±18012=α,其中d2,d1分别表示大带轮和小带轮的直径,a 表示中心距;6、带传动的最大应力发生在小带轮某一点:其值为c b σσσσ++=11max ,其中1σ=A F /1A 为带的横截面积为紧边拉应力;A qvv A F cc //==σq 为每米长的质量,v 为带速;d YE b /2=σY 表示带截面的节面到最外层的距离;E 为带的弹性模量;d 为带轮直径;7、链传动优缺点:与带传动相比,其主要优点是:1) 能获得准确的平均传动比;2) 所需张紧力小,因而作用在轴上的压力小,3) 结构更为紧凑,传动效率较高,4) 可在高温、油污、潮湿等恶劣环境下工作;与齿轮传动相比较优点:1) 中心距较大而结构较简单,2) 制造与安装精度要求较低;链传动的主要缺点是:1) 瞬时传动比不恒定,2) 传动平稳性差,工作时有一定的冲击和噪声;8、链节距:链条上相邻两销轴的中心距称为链节距,以p 表示,它是链条最主要的参数,滚子链使用时为封闭环形,链条长度以链节数来表示;当链节数为偶数时,链条连接成环形时正好是外链板与内链板相连接,接头处可用开口销和弹簧夹来锁住活动的销轴,当链节数为奇数时,则需要采用过渡链节,链条受力后,过渡链节的链节除受拉力外,还承受附加的弯矩;因此应避免采用奇数链节;九、 连接与弹簧1、螺纹副:外螺纹与内螺纹旋合面组成螺纹副,亦称螺旋副;2、自锁条件:对于矩形螺纹,螺纹副的自锁条件为ρϕ≤,其中ϕ为斜面倾角,ρ为摩擦角;对于非矩形螺纹,其自锁条件为v ρϕ≤,其中v ρ为当量摩擦角,并且有v v f f ρβtan cos /==;3、螺纹的预紧:在一般的螺纹连接中,螺纹装配时都应拧紧,这时螺纹连接受到预紧力的作用,对于重要的螺纹连接,为了保证连接的可靠性、强度和密封性要求,应控制预紧力的大小;4、螺纹的防松:为了保证安全可靠,设计螺纹连接时要采取必要的防松措施;螺纹连接防松的根本问题在于防止螺纹副的相对转动;1) 在静载荷和工作温度变化不大的情况下,拧紧的螺纹连接件因满足自锁性条件一般不会自动松脱;2) 但在冲击、振动和变载的作用下,预紧力可能在某一瞬间消失,连接仍有可能自行松脱而影响正常工作,甚至发生严重事故;3) 当温度变化较大或在高温条件下工作时,连接件与被连接件的温度变形或材料的蠕变,也可能引起松脱;5、防松措施:1) 摩擦防松弹簧垫圈、双螺母、尼龙圈锁紧螺母、2) 机械防松开口销与槽形螺母、止动垫圈与圆螺母、3) 粘合防松6、螺栓的主要失效形式有:1) 螺栓杆拉断;2) 螺纹的压溃和剪断;3) 经常装拆时会因磨损而发生滑扣现象;7、键:平键和半圆键工作面是两侧面;楔键和切向键工作面是上下面;十、 轴承滚动轴承、滑动轴承1、滚动轴承分类:按滚动体形状可以分为球轴承和滚子轴承;按承受载荷的方向或公称接触角的不同,滚动轴承可以分为向心轴承和推力轴承;2、滚动轴承特点:主要优点是:1) 摩擦阻力小、启动灵活、效率高; 2) 轴承单位宽度的承载能力较强; 3) 极大地减少了有色金属的消耗;4) 易于互换,润滑和维护方便; 主要缺点是:1) 接触应力高,抗冲击能力较差,高速重载荷下寿命较低,不适用于有冲击的瞬间过载的高转速场合; 2) 减振能力低,运转时有噪声;3) 径向外廓尺寸大;4) 小批量生产特殊的滚动轴承时成本较高;3、滚动轴承的代号:基本代号中右起12位数字为内径代号,右起第3位表示直径系列代号,右起第4位为宽高度系列代号,当宽度系列为0系列时,可以不标出;4、滚动轴承类型选择:考虑承载能力、速度特性、调心性能、经济性5、滑动轴承的分类:按所受载荷方向的不同,主要分为径向滑动轴承和推力滑动轴承;按滑动表面间摩擦状态的不同,可分为干摩擦滑动轴承、非液体摩擦滑动轴承和液体摩擦滑动轴承;6、滑动轴承轴瓦材料性能:1) 