5月份月考试卷答案讲解
- 格式:ppt
- 大小:97.00 KB
- 文档页数:48
七年级下学期5月份月考数学试题含解析一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③B .①③C .②③D .①②3.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分4.若二元一次方程组,3x y a x y a-=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,则a 为( ) A .3 B .5 C .7 D .95.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个6.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,可列出方程组为( )A .4002740034x y x y -=⎧⎪⎨+=⎪⎩ B .4003440027x y x y =+⎧⎪⎨-=⎪⎩ C .4002440037x y x y -=⎧⎪⎨-=⎪⎩ D .4003740024x y x y -=⎧⎪⎨-=⎪⎩ 7.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有( )A .4种B .5种C .6种D .7种8.方程组22{?23x y mx y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )A .m >1B .m <1C .m >-1D .m <-19.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩10.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .2二、填空题11.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 12.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.13.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.14.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.15.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.16.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.17.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)18.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 19.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .20.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题21.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?22.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量单位:元/吨(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.23.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.24.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ;(2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解;(3)已知,m n 是实数, 27n =,若)Pn 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和. 25.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.26.已知12x y =⎧⎨=⎩是二元一次方程2x y a +=的一个解.(1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x ,y),如果过其中任意两点作直线,你有什么发现? x0 13y62【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】分析:方程组利用加减消元法求出解即可. 详解:22x y x y +⎧⎨--⎩=①=②,①+②得:2x=0, 解得:x=0,把x=0代入①得:y=2, 则方程组的解为02x y ⎧⎨⎩==, 故选B .点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.A解析:A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+=解得10k =,则结论②正确解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③ 故选:A . 【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.3.A解析:A 【分析】设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案. 【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩,32332519x y ∴+=⨯+⨯=分即小颖得分为19分, 故选A . 【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.4.C解析:C 【分析】先用含a 的代数式表示x 、y ,即解关于x 、y 的方程组,再代入3570x y --=中即可求解. 【详解】解:解方程组3x y a x y a -=⎧⎨+=⎩,得2x ay a =⎧⎨=⎩,把x =2a ,y=a 代入方程3570x y --=,得6570a a --=,解得:a =7. 故选C. 【点睛】本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a 看成已知,通过解关于x 、y 的方程组,得到x 、y 与a 的关系.5.B解析:B 【详解】 解:把①22x y ==⎧⎨⎩代入得左边=10=右边; 把②2{1x y ==代入得左边=9≠10;把③2{2xy==-代入得左边=6≠10;把④1{6xy==代入得左边=10=右边;所以方程4x+y=10的解有①④2个.故选B.6.C解析:C【分析】由甲、乙两人的年收入之比为3:2,年支出之比为7:4,得到乙的收入为23x,乙的支出为47y,根据题意找出等量关系,列出方程中选出正确选项即可.【详解】设甲的年收入为x元,年支出为y元,∵甲、乙两人的年收入之比为3:2,年支出之比为7:4,∴乙的收入为23x,乙的支出为47y,根据题意列出方程组得:40024400 37x yx y-=⎧⎪⎨-=⎪⎩.故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,根据题意找出等量关系是解答本题的关键.7.C解析:C【分析】设可以兑换m张5元的零钱,n张2元的零钱,根据零钱的总和为50元,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出结论.【详解】设可以兑换m张5元的零钱,n张2元的零钱,依题意,得:5m+2n=50,∴m=10﹣25 n.∵m,n均为非负整数,∴当n=0时,m=10;当n=5时,m=8;当n=10时,m=6;当n =15时,m =4; 当n =20时,m =2; 当n =25时,m =0. ∴共有6种兑换方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.8.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.9.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126; 又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.10.D解析:D 【解析】试题分析:把两个方程相加可得3x+3y=2+k,两边同除以3可得x+y=23k+=2,解得k=4,因此k的算术平方根为2.故选D.二、填空题11.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.12.320【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量。