摩擦因数小,有良好的耐磨性、耐腐蚀性、抗胶合能力强;2)热膨胀系数小,有良好的导热性;3)有足够的机械强度和可塑性;十一、轴1、轴的分类:按承载情况不同,轴可以分为以下三类:1)心轴只承受弯矩而不传递转矩的轴、2)传动轴主要传递动力,即主要传递转矩,不承受或承受很小弯矩、3)转轴用于支承传动件和传递动力,既承受弯矩又传递转矩;4)按照轴线的形状还可以分为:直轴、曲轴、钢丝软轴;2、轴的结构设计要求:1)便于轴上零件的装拆和调整;2)对轴上零件进行准确的定位且固定可靠;3)要求轴具有良好的加工工艺性;4)尽量做到受力合理,应力集中小,承载能力强,节约材料和减轻重量;。
1. 机器是执行机械运动的装置,用来变换或传递能量,物料,信息。
2. 用来传递运动和力,有一个构件为机架,用构件间能够相对运动的连接方式组成的构件系统称为机构3. 机器的主体部分是由机构组成的4. 机构与机器的区别在于:机构只是一个构件系统,而机器除构件系统之外,还包括电气,液压等其他装置;机构只用于传递物体运动和力,而机器除传递运动和力之外,还具有变换或传递能量,物料,信息的功能。
5. 构件是运动的单元。
它可以是单一的整体,也可以是由几个零件组成的刚性结构。
6. 两构件直接接触并能产生一定相对运动的连接称为运动副。
7. 运动副的分类: 运动副 低副(通过面接触) 转动副(只能在平面内相对转动)高副(通过点或线接触) 移动副(只能沿某一轴线相对移动)8.平面机构自由度计算公式H L P -2P -3n F =其中n 为活动构件数,L P 为机构中的低副数,H P 为机构中的高副数9. 机构具有确定运动的条件是机构自由度0F >,且F 等于原动件数10. 两个以上构件同时在一处用转动副相连接就构成复合铰链11. 机构中常出现一种与输出构件运动无关的自由度,称为局部自由度12. 在运动副引入的约束中,有些约束对机构自由度的影响是重复的,对机构运动不起任何限制作用。
这种重复而对机构不起限制作用的约束称为虚约束或消极约束。
在计算机构自由度时应当除去不计。
13. 全部用转动副相连的平面四杆机构称为平面铰链四杆机构14. 含一个移动副的四杆机构分为曲柄滑块机构,导杆机构,摇块机构和定块机构15. 铰链四杆机构有整转副的条件最短杆与最长杆长度之和小于或等于其余两杆长度之和; 整转副是由最短杆与其相邻杆组成的16. 四杆机构中,当曲柄为主动件做匀速回转时,从动件摇杆的往返摆动行程和往返速度往往是不一样的,返程比往程要快,这种运动特性称为急回特性。
17. 压力角越小,传动角越大,机构传力性能越好。
反之,压力角越大,传动角越小,机构传力性能越费劲,传动效率越低18. 曲柄摇杆机构中,以曲柄为主动件,当摇杆与连杆共线时摇杆处于极限位置。
欢迎共阅《机械设计基础》知识点总结1. 构件:独立的运动单元/零件:独立的制造单元机构:用来传递运动和力的、有一个构件为机架的、用构件间能有确定相对运动的连接方式组成的构件系统(机构=机架(1个)+原动件(≥1个)+从动件(若干)) 机器:包含一个或者多个机构的系统注:从力的角度看机构和机器并无差别,故将机构和机器统称为机械2. 机构运动简图的要点:1)构件数目与实际数目相同2)运动副的种类和数目与实际数目相同3)运动副之间的相对位置以及构件尺寸与实际机构成比例(该项机构示意图不需要)3. 4. F =35. I ) II ) III ) IV )6. θ7. 8. 9. 1III )10. 压力角的大小与凸轮基圆尺寸有关,基圆半径越小,压力角α越大(当压力角过大时可以考虑增大基圆的半径)11. 