2023-2024学年江苏省南通市海门区东洲国际学校七年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列运算正确的是()A. B. C. D.2.若,那么x与y之间的关系是()A.相等B.互为相反数C.相等或互为相反数D.无法判断3.下列说法错误的是()A.倒数为本身的数只有B.两点之间线段最短C.的系数是,次数是4D.了解某LED灯泡寿命宜普查4.已知,化简所得的结果为()A. B. C.1 D.5.下列说法中,正确的个数有个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,A.1B.2C.3D.46.下列事件为必然事件的是()A.任意买一张机票,座位靠窗B.打开电视机,正在播放新闻联播C.13个同学中少有两个同学的生日在同一个月D.某彩票中奖机率,小东买100张此彩票会中奖7.如果a、b互为相反数,且,则式子,,的值分别为()A.0,1,2B.1,0,1C.1,,0D.0,,08.若,则的值为()A. B. C.0 D.49.若,则等于()A. B.0 C.2a D.10.设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①;②;③;④A.①②③B.①②④C.①③④D.②④二、填空题:本题共8小题,每小题3分,共24分。
11.要把木条固定在墙上至少要钉两颗钉子,这是因为______.12.已知,则______.13.数轴上点A、B的位置如图所示,则A,B间的距离是______.14.中国月球探测工程的“嫦娥一号”发射升空飞向月球,已知地球距离月球表面约为384000千米,那么这个距离用科学记数法表示为______米.15.化简:______.16.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取,作交AC的延长线于点E,垂足为点D,测得,,则A、B两点间的距离等于______.17.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为________.18.设a、b、c的平均数为M,a、b的平均数为N,又N、c的平均数为P,若,则M与P大小关系______.三、解答题:本题共6小题,共66分。
2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.二次根式有意义的条件是()A. B. C. D.2.下列各组线段中,不能构成直角三角形的是()A. B.7,24,25 C.5,12,13 D.3.如图,下列的四个图象中,不表示y是x的函数图象的是()A. B. C. D.4.已知直线经过点,则a的值是()A.2B.3C.4D.55.若一次函数的函数值y随x的增大而增大,则m的取值范围是()A. B. C. D.6.菱形的对角线长分别为6和8,则此菱形的面积为()A.48B.40C.24D.207.在中,点D,E分别是AB,AC上的点,且,点F是DE延长线上一点,连接添加下列条件后,不能判断四边形BCFD是平行四边形的是()A.B.C.D.8.清明期间,甲、乙两人同时登云雾山,甲、乙两人距地面的高度米与登山时间分之间的函数图象如图所示,且乙提速后乙的速度是甲的3倍.则下列说法错误的是()A.乙提速后每分钟攀登30米B.乙攀登到300米时共用时11分钟C.从甲、乙相距100米到乙追上甲时,乙用时分钟D.从甲、乙相距100米到乙追上甲时,甲、乙两人共攀登了330米.9.一次函数和,与x的部分对应值如表,与x的部分对应值如表:则当时,x的取值范围是()x…01…x…01……35……0…A. B. C. D.10.如图所示,在四边形A中,,,,,E,F分别是AD,BC边的中点,则EF的长为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.25的平方根是______.12.如图所示,,,,则BC的长为______.13.已知一次函数的图象经过点,且与直线平行,则一次函数的表达式为______.14.如图,在四边形ABCD中,,,,E为BC的中点,连接DE,如果,则______15.如图,直线与的交点的横坐标为下列结论:①,;②直线一定经过点;③当时,;④m与n满足其中正确的有______只填序号16.如图,直线分别与x轴、y轴交于点A、B,点C在线段OA上,线段OB沿BC翻折.点O落在AB边上的点D处.则点D的坐标为______.三、解答题:本题共8小题,共72分。
参考答案1.C 2.B【解析】试题分析1.北半球纬度越向北度数越大,南半球越向南纬度数越大,向东增大的东经,向西增大的为西经,图所在的纬度向南增大,为南纬,经度向东增大,为东经,故甲所在纬度为30°S,110°E,答案选C。
2.首先判读出甲、乙、丙、丁四点的地理坐标分别是(110°E,30°S)、(105°E,30°N)、(120°W,40°N)、(120°W,50°S),再将这四点绘制到同一幅图中,根据劣弧定向法,判断出甲在乙的东南、乙在丙的西南、丙在丁的正北、丁在甲的东南。
故答案选B项。
【考点定位】经纬网的应用3.C 4.D【解析】3.根据大洲的经纬度范围,既位于北半球又位于西半球的大洲是北美洲,C对。
亚洲位于东半球,A错。
非洲、南美洲跨南北两半球,B、D错。
4.北回归线穿过的大洲有非洲、大洋洲、北美洲、亚洲,D对。
欧洲纬度较高,没有穿过,南美洲有南回归线穿过,A、B、C错。
【考点定位】世界七大洲的经纬度范围,世界重要纬线特征。
【名师点睛】了解东西半球、南北半球的划分界线。
根据世界七大洲所跨的经纬度范围,判断所在的半球。
了解世界重要纬线穿过的大洲名称。
5.B 6.D 【解析】5.图中通过纬度位置及地形剖面图则判断甲地位于印度半岛,印度半岛为热带季风气候,夏季盛行西南风,西坡为迎风坡,降水多;冬季盛行东北风,东坡为迎风坡,降水较多。
全区降水主要集中在夏季夏季盛行西南风,西南风从印度洋刮来携带大量水汽降水比冬季多。
故B正确。
6.问题是乙地区综合自然地理特征,应该从整体把握和分析。
乙地区最突出的综合自然地理特征是垂直差异显著,A、B、C为地形地势特征。
故D正确。
【考点定位】本题旨在考查东南亚自然地理特征,考查区域定位的能力7.D【解析】试题分析:中亚深居内陆,受海洋影响小,降水稀少,大多数河流属于内流河,如锡尔河、乌拉尔河、阿姆河;但有少数发源于高山冰雪融水的河流外流如海成为外流河,如额尔齐斯河,D正确。
2023-2024学年黑龙江省哈尔滨市南岗区萧红中学七年级(下)月考数学试卷(5月份)(五四学制)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程中,属于二元一次方程的是()A. B. C. D.2.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cmB.3cm,8cm,5cmC.4cm,5cm,10cmD.4cm,5cm,6cm3.不等式组的解集在数轴上表示正确的是()A. B.C. D.4.若,则下列不等式正确的是()A. B. C. D.5.如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为、的中点.只要量出的长度.就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短6.如图,点B、F、C、E在一条直线上,,,那么添加下列一个条件后,仍无法判定≌的是()A.B.C.D.7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚每枚黄金重量相同,乙袋中装有白银11枚每枚白银重量相同,称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两袋子重量忽略不计问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A. B.C. D.8.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使;②分别以C,D为圆心,以大于的长为半径作弧,两弧在内交于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是()A.且B.且C.且D.且9.若不等式组的解集是,则m的取值范围是()A. B. C. D.10.下列真命题的个数是()①面积相等的等腰直角三角形都全等.②三角形的重心是三角形三条高线的交点.③三条线段首尾顺次相接所组成的图形叫做三角形.④各边都相等的多边形是正多边形.A.0个B.1个C.2个D.3个二、填空题:本题共10小题,每小题3分,共30分。
七年级数学第二学期5月份月考测试卷含解析一、选择题1.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b)(a ﹣b)的值为( )A .15B .﹣15C .16D .﹣162.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y+=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y+=⎧⎨=⎩D .22103x y x y+=⎧⎨=⎩3.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( ) A .23x y =+B .32y x +=C .23y x =-D .32y x =-4.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( ) A .329557230x y x y +=⎧⎨+=⎩ B .239557230x y x y +=⎧⎨+=⎩ C .329575230x y x y +=⎧⎨+=⎩ D .239575230x y x y +=⎧⎨+=⎩5.12312342345345145125x x x a x x x a x x x a x x x ax x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>6.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②7.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)8.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( ) A .4种B .5种C .6种D .7种9.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .210.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-8二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件. 13.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____. 14.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道. 15.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.16.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.17.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.18.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.19.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)20.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A 有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B 有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C 有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A 、B 、C 三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.三、解答题21.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.22.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.23.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.24.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.25.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载) 车型甲 乙 丙 汽车运载量(吨/辆) 5 8 10 汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送) 26.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x a y b== ,用数表可表示为10)01ab (.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵21xy=⎧⎨=⎩是关于x、y的方程组27ax bybx ay+=⎧⎨+=⎩的解,∴2227a bb a=,=+⎧⎨+⎩解得14ab-⎧⎨⎩=,=∴(a+b)(a-b)=(-1+4)×(-1-4)=-15.故选B.【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.2.A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.C解析:C【分析】将x看做常数移项求出y即可得.【详解】由2x-y=3知2x-3=y,即y=2x-3,故选C.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .4.B解析:B 【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可. 详解:设每个排球x 元,每个实心球y 元, 则根据题意列二元一次方程组得:239557230x y x y +=⎧⎨+=⎩,故选B .点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组.5.C解析:C 【分析】本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.【详解】方程组中的方程按顺序两两分别相减得1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.∵12345a a a a a >>>>∴14x x >,25x x >,31x x >,42x x >, 于是有31425x x x x x >>>>. 故选C . 【点睛】本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.6.B解析:B 【分析】根据等式基本性质进行分析即可. 【详解】用x 表示y 为y=3x-5,故①不正确;用y 表示x 为53y x +=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确. 故选B. 【点睛】考核知识点:二元一次方程.7.D解析:D 【解析】 【分析】根据新定义运算法则列出方程 {ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则 {ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b , ∵a ,b 是任意实数,∴x+y=1,③ 由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④ 由③④解得,x=1,y=0, ∴(x,y)为(1,0); 故选D.8.A解析:A 【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解. 【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔, 根据题意得:2330x y ,且,x y 为正整数,变形为:3023xy,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x ,即2y =时,12x =是整数,符合题意; 当3029x,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意; 当30215x ,即5y =时,7.5x =不是整数,舍去; 当30218x ,即6y =时,6x =是整数,符合题意; 当30221x ,即7y =时, 4.5x =不是整数,舍去; 当30224x ,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去;故共有4种购买方案, 故选:A . 【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可.9.D解析:D 【解析】试题分析:把两个方程相加可得3x+3y=2+k ,两边同除以3可得x+y=23k+=2,解得k=4,因此k 的算术平方根为2. 故选D.10.A解析:A 【分析】将第二个方程代入第一个方程消去m 即可得. 【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题11.7件. 【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件. 【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答. 【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品. 则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)解析:62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.13.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得: ,①+②得:3m+n =4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①②, ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.14.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