凸轮给从动件的力FF ’’(F ’’=F ’tan α) 12. 凸轮机构的自锁现象:在α角增大的同时,F ’’大于有用分力F ’生自锁,【α】在摆动凸轮机构中建议35°-45°,【α机构中建议30°,【α】在回程凸轮机构中建议70°-8013. 凸轮机构的运动规律与冲击的关系:I 律——刚性冲击2)等加等减速(二次多项式)——无冲击(适用于高速凸轮机构)II )三角函数运动规律:1)余弦加速度(简谐)运动规律——柔性冲击2)正弦加速度(摆线)运动规律——无冲击III )改进型运动规律:将集中运动规律组合,以改善运动特性 14. 凸轮滚子机构半径的确定:I )轮廓内凹时:T a r +=ρρII )轮廓外凸时:T a r -=ρρ(当0=-=T a r ρρ时,轮廓变尖,出现失真现象,所以要使机构正常工作,对于外凸轮廓要使T r >min ρ)注:平底推杆凸轮机构也会出现失真现象,可以增大凸轮的基圆半径来解决问题15. 齿轮啮合基本定律:设P 为两啮合齿轮的相对瞬心(啮合齿轮公法线与齿轮连心线21O O 交点),12i =16. 17. 表示18. 19. 标准安装时的中心距2121r r r c r a f a +⇒=++=20. 渐开线齿轮的加工方法:1)成形法(用渐开线齿形的成形刀具直接切出齿形,例如盘铣刀和指状铣刀),成形法的优点:方法简单,不需要专用机床;缺点:生产效率低,精度差,仅适用于单件生产及精度要求不高的齿轮加工2)范成法(利用一对齿轮(或者齿轮与齿条)互相啮合时,其共轭齿阔互为包络线的原理来切齿的),常见的刀具例如齿轮插刀(刀具顶部比正常齿高出m c *,以便切出顶隙部分,刀具模拟啮合旋转并轴向运动,缺点:只能间断地切削、生产效率低)、齿条插刀(顶部比传动用的齿条高出m c *,刀具进行轴向运动,切出的齿轮分度圆齿厚和分度圆齿槽宽相等,缺点:只能间断地切削、生产效率低)、齿轮滚刀(其在工作面上的投影为一齿条,能够进行连续切削)21. 最少齿数和根切(根切会削弱齿轮的抗弯强度、使重合度ε下降):对于α=20°和*a h =1的正常齿制标准渐开线齿轮,当用齿条加工时,其最小齿数为17(若允许略有根切,正常齿标准齿轮的实际最小齿数可取14)如何解决根切?变位齿轮可以制成齿数少于最少齿数而无根切的齿轮,可以实现非标准中心距的无侧隙传动,可以使大小齿轮的抗弯能力比较接近,还可以增大齿厚,提高轮齿的抗弯强度(以切削标准齿轮时的位置为基准,刀具移动的距离xm 称为变位量,x 称为变为系数,并规定远离轮坯中心时x 为正值,称为正变位,反之为负值,称为负变位)22. 轮系的分类:定轴轮系(轴线固定)、周转轮系(轴有公转)、复合轮系(两者混合)=m i 1 23.24. 26.飞轮转动惯量的选择:δω2maxm A J =注:1)δωωω22min 2max min max max )(21m J J E E A =-=-=(m ax A 为最大功亏,即飞轮的动能极限差值,m ax A 的确定方法可以参照书本99页)2)2minmax ωωω+=m (m ω为主轴转动角速度的算数平均值)3)mωωωδminmax -=(δ为不均匀系数)27.(刚性)回转件的平衡:目的是使回转件工作时离心力达到平衡,以消除附加动压力,尽可能减轻有害的机械振动。
《机械设计基础》重点总结一、机械设计基础概述机械设计基础是机械工程专业的一门重要课程,它涵盖了机械设计的基本概念、原理和方法。
本课程的主要目标是培养学生具备机械系统设计、分析和优化的能力,为后续的机械设计课程和实际工程设计打下坚实的基础。
二、机械设计基础重点内容1、机械设计基础知识:包括机械零件的分类、材料选择、制造工艺、性能要求等方面的知识。