2023-2024学年河南省青桐鸣大联考高一(下)月考数学试卷(5月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知i为虚数单位,复数z满足,则()A. B. C. D.2.已知的直观图如图所示,轴,轴,且,则在中,()A.3B.C.12D.63.已知复数,,为虚数单位,且,则()A.,B.,C.,D.,4.在平行四边形ABCD中,M为BC的中点,设,,则()A. B. C. D.5.设、是两个不重合的平面,则的一个充分条件为()A.平面内有无数个点到平面的距离相等B.平面内有无数条直线与平面平行C.两条异面直线同时与平面,都平行D.两条平行直线同时与平面,都平行6.在中,,,,点D为边AC上一点,且,则()A.3B.2C.D.7.如图,在正四棱台中,,则正四棱台的表面积为()A.28B.26C.24D.168.已知,,,均为非零向量,与的夹角为,与的夹角为,满足,,则,的夹角()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知i为虚数单位,复数,,则下列说法正确的是()A.B.的共轭复数为C.的虚部为D.在复平面内,复数对应的点位于第二象限10.已知正方体的棱长为2,点P为正方形内包括边一动点,则下列说法正确的是()A.对于任意点P,均有平面平面B.当点P在线段上时,平面与平面所成二面角的大小为C.当点P在线䝘上时,D.当点P为线段的中点时,三棱锥的体积为11.已知两个非零的平面向量与,定义新运算,,则下列说法正确的是()A.B.对于任意与不共线的非零向量,都有C.对于任意的非零实数t,都有D.若,,则三、填空题:本题共3小题,每小题5分,共15分。
12.若向量与单位向量的方向相同,则______.13.已知圆柱的底面半径为2,高为点O为线段不含端点上一动点.以该圆柱的上、下底面为底面,O为顶点挖去两个圆锥与,则剩下的几何体的体积与圆柱的体积之比为______. 14.如图,已知山体AB与山体CD的底部在同一水平面上,且两个山体的高线AB与CD均与水平面垂直,,在山体CD的最高点D处测得山顶B的仰角为,测得山底A的俯角为,则______四、解答题:本题共5小题,共77分。
2023-2024学年安徽省合肥市中国科大附中高新中学八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,72.正八边形和下列哪种正多边形可以镶嵌整个平面()A. B. C. D.3.关于x的方程有实数根,则m的值不可能是()A. B.0 C.1 D.24.如图,在菱形ABCD中,对角线AC与BD相交于点O,若,,则的周长为()A.24B.32C.30D.285.用配方法解方程,变形后的结果正确的是()A. B. C. D.6.某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系,每盆植入3株时,平均单株盈利10元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少1元,要使每盆的盈利为40元,需要每盆增加几株花苗?设每盆增加x株花苗,下面列出的方程中符合题意的是()A. B.C. D.7.如图,矩形ABCD的对角线AC,BD相交于点O,,,则边AB的长为()A.3B.4C.D.8.在如图所示的正方形网格中,每个小正方形的边长均为1,的三个顶点A,B,C都在格点上,已知D是边AC的中点,连接BD,则BD的长为()A.2B.C.3D.59.已知三个实数a,b,c满足,,则()A.,B.,C.,D.,10.如图,点P是矩形ABCD的对角线上一动点,过点P作AC的垂线,分别交边AD,BC于点E,F,连接CE,则下列结论不成立的是()A.四边形AFCE的面积是定值B.的值不变C.的值不变D.二、填空题:本题共5小题,每小题3分,共15分。
11.当有意义时,x的取值范围是______.12.关于x的一元二次方程的一个根为,则m的值为______.13.如果一个多边形的内角和是它外角和的3倍,那么这个多边形是______边形.14.如图1,在菱形ABCD中,对角线AC,BD相交于点E,动点P由点A出发,沿运动,设点P的运动路程为x,的面积为y,y与x的函数关系图象如图2,则AC的长为______.15.如图,在矩形ABCD中,O是对角线的交点,,,过C作于点E,EC的延长线与的平分线相交于点H,AH与BC交于点F,与BD交于点M,给出下列五个结论:①;②;③;④;⑤其中正确的结论有______填正确的序号三、解答题:本题共7小题,共55分。
2025届辽宁省大连市海湾高级中学高三5月份月考物理试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、原子核92238U 有天然放射性,能发生一系列衰变,可能的衰变过程如图所示。
下列说法中正确的是( )A .过程①的衰变方程为210210483812Bi Tl He →+B .过程①的衰变方程为210206483812Bi Tl H →+ C .过程②的衰变方程为210206484822Po Pb He →+ D .过程②的衰变方程为21021083841Bi Po e -→+2、原子核的比结合能与原子序数的关系图所示,大多数恒星内部温度非常高,可进行轻核聚变,核反应方程为A +B →C 。
但对于金、铂等重金属产生,目前科学界有一种理论认为,两颗中子星合成过程中会释放巨大的能量,在能量的作用下能够合成金、铂等重金属,其核反应为D +E →F ,下列说法正确的是( )A .重核F 裂变成D 和E 的过程中,会产生质量亏损B .较轻的核A 和B 聚合成C 的过程中核子平均质量变大 C .较重的核D 和E 聚合成F 的过程中,会释放较大能量D .A 和B 聚合成C 的过程中,C 的结合能小于A 和B 的结合能之和3、图像法具有自己独特的优势,它能把复杂的物理过程直观形象清楚地展现出来,同时也能够形象地描述两个物理量之间的关系,如图所示,若x 轴表示一个物理量,y 轴表示一个物理量,其中在实验数据处理时,会发现图像与两个坐标轴的交点(称为截距)具有特殊的物理意义。
对该交点的物理意义,下列说法不正确...的是( )A .在测电源电动势和电源内阻时,若x 轴表示流过电源的电流,y 轴表示闭合电路电源两端的电压,则该图像与x 轴的交点的物理意义是短路电流B .在利用自由落体法验证机械能守恒实验时,若x 轴表示重锤下落到某点时速度的平方,y 轴表示重锤落到该点的距离,则该图像与x 轴交点的物理意义是重锤下落时的初速度C .在用单摆测重力加速度的实验中,若x 轴表示摆线长度,y 轴表示单摆周期的平方,则该图像与x 轴交点绝对值的物理意义是该单摆摆球的半径D .在研究光电效应的实验中,若x 轴表示入射光的频率,y 轴表示光电子的最大初动能,则该图像与x 轴的交点物理意义是该金属的极限频率4、研究光电效应的实验规律的电路如图所示,加正向电压时,图中光电管的A 极接电源正极,K 极接电源负极时,加反向电压时,反之.当有光照射K 极时,下列说法正确的是A .K 极中有无光电子射出与入射光频率无关B .光电子的最大初动能与入射光频率有关C .只有光电管加正向电压时,才会有光电流D .光电管加正向电压越大,光电流强度一定越大5、如图所示,一理想变压器原、副线圈的匝数之比12:4:1n n =,副线圈接有一负载电阻和一个闪光灯,闪光灯两端的电压不小于55V 时,闪光灯就会发光。
高二质量检测联合调考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版选择性必修第二册第五章,选择性必修第三册,必修第一册第一、二章.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( ){}1A x x =>{}2230B x x x =-->A B ⋃=A.B. (1,3)()3,+∞C. D.()(),11,-∞-⋃+∞()(),13,-∞-⋃+∞【答案】C 【解析】【分析】先求出集合B ,然后再求两集合的并集即可.【详解】由,得,解得或, 2230x x -->(1)(3)0x x +->1x <-3x >所以或,{}{22301B x x x x x =-->=<-}3x >因为,{}1A x x =>所以, A B ⋃=()(),11,-∞-⋃+∞故选:C2. “”是“”的( )0b a >>()21a b a +>A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的定义判断即可.【详解】若,则,所以,故充分性成立;0b a >>1b a +>()21a b a +>若,不妨令,,此时,,满足, ()21a b a +>1a =12b =()312a b +=21a =()21a b a +>但是,故必要性不成立;a b >故“”是“”的充分不必要条件.0b a >>()21a b a +>故选:B3. 现有4道填空题,学生张三对其中3道题有思路,1道题思路不清晰.有思路的题做对的概率为,34思路不清晰的题做对的概率为,张三从这4道填空题中随机选择1题,则他做对该题的概率为( ) 14A.B.C.D.14345818【答案】C 【解析】【分析】根据全概率公式即可求得答案.【详解】设张三从这4道填空题中随机选择1题,该题有思路为事件, 1A 该题思路不清晰为事件,2A 张三从这4道填空题中随机选择1题,则他做对该题为事件B , 则,, 1231(),()44P A P A ==1231(|),(|)44P B A P B A ==由全概率公式可得,张三做对该题的概率为121122()()()()(|)()(|)P B P A B P A B P A P B A P A P B A ==+, 3311544448=⨯+⨯=故选:C4. 