2、常用机构和零部件:如齿轮机构、链传动、带传动、蜗轮蜗杆传动、滚动轴承、轴系零部件等。
这些机构和零部件的结构特点、工作原理、性能参数以及选型、设计和计算方法等是学习的重点。
3、机械传动系统设计:学生需要掌握机械传动系统的基本组成、类型和设计方法,包括齿轮传动系统设计、带传动系统设计、链传动系统设计等。
4、机械强度分析:学生需要了解机械零件的强度计算方法,包括弯曲强度、剪切强度、挤压强度、接触强度等。
同时,还需要掌握疲劳强度计算和校核的方法。
5、机械动力学分析:学生需要了解机械系统的动力学特性,包括惯性力、动载荷、振动等,掌握动力学分析和计算的方法。
6、机械系统的可靠性设计:学生需要了解可靠性设计的基本概念和方法,掌握可靠性分析和计算的技巧。
7、机械系统的维护与保养:学生需要了解机械系统的维护和保养知识,包括润滑、清洁、检查等日常保养和定期保养的方法。
三、学习方法建议1、掌握基本概念:对于机械设计基础这门课程,掌握基本概念是至关重要的。
学生需要在学习过程中对每个概念进行深入理解,并能够熟练运用。
2、理论实际:学习机械设计基础不能仅仅停留在理论层面,还需要结合实际工程问题进行学习和实践。
学生可以通过参加课程设计、实验等方式将理论知识应用到实践中去。
3、培养分析和解决问题的能力:在学习过程中,学生需要培养分析和解决问题的能力。
对于遇到的问题,学生应该学会从多个角度进行分析,并能够提出有效的解决方案。
4、注重归纳总结:机械设计基础知识点繁多,学生需要经常进行归纳总结,找出知识点之间的和规律,形成自己的知识体系。
第2章平面机构的结构分析1、运动副:使两个构件直接接触仍能产生一定相对运动的连接2、低副:两个构件为面接触的运动副3、移动副:组成运动副的两个构件通过面接触只能做相对移动的低副4、高副:两个构件通过点或线接触组成的运动副5、运动链:由两个以上运动副连接而成的系统6、运动链分为闭链和开链两种。
闭链:若组成运动链的各构件首尾相连,则所构成的系统成为封闭式运动链,简称闭链;开链:若组成运动链的各构件未构成首尾相连的封闭系统,则成为开式运动链,简称开链。
7、若运动链中其余各构件都有确定的相对运动,这种运动链便构成了机构8、机架:机构中固定不动的构件。
按照给定的运动规律相对于该固定构件运动的构件成为原动件或主动件,其余各活动构件成为从动件。
9、移动副的导路必须与相对移动方向一致10、F = 3n - 2P L - P H (F表示平面机构的自由度数)11、复合铰链:两个或两个以上的构件公用同一转动轴线相连接所构成的运动副12、局部自由度:机构中出现的不影响其他构件运动的构件的自由度13、虚约束:机构中对传递运动不起独立作用的对称部分引入的约束14、机构具有确定运动的条件是:机构的原动件数与机构的自由度数相等第3章挠性传动设计1、带传动的优点:①带具有良好的挠性,可缓和冲击、吸收振动②过载时带会在带轮上打滑,避免了其他零件的损坏③适用于中心距较大的传动④结构简单、制造安装方便、成本低廉带传动的缺点:①带与带轮直接存在滑动,不能保持准确的传动比②需要张紧装置③传动效率较低,带的寿命较短,不宜在易燃、易爆场合下工作2、通常情况下,带速V > 5 m/s,对于普通V带应使Vmax = 25~30 m/s第4章齿轮传动设计3、根据不同的分类方法,齿轮传动可分为以下几种类型:直齿轮传动平行轴齿轮传动斜齿轮传动人字齿轮传动直齿圆锥齿轮传动齿轮传动相交轴齿轮传动斜齿圆锥齿轮传动曲齿圆锥齿轮传动交错轴斜齿圆柱齿轮传动交错轴齿轮传动蜗杆蜗轮传动4、齿顶圆:各齿轮顶部所连成的圆称为齿顶圆,其直径用d a表示,其半径用r a表示5、齿根圆:各齿槽底部所连成的圆称为齿根圆,其直径用d f表示,其半径用r f 表示6、分度圆:为了设计、制造的方便,在齿顶圆与齿根圆之间规定了一个圆,作为计算齿轮各部分尺寸的基准,该圆称为分度圆,其直径用d表示,其半径用r 表示。