小明收集了五枚不同的铜钱,准备将其串成精美的挂件(如图),根据不同的排放顺序,不同的串法有( )A. 20种B. 25种C. 60种D. 120种【答案】D 【解析】【分析】利用排列数公式可求不同的串法总数.【详解】不同的串法总数即为5个不同铜钱的全排列,其大小为,55A 120=故选:D.5. 已知由样本数据组成的一个样本,得到回归直线方程为,且(),(1,2,3,,10)i i x y i = ˆ20.4yx =-,去除两个样本点和后,新得到的回归直线方程斜率为3,则样本的残差为2x =(3,1)-(3,1)-(4,8)( ) A. 0 B.C. 1D. 21-【答案】B 【解析】【分析】由回归方程求出,再求出新样本的平均数,,从而求出回归直线方程,再求出预测值,y x 'y 即可得到残差.【详解】将代入,, 2x =ˆ20.4yx =-220.4 3.6y =⨯-=去除两个样本点和后,所以,,, (3,1)-(3,1)-210582x ⨯'== 3.610982y ⨯'==95ˆ3322a=-⨯=-故去除样本点和后的回归直线方程为. (3,1)-(3,1)-ˆ33yx =-当时,,则样本的残差为. 4x =ˆ3439y=⨯-=(4,8)891-=-故选:B6. 已知函数在处取得极大值1,则的极小值为( ) ()24ax bf x x +=+=1x -()f x A. 0 B. C. D.12-14-18-【答案】C 【解析】【分析】由题意可得,求出,从而可求出和的解析式,再由的正负()()1011f f ⎧-=='⎪⎨⎪⎩,a b ()f x ()f x '()f x '求出函数的单调区间,从而可求出函数的极小值. 【详解】的定义域为,()f x R 由,得, ()24ax bf x x +=+()()222244ax bx a f x x --+'=+因为函数在x =-1处取得极大值1, ()24ax bf x x +=+所以,解得,()()()22410141114a b a f a b f -++⎧-='=⎪+⎪⎨-+⎪==⎪+⎩23a b =-⎧⎨=⎩所以,. ()2324x f x x -=+()()()()()2222221426844x x x x f x x x +---'==++令.解得或,令,解得, ()0f x ¢>>4x 1x <-()0f x '<14x -<<所以在和上单调递增,在上单调递减, ()f x (),1-∞-()4,+∞(1,4)-即在处取得极大值,在处取得极小值, ()f x =1x -4x =所以的极小值为. ()f x ()144f =-故选:C7. 流感病毒分为甲、乙、丙三型,甲型流感病毒最容易发生变异,流感大流行就是甲型流感病毒出现新亚型或旧亚型重现引起的.根据以往的临床记录,某种诊断甲型流感病毒的试验具有如下的效果:若以表示事件“试验反应为阳性”,以表示事件“被诊断者患有甲型流感”,则有,A C (|)0.9P A C =.现对自然人群进行普查,设被试验的人患有甲型流感的概率为0.005,即(|0.9P A C =()0.005P C =,则( ) (|)P C A =A.B.C.D.9208192181227108【答案】A 【解析】【分析】求出,,,,由条件概率公式和全概率公式可得答案. ()|P A C ()|P A C ()P C ()P C 【详解】因为,所以, ()|0.9P A C =()()|1|0.1P A C P A C =-=因为,所以, ()0.005P C =()0.995P C =所以,()()()()()()()()()||||P AC P A C P C P C A P A P A C P C P A C P C ⋅==⋅+⋅.0.90.00590.90.0050.10.995208⨯==⨯+⨯故选:A.8. 已知函数恒成立,则的最小值为( ) ()()2ln 310f x x ax bx =--+≤ba A.B.C. D. 1e1e-12e-13e-【答案】D 【解析】【分析】通过变形得到恒成立,构造函数和,将问题()ln 31x ax b x +≤+()()ln 31x g x x+=y ax b =+转化成直线恒不在图像的下方,用直线的横截距来表示,再结合图形即可得y ax b =+()g x bay ax b =+出结果.【详解】易知,因为恒成立,即恒成立, 0x >()()2ln 310f x x ax bx =--+≤()ln 31x ax b x+≤+令函数,则, ()()ln 31x g x x +=()()2ln 3x g x x-'=当时,,所以在区间上单调递增,10,3x ⎛⎫∈ ⎪⎝⎭()0g x '>()g x 1(0,3当时,,所以在区间上单调递减,且当时,,所以1,3x ⎛⎫∈+∞ ⎪⎝⎭()0g x '<()g x 1(,)3+∞13x >()0g x >的图像如图所示,()g x因为恒成立,故当时,直线恒不在图像的下方,很明显()ln 31x ax b x+≤+,()0x ∈+∞y ax b =+()g x 当时不符合题意, a<0当时,令,得,所以当取得最小值时,直线y =ax +b 在x 轴上的截距最大, 0a >0ax b +=b x a =-ba令,得,如下图,当与在点处相切时,()0g x =13e x =()b y a x a =+()g x1,03e ⎛⎫⎪⎝⎭()ln 31x ax b x+≤+成立,且此时直线y =ax +b 的横截距最大,故的最小值是. b a 13e-故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 在以下4幅散点图中,所对应的成对样本数据呈现出线性相关关系的是( )A. B.C. D.【答案】AB【解析】【分析】根据数据点的分布情况直观判断是否有线性相关关系即可.【详解】A、B中各点都有线性拟合趋势,其中A样本数据正相关,B样本数据负相关;C中各点有非线性拟合趋势,D中各点分布比较分散,它们不具有线性相关.故选:AB10. 若随机变量X服从两点分布,且,则()()14P X==A. B.()34E X=(23)3E X+=C. D.()316D X=()413216D X+=【答案】AC【解析】【分析】利用X服从两点分布,根据期望和方差的定义,可判断出AC的正误;再利用期望和方差的运算性质即可判断出BD的正误.【详解】因为随机变量X服从两点分布,且,故,()14P X==()314P X==所以,,故AC正确,()13301444E X=⨯+⨯=()221333301444416D X⎛⎫⎛⎫=⨯-+⨯-=⎪ ⎪⎝⎭⎝⎭又,,故BD错误.()()3923232342E X E X+=+=⨯+=()()32732991616D X D X+==⨯=故选:AC.11. 已知函数,非零实数,,,满足,()1e xf xx=-0x1x2x3x123x x x<<()()()123f x f x f x⋅⋅<,,则下列结论可能成立的是()()f x=A. B.123001x x x x<<<<<1230x x x x<<<<C. D.120301x x x x <<<<<10230x x x x <<<<【答案】ABD 【解析】【分析】利用函数的定义域、特殊点的函数以及导数、零点存在定理研究函数的大致图象,根据已知结合图象进行判断.【详解】因为f (x )的定义域为,, ()(),00,∞-+∞U ()21e 0xf x x '=+>所以f (x )在上单调递增,在上单调递增, (),0∞-()0,∞+当时,f (x )>0,且,f (1)=e -1>0, (),0x ∈-∞1202f ⎛⎫=-< ⎪⎝⎭所以存在,使得.故C 错误. 01,12x ⎛⎫∈⎪⎝⎭()00f x =f (x )的图象如图所示:因为,所以或 ()()()1230f x f x f x ⋅⋅<123001x x x x <<<<<12300x x x x <<<<或或.故ABD 正确. 12030x x x x <<<<10230x x x x <<<<故选:ABD.12. 已知定义在上的函数和的导函数分别为和,若,且R ()f x ()g x ()f x '()g x '1()2x f x g x +⎛⎫=+ ⎪⎝⎭()f x 为偶函数,为奇函数,则( ) (1)g x '+A. B. (1)1f '=142g ⎛⎫'=⎪⎝⎭C. D.322g ⎛⎫'=⎪⎝⎭(2)4g '=【答案】ACD 【解析】【分析】根据,故,利用的对称性结合赋值法可求1()2x f x g x +⎛⎫=+⎪⎝⎭11()122x f x g +⎛⎫''=+ ⎪⎝⎭()g x '及,故可判断A 的正误,又我们可以得到,赋值后可求(1)0g '=(1)1f '=()2(21)2g x f x ''=--,故可判断B 的正误,最后再结合的对称性可得的值,故可判断CD 的正误. 12g æö¢ç÷ç÷èø()g x '3((2)2g g ''【详解】因为为奇函数,所以 ①,(1)g x '+(1)(1)0g x g x ''-+++=的图象关于点对称,则.()g x '(1,0)(1)0g '=而,则,A 正确. 11()122x f x g +⎛⎫''=+ ⎪⎝⎭1(1)(1)112f g ''=+=因为为偶函数,所以,则,即,()f x ()()f x f x -=()()f x f x ''--=()()0f x f x ''+-=故的图象关于原点对称,.()f x '(0)0f '=因为,所以, 11()122x f x g +⎛⎫''=+ ⎪⎝⎭()2(21)2g x f x ''=--,B 错误.112212222g f ⎛⎫⎛⎫''=⨯--=- ⎪ ⎪⎝⎭⎝⎭因为的图象关于点对称,所以,C 正确.()g x '(1,0)31222g g ⎛⎫⎛⎫''=-= ⎪ ⎪⎝⎭⎝⎭又, []11()2(2)(2)4422g x g x f x f x ⎛⎫''''-++=+--=-⎪⎝⎭故的图象关于点对称,所以 ②. ()g x '1,22⎛⎫-⎪⎝⎭(1)()4g x g x ''++-=-由①②可得即, (1)(2)4g x g x ''+-+=-(1)()4g x g x ''+-=所以,D 正确. (2)4(1)4g g ''=+=故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.的最小值为______. +【答案】 3【解析】【分析】整理式子利用基本不等式求解即可.,10+>, 1113=++-≥=当且仅当a =1时,等号成立. 故答案为:314. 在一次高二数学联考中,某校数学成绩.已知,则从全校学()2~80,X N σ(6080)0.25P X ≤≤=生中任选一名学生,其数学成绩小于100分的概率为________.【答案】0.75## 34【解析】【分析】利用正态分布的对称性以及给定的概率可求解. 【详解】因为,()2~80,X N σ所以,, (6080)(80100)0.25P X P X ≤≤=≤≤=(80)0.5P X <=所以. (100)0.50.250.75P X <=+=故答案为:0.75.15. 已知曲线在点处的切线与曲线在点处的切线重合,则()y f x =(0,0)()f x y x=(2,1)(2)f '=________. 【答案】 2【解析】【分析】由点在曲线上得出,切线过点,,得出切线的斜率为,(2,1)()f x y x=(2)2f =(0,0)(2,1)12即,继而得出结果. 22(2)(2)1(2)22f fg '-'==【详解】因为点在曲线上, (2,1)()f x y x=所以,即. (2)12f =(2)2f =因为切线过点,, (0,0)(2,1)所以这条切线的斜率为. 12设,则,()()f x g x x=2()()()xf x f x g x x '-'=,解得. 22(2)(2)1(2)22f fg '-'==(2)2f '=故答案为:216. 中国救援力量在国际自然灾害中为拯救生命作出了重要贡献,很好地展示了国际形象,增进了国际友谊,多次为祖国赢得荣誉.现有6支救援队(含甲、乙)前往A ,B ,C 三个受灾点执行救援任务,若每支救援队只能去其中一个受灾点,且每个受灾点至少安排1支救援队,其中A 受灾点至少需要2支救援队,且甲、乙2支救援队不能去同一个受灾点,则不同的安排方法种数是______. 【答案】266 【解析】【分析】这是一道有限制的分配问题,先将6支救援队分成三组,再分到A ,B ,C 三个受灾点,利用排列、组合进行计算求解,再减去不满足的情况数.【详解】若将6支救援队分成1,1,4三组,再分到A ,B ,C 三个受灾点,共有种不同的安排方法, 1142654222C C C A 30A ⋅=其中甲、乙去同一个地方的有种,2242C A 12⋅=所以有N 1=30-12=18种不同的安排方法;若将6支救援队分成1,2,3三组,再分到A ,B ,C 三个受灾点,共有种不同的安排方法,1231265322C C C C A 240=其中甲、乙去同一个地方的有种, ()1111244322C +C C C A 64=所以有N 2=240一64=176种不同的安排方法;若将6支救援队分成2,2,2三组,再分到A ,B ,C 三个受灾点,共有种不同的安排方法, 1223642333C C C A 90A ⋅=其中甲、乙去同一个地方的有种, 22342322C C A 18A ⋅=所以有N 3=90-18=72种不同的安排方法. 故共有N =N 1+N 2+N 3=266种不同的安排方法. 故答案为:266.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知二项式展开式中只有第6项的二项式系数最大. ()na b +(1)求n ;(2)若a +b =4,求除以3的余数. ()7na b ++【答案】(1)10 (2)2【解析】【分析】(1)根据二项式定理中二项式系数的单调性与最值进行判断求解. (2)利用第(1)的结论以及二项式定理的展开式计算求解. 【小问1详解】由题意可得,展开式中有11项,所以n =10. 【小问2详解】由(1)得:n =10,又a +b =4,所以()()101019289101010101073173C 3C 3C 3C 7na b ++=++=+⨯+⨯++⨯++ .10192891010103C 3C 3C 38=+⨯+⨯++⨯+ 故所求的余数为2.18. 保护知识产权需要将科技成果转化为科技专利,这样就需要大量的专利代理人员从事专利书写工作,而物理方向的研究生更受专利代理公司青睐.通过培训物理方向的研究生,他们可以书写化学、生物、医学等方面的专利,而其他方向的研究生只能写本专业方面的专利.某大型专利代理公司为了更好、更多地招收研究生来书写专利,通过随机问卷调查的方式对物理方向的研究生进行了专利代理方向就业意向的调查,得到的数据如下表:喜欢专利代理方向就业不喜欢专利代理方向就业男研究生 60 40女研究生8020(1)用频率近似概率,估计从物理方向的研究生中任选人,求至少有人喜欢专利代理方向就业的概32率;(2)根据的独立性检验,能否认为物理方向的研究生专利代理方向就业意向与性别有关联? 0.005α=附临界值表及参考公式:α 0.10 0.05 0.01 0.005 0.001x α2.7063.8416.6357.87910.828,.()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++【答案】(1)98125(2)物理方向的研究生专利代理方向就业意向与性别有关联 【解析】【分析】(1)计算出物理方向的研究生中每人喜欢专利代理方向就业的概率,再结合独立事件和互斥事件的概率公式可求得所求事件的概率;(2)提出零假设为物理方向的研究生专利代理方向就业意向与性别没有关联,计算出的观测0:H 2χ值,结合临界值表可得出结论. 【小问1详解】解:由调查问卷知,名物理方向的研究生中有名喜欢专利代理方向就业, 200140所以估计物理方向的研究生喜欢专利代理方向就业的概率为. 710从物理方向的研究生中任选人,设喜欢专利代理方向就业的人数为,3X 则, ()2323737982C 101010125P X ⎛⎫⎛⎫≥=⨯⨯+=⎪ ⎪⎝⎭⎝⎭即估计从物理方向的研究生中任选人,至少有人喜欢专利代理方向就业的概率为. 3298125【小问2详解】解:零假设为物理方向的研究生专利代理方向就业意向与性别没有关联.0:H ,()22200408020602009.5247.8791406010010021χ⨯⨯-⨯==≈>⨯⨯⨯所以根据的独立性检验,可以推断不成立,0.005α=0H 所以物理方向的研究生专利代理方向就业意向与性别有关联,此推断犯错误的概率不大于.0.00519. 已知函数.()24x f x =(1)求曲线y =f (x )在点处的切线方程; (4,(4))f (2)若恒成立,求a 的取值范围. ()f x a ≥【答案】(1)7x -4y -20=0(2).3,4∞⎛⎤-- ⎥⎝⎦【解析】【分析】(1)利用导数的几何意义求出切线斜率即可得解;(2)利用导数求出函数的单调性得出最小值,即可求出的取值范围. a 【小问1详解】()2x f x '=- ,f (4)=2. ()744f '∴=则曲线y =f (x )在点处的切线方程为, (4,(4))f ()7244y x -=-即7x -4y -20=0. 【小问2详解】,()f x '=令函数,. ()1g x =()0g x '=≥所以g (x )在上单调递增.()0,∞+因为,所以当时,,即, (1)0g =1x >10>()0f x ¢>当时,,即,01x <<10<()0f x '<所以f (x )在上单调递减,在上单调递增,(0,1)()1,+∞则. ()()314f x f ≥=-因为恒成立,所以. ()f x a ≥34a ≤-故a 的取值范围为.3,4∞⎛⎤-- ⎥⎝⎦20. 某商家为了促销某商品,制作了一些卡片,卡片共有3种不同的颜色,顾客每次消费满额都随机赠送1张某种颜色的卡片,集齐3张相同颜色的卡片即可兑换该商品一件. (1)求某顾客消费满额4次后仍未集齐3张相同颜色的卡片的概率;(2)设某顾客消费满额次后刚好集齐3张相同颜色的卡片,求的分布列及期望. X X 【答案】(1)23(2)分布列见解析, 409()81E X =【解析】【分析】(1)用古典概型的方法求解;(2)按求分布列的步骤进行求解,进而可求期望. 【小问1详解】顾客消费满额4次后仍未集齐3张相同颜色的卡片包括两种情况: ①4张卡片中有两张同颜色,另外两张各一种颜色; ②4张卡片中有两张同颜色,另外两张也同另一种颜色,故所求概率为. 12122342344C C C C C 233+=【小问2详解】的取值可能为3,4,5,6,7.X ,,331(3)39P X ===1113234C C C 2(4)39P X ===, 1211213423425C C C C C C 8(5)327P X +===,. 112135426C C C C 20(6)381P X ===2216437C C C 10(7)381P X ===的分布列为XX 3 4 5 6 7P 19 29827 20811081.1282010409()345679927818181E X =⨯+⨯+⨯+⨯+⨯=21. 