《机械设计基础》课程重点总结、含有练习题。
适⽤于机械专业专升本《机械设计基础》课程重点总结绪论零件是制造的单元,构件是运动的单元,⼀部机器可包含⼀个或若⼲个机构,同⼀个机构可以组成不同的机器。
第⼀章平⾯机构的⾃由度和速度分析1.所以构件都在相互平⾏的平⾯内运动的机构称为平⾯机构;2.两构件直接接触并能产⽣⼀定相对运动的连接称为运动副。
两构件通过⾯接触组成的运动副称为低副,平⾯机构中的低副有移动副和转动副。
两构件通过点或线接触组成的运动副称为⾼副;3.绘制平⾯机构运动简图;4.机构⾃由度F=3n-2P l-P h,原动件数⼩于机构⾃由度,机构不具有确定的相对运动;原动件数⼤于机构⾃由度,机构中最弱的构件必将损坏;机构⾃由度等于零的构件组合,它的各构件之间不可能产⽣相对运动;5.计算平⾯机构⾃由度的注意事项:(1)复合铰链(图1-13)(2)局部⾃由度:凸轮⼩滚⼦焊为⼀体(3)虚约束(4)两个构件构成多个平⾯⾼副,各接触点的公共法线彼此重合时只算⼀个⾼副,各接触点的公共法线彼此不重合时相当于两个⾼副或⼀个低副,⽽不是虚约束;6.⾃由度的计算步骤要全:1)指出复合铰链、虚约束和局部⾃由度2)指出活动构件、低副、⾼副3)计算⾃由度4)指出构件有没有确定的运动。
第⼆章平⾯连杆机构1.平⾯连杆机构是由若⼲构件⽤低副(转动副、移动副)连接组成的平⾯机构,⼜称平⾯低副机构;按所含移动副数⽬的不同,可分为:全转动副的铰链四杆机构、含⼀个移动副的四杆机构和含两个移动副的机构。
2.铰链四杆机构:机构的固定构件称为机架;与机架⽤转动副相连接的构件称为连架杆;不与机架直接相连的构件称为连杆;铰链四杆机构分为曲柄摇杆机构、双曲柄机构、双摇杆机构。
3.含⼀个移动副的四杆机构:曲柄滑块机构、转动导杆机构、摆动导杆机构、定块机构、摇块机构,及其相互之间的倒置。
4.铰链四杆机构有整转副的条件是最短杆和最长杆长度之和⼩于等于其余两杆长度之和;整转副是最短边及其邻边组成的;铰链四杆机构是否存在曲柄依据:1)取最短杆为机架时,机架上有两个整转副,故得双曲柄机构;2)取最短杆的邻边为机架时,机架上只有⼀个整转副,故得曲柄摇杆机构;3)取最短杆的对边为机架时,机架上没有整转副,故得双摇杆机构。
机械设计基础重点(参考)
注:各章节中未提到但是老师讲了的部分为了解部分,但不能保证不会出题,大家复习时有所取舍。
绪论:了解
第一章:重点章节。
出大题:自由度,虚约束,复合铰链。
对速度瞬心要会求会分析。
第二章:重点章节。
分析各机构存在条件。
第三章:重点章节。
掌握凸轮形状,从动件形式和运动规律,会画压力角,掌握图解法如何不会发生失真。
第四章:重点章节。
掌握齿轮机构,各部分名称,相关计算以及4-7节。
第五章:重点章节。
会出大题,参考后面作业题。
第六章:了解。
第七章:没讲。
第八章:没讲。
第九章:没讲。
第十章:掌握设计规范,设计思想,10-2节和10-4节。
第十一章:重点章节。
会出计算题,但是11-5节和11-1节的公式不用记,考试时会给出参考公式。
第十二章:掌握老师讲过的部分,出题参考课后题。
第十三章:重点掌握13-2节,链传动不看(他们老师没讲)。
会出选择,填空,简答,欧拉公式的相关计算。
第十四章:出改错题。
掌握14-3节,轴的正装和反装。
第十五章:没讲。
第十六章:掌握滚动轴承的代号及其含义(表16-2的3,5,6,7,N)。
轴承寿命计算,角接触向心轴承轴向载荷计算,了解滚动轴承的组合设计。