高尔顿板又称豆机、梅花机等,是英国生物统计学家高尔顿设计用来研究随机现象的模型.如图所示的高尔顿板为一块木板自上而下钉着6层圆柱形小木块,最顶层有2个小木块,以下各层小木块的个数依次递增,各层小木块互相平行但相互错开,小木块之间留有适当的空隙作为通道,前面挡有一块透明玻璃.让小球从高尔顿板上方的通道口落下,小球在下落过程中与层层小木块碰撞,且等可能向左或者向右滚下,最后落入高尔顿板下方从左至右编号为1,2,…,6的球槽内.(1)某商店将该高尔顿板改良成游戏机,针对某商品推出促销活动.凡是入店购买该商品一件,就可以获得一次游戏机会.若小球落入号球槽,该商品可立减元,其中.若该商品的成本价X Y 205Y X =-是10元,从期望的角度考虑,为保证该商品总体能盈利,求该商品的最低定价.(结果取整数) (2)将79个小球依次从高尔顿板上方的通道口落下,试问3号球槽中落入多少个小球的概率最大?附:设随机变量,则的分布列为,.~(,)B n p ξξ()C (1)k k n kn P k p p ξ-==-0,1,2,,k n =L .111C (1)()(1)1(1)C (1)(1)k k n k n k k n k n p p P k n p k P k p p k p ξξ----+-=+-==+=---【答案】(1)15元 (2)3号球槽中落入24或25个小球的概率最大.【解析】【分析】(1)确定的可能取值,利用独立事件乘方公式求对应概率,根据确定的可能X |205|Y X =-Y 取值,进而求对应概率,然后求的期望,即可得最低定价. Y (2)由题意知小球落入3号球槽的个数,利用不等式法求最大概率对应值即可. 5~79,16B ξ⎛⎫⎪⎝⎭ξ【小问1详解】的取值可能为1,2,3,4,5,6.X ,, 511(1)(6)232P X P X ⎛⎫===== ⎪⎝⎭415115(2)(5)C 2232P X P X ⎛⎫====⨯⨯= ⎪⎝⎭.2325115(3)(4)C 2216P X P X ⎛⎫⎛⎫====⨯⨯= ⎪ ⎪⎝⎭⎝⎭因为,所以的取值可能为0,5,10,15.|205|Y X =-Y,, 5(0)(4)16P Y P X ====15(5)(3)(5)32P Y P X P X ===+==,. 3(10)(2)(6)16P Y P X P X ===+==1(15)(1)32P Y P X ====的分布列为YY 0 5 10 15P 516 1532 316 132, 5153175()051015 4.71632163216E Y =⨯+⨯+⨯+⨯=≈则顾客玩一次游戏,立减金额的均值约为4.7元,又该商品成本价是10元, 所以该商品的最低定价约为15元. 【小问2详解】 由(1)得. 5(3)16P X ==进行79次试验,设小球落入3号球槽的个数为,则.ξ5~79,16B ξ⎛⎫ ⎪⎝⎭. 5(791)()251611115(1)11616kP k k k P k k ξξ+⨯-=-=+=+=-⎛⎫- ⎪⎝⎭当时,,即;25k <()1(1)P k P k ξξ=>=-()(1)P k P k ξξ=>=-当时,,即; 25k =()1(1)P k P k ξξ===-()(1)P k P k ξξ===-当时,,即. 25k >()1(1)P k P k ξξ=<=-()(1)P k P k ξξ=<=-所以当时,,此时这两项概率均为最大值. 25k =(25)(24)P P ξξ===故3号球槽中落入24或25个小球的概率最大.22. 已知函数.e 1()x f x x-=(1)求函数的单调区间;()f x (2)证明:当时,. 0x >()()ln 1f x x x >+【答案】(1)单调递增区间是和(,0)-∞(0,)+∞(2)证明见解析【解析】【分析】(1)确定函数定义域,求导得到导函数,构造新函数,求导得到单调区间,计算最值确定恒成立,得到答案.()0f x ¢>(2)构造函数,求导得到导函数,将导函数设为新函数,再次求导,将导函数设为2e 1()14x x h x x -=--新函数,再次求导,利用隐零点代换得到的单调区间,计算最值得到,再构造函数()h x 2e 114x xx ->+,同理得到,得到证明. ()ln(1)14x F x x =+--ln(1)14xx +<+【小问1详解】函数的定义域为,. ()f x (,0)(0,)-∞+∞ ()2(1)e 1x x f x x-+'=令函数,.()(1)e 1xg x x =-+()e xg x x '=当时,,在上单调递减; 0x <()0g x '<()g x (,0)-∞当时,,在上单调递增, 0x >()0g x '>()g x (0,)+∞所以,即恒成立, ()(0)0g x g ≥=()0f x ¢>故的单调递增区间是和. ()f x (,0)-∞(0,)+∞【小问2详解】当时,,即当时,. 0x >()ln(1)f x x x >+0x >2e 1ln(1)x x x ->+令,, 2e 1()14x xh x x -=--331(2)e 24()x x x h x x -+-'=令,, 31()(2)e 24xx x x μ=-+-23()(1)e 4x x x x μ'=--令,.23()(1)e 4x x x x ϕ=--3()e 2x x x ϕ⎛⎫'=- ⎪⎝⎭当时,,在上单调递减;30ln 2x <<()0x ϕ'<()ϕx 30,ln 2⎛⎫ ⎪⎝⎭当时,,在上单调递增,3ln2x >()0x ϕ'>()ϕx 3ln ,2⎛⎫+∞ ⎪⎝⎭又,, (0)10ϕ=-<2(2)e 30ϕ=->所以存在,使得.0(0,2)x ∈0()0x ϕ=当时,;当时,, 00x x <<()0x ϕ<0x x >()0x ϕ>所以在上单调递减,在上单调递增.()x μ0(0,)x 0(,)x +∞,故当时,;当时,,(0)(2)0μμ==02x <<()0x μ<2x >()0x μ>即当时,;当时,, 02x <<()0h x '<2x >()0h x '>故在上单调递减,在上单调递增.()h x (0,2)(2,)+∞于是,所以.22e 7 2.77()(2)044h x h --≥=>>2e 114x xx ->+令函数,.()ln(1)14xF x x =+--3()4(1)x F x x -'=+当时,;当时,, 03x <<()0F x '>3x >()0F x '<所以在上单调递增;在上单调递减, ()F x (0,3)(3,)+∞则. 7()(3)ln 44F x F ≤=-因为,所以,故,7342e e 4>>=>7ln 44>()(3)0F x F ≤<得. ln(1)14x x +<+综上所述:当时,.0x >()ln(1)f x x x >+【点睛】本题考查了利用导数求函数的单调区间,证明不等式,意在考查学生的计算能力,转化能力和综合应用能力,其中将不等式的证明转化为和是解题的关键,证明不等式2e 114x xx ->+ln(1)14x x +<+引入中间函数是一个重要技巧,需要熟练掌握.。
福清西山学校高中部2023—2024学年第二学期5月份月考高二语文试卷一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1-5题。
材料一:《边城》故事并不复杂。
但是摊开小说,读着读着,心内一种说不清道不明的情感在流淌。
一种如沈从文写到的淡淡的“美丽的忧愁”溢上心头。
正如沈从文自己对《边城》的解说:“一切充满了善,然而到处是不凑巧。
既然是不凑巧,因之素朴的善难免产生悲剧。
”他告知我们,《边城》故事没有剑拔弩张式的矛盾冲突,也没有黑白分明式的善恶判断,而只是“不凑巧”,发展中的事态充满了偶然性,实际上只是人性中善与“异化”初起时的两种力量在朦胧中碰撞,从而引发了悲剧的萌端。
在沈从文的笔下,湘西“一切充满了善”,生于斯、长于斯的男男女女皆为善的化身。
翠翠是青山秀水滋养出来的纯的生灵,“长得真标致,像个观音样子”,“从不想到残忍事情,从不发愁,从不动怒,从不动气”。
她是超越了善恶观念的女性生命的原生态之美。
二佬傩送善良、刚勇、健美,是湘西青年男子的佼佼者。
翠翠与二佬的爱,并没有什么惊心动魄、感天动地的事件。
小说中翠翠跟二佬的接触像是只有四次,第一次是偶遇。
两年前端午节划船、捉鸭竞赛,爷爷因喝酒忘了去接翠翠回家,二佬见天黑就派伙计送她回去,但翠翠却连二佬的模样都没看清。
第二次是登门。
二佬特地把爷爷的酒葫芦送回家中,翠翠把他当成“陌生人”,认不准是不是心中的“岳云”。
第三次是相约。
当年端午节,翠翠应二佬邀请到城里看赛事,却因听到“碾坊陪嫁”的事,赌气不理他,擦肩而过,失之交臂。
第四次是路过。
二佬沿河六百里寻找哥哥尸体而不得,后从川东押货回来路过渡口,“翠翠大吃一惊,同小兽物见到猎人一样,回头便向山竹林跑掉了。
”当然,还有一种接触,是心灵碰触。
二佬与天保赛歌,他晚上到碧溪崖上唱了半夜的歌。
小说第十四节写到翠翠第二天醒来,跟爷爷说:“我昨天就在梦里听到一种顶好听的歌声,又软又绵,我跟了这声音各处飞,飞到对溪悬崖半腰,摘了一大把虎耳草。
一、单选题1.已知复数,则的虚部为( ) 12z i =-z A .2 B . C . D .2i 2-2i -【答案】C【分析】根据复数的概念判断即可. 【详解】复数的虚部为. 12z i =-2-故选:C2.( ) cos 72cos12sin 72sin12︒︒+︒︒=A .B .C .D 12-12【答案】B【分析】逆用两角差的余弦公式求解即可.【详解】, ()1cos 72cos12sin 72sin12cos 7212cos 602︒︒+︒︒=︒-︒=︒=故选:B3.已知中,角,,所对的边分别是,,,若,且ABC A A B C a b c ()()3a b c b c a bc +++-=,那么是( ) sin 2sin cos A B C =ABC A A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形【答案】B【分析】将化简并结合余弦定理可得的值,再对结合()()3a b c b c a bc +++-=A sin 2sin cos A B C =正、余弦定理化简可得边长关系,进行判定三角形形状. 【详解】由,得, ()()3a b c b c a bc +++-=22()3b c a bc +-=整理得,则, 222b c a bc +-=2221cos 22b c a A bc +-==因为,所以,()0,πA ∈π3A =又由及正弦定理,得,化简得,sin 2sin cos A B C =22222a b c a b ab +-=⋅b c =所以为等边三角形, ABC A 故选:B4.设平面向量,,若与的夹角为钝角,则的取值范围是( )(2,1)a =- (,1)b λ=- a bλA .B .1,2(2,)2⎛⎫-⋃+∞ ⎪⎝⎭(2,)+∞C .D .1,2⎛⎫-+∞ ⎪⎝⎭1,(2,)2⎛⎫-∞-+∞ ⎪⎝⎭【答案】A【解析】由两向量的夹角为钝角,则需两向量的数量积小于零,且两向量不共线可求得的取值范λ围.【详解】解:∵与的夹角为钝角,a b∴,且,21(1)0a b λ⋅=-⋅+⨯-<(2)(1)0λ--⨯-≠,且,12λ∴>-2λ≠故选:A .【点睛】本题考查向量的夹角为钝角的条件:两向量的数量积小于零且两向量不共线,属于基础题.5.在中,内角A ,B ,C 所对应的边分别是a ,b ,c ,若,ABC A ABC A 则( ) A =A .B .C .D .π32π3π65π6【答案】A【分析】根据正余弦定理及面积公式化简计算即可.【详解】由余弦定理可得:()2222cos ,0,πb c a bc A A +-=∈由条件及正弦定理可得:,1sin cos 2S bc A A ===所以,则. tan A =π3A =故选:A6.已知,,则的值为( )sin 4πα⎛⎫-= ⎪⎝⎭02πα<<tan αA .B .C .2D .或212-1212-【答案】C【解析】由同角间的三角函数关系先求得,再得,然后由两角和的正切公式可cos()4πα-tan()4πα-求得. tan α【详解】∵,∴,∴ 02πα<<444πππα-<-<cos 4πα⎛⎫- ⎪⎝⎭∴, sin 14tan 43cos 4παπαπα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭∴.tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦1tan 11432111tan 34παπα⎛⎫-++ ⎪⎝⎭===⎛⎫--- ⎪⎝⎭故选:C .【点睛】思路点睛:本题考查三角函数的求值.考查同角间的三角函数关系,两角和的正切公式.三角函数求值时首先找到“已知角”和“未知角”之间的联系,选用恰当的公式进行化简求值.注意三角公式中“单角”与“复角”的区别与联系,它们是相对的.不同的场景充当的角色可能不一样.如题中在作为复角,但在中充当“单4πα-tan tan4tan 41tan tan 4παπαπα-⎛⎫-= ⎪⎝⎭+tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦角”角色.7.在中,已知分别为角的对边且 , 若 且 ABC A ,,a b c ,,A B C 120A ︒∠=ABC S △ ,则的周长等于( )2sin 3sin B C =ABC A A .B .12C .D .510+5【答案】D【分析】由三角形面积求得,再由正弦定理得,可解得,然后由余弦定理解得,可bc 23b c =,b c a 得三角形周长.【详解】由题意,, 1sin 2S bc A ===6bc =又,由正弦定理得,联立解得,2sin 3sin B C =23b c =3,2b c ==, a ==所以 5a b c ++=+故选:D .8.已知函数在上有且只有2个零点,则实数的取值范围()()1sin 0f x x x ωωω=+>()0,πω是( ) A .B .C .D .313,26⎛⎤⎥⎝⎦137,62⎛⎤ ⎥⎝⎦725,26⎛⎤ ⎥⎝⎦2511,62⎛⎤ ⎥⎝⎦【答案】A【分析】将问题转化为在上有且只有2个解,根据正弦型函数的性质求的1sin 2t =-(,)33ππωπ--ω范围.【详解】由,令, ()12sin()3f x x πω=+-()0f x =所以,而有,1sin()32x πω-=-()0,x π∈(,)333t x πππωωπ=-∈--所以在上有且只有2个解,故,故.1sin 2t =-(,)33ππωπ--711636πππωπ<-≤31326ω<≤故选:A二、多选题9.下列命题不正确的是( ) A .若=,则=B .若=0,则=或=a rb a ba b ⋅ a 0 b 0 C .若∥,∥,则∥ D .若=,=,则=a b b c a c a b b c a c 【答案】ABC【分析】两向量相等,方向相同,大小相等,据此可判断A ;两向量数量积为零,则其中一个向量为零向量或两向量垂直,据此可判断B ;零向量和任意向量共线,故如果不限制向量为非零向量,三个向量之间,向量共线不具有传递性,据此可判断C ;向量相等具有传递性,据此可判断D.【详解】A :若=,则与不一定相等,因为它们方向未知,故A 错误;a rb a bB :若=0,则=或=或,故B 错误;a b ⋅ a 0 b 0 a b ⊥C :若∥,∥,则当时,无法判断与的关系,故C 错误;a b b c 0b = a cD :若=,=,则=,故D 正确.a b b c a c故选:ABC.10.下列说法正确的是( )A .已知,,若,则1)2(a -=,,1()b x x - =()2//b a a - =1x -B .在中,若,则点是边的中点ABC A 1122AD AB AC =+D BC C .已知正方形的边长为,若点满足,则ABCD 1M 12DM MC = 43AM AC ⋅= D .若共线,则a b,a b a b +=+【答案】BC【分析】根据向量共线的坐标表示可判断选项A ;根据向量的线性运算可判断选项B ;根据向量数量积的运算可判断选项C ,举反例可判断选项D ,进而可得正确选项.【详解】对于A :,,可得,若则 1)2(a -=,,1()b x x - =()22,5b a x x -=+- ()2//b a a - ,即,所以,故选项A 不正确;()()()215x x x x +-=-62x =13x =对于B :取的中点,则,即点与点重合,所以点BC E ()111222AB AC AB AC AE AD +=+==D E 是边的中点,故选项B 正确;D BC 对于C :()()()13AM AC AD DM AD DC AD DC AD DC ⎛⎫⋅=+⋅+=+⋅+ ⎪⎝⎭,故选项C 正确;22141413333AD DC AD DC =++⋅=+= 对于D :当反向时不成立,故选项D 不正确,a b,故选:BC.11.复数,i 是虚数单位,则下列结论正确的是( ) 13i 22z =+A .z 的实部是 B .z 的共轭复数为1231i 22+C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限【答案】ACD【分析】根据复数的基本概念和共轭复数的概念,以及复数的几何意义,逐项判定,即可求解.【详解】由复数,可得复数的实部为,虚部为,所以A 正确;13i 22z =+1232又由共轭复数的概念,可得,所以B 错误;13i 22z =-由复数的实部与虚部之和为,所以C 正确; 13222+=由复数在复平面内对应的点位于第一象限,所以D 正确.13i 22z =+13(,)22故选:ACD.12.已知函数,则( )()πsin 2cos 6f x x x x ⎛⎫=+- ⎪⎝⎭A .的最大值为()f x 1B .直线是图象的一条对称轴π3x =()f x C .在区间上单调递减()f x ππ,63⎛⎫- ⎪⎝⎭D .的图象关于点对称()f x π,06⎛⎫⎪⎝⎭【答案】ABC【分析】利用两角和差公式、二倍角和辅助角公式可化简得到,根据余弦型函()πcos 23f x x ⎛⎫=+ ⎪⎝⎭数最值可知A 正确;利用代入检验法,结合余弦函数性质,依次验证BCD 正误即可.【详解】; ()ππ1πsin 2coscos 2sin 2cos 22cos 26623f x x x x x x x ⎛⎫=+==+ ⎪⎝⎭对于A ,,A 正确; ()max 1f x =对于B ,当时,,是的一条对称轴,B 正确; π3x =π2π3x +=π3x ∴=()f x 对于C ,当时,,此时单调递减,C 正确;ππ,63x ⎛⎫∈- ⎪⎝⎭()π20,π3x +∈()f x 对于D ,,不是的对称中心,D 错误. π2π1cos 632f ⎛⎫==- ⎪⎝⎭ π,06⎛⎫∴ ⎪⎝⎭()f x 故选:ABC.三、填空题13.若,则tan 2=___. sin 0,2παα⎛⎫=∈ ⎪⎝⎭α【答案】【分析】方法1:运用特殊角的三角函数值计算即可.方法2:运用同角三角函数的平方关系与商式关系及二倍角公式计算即可.【详解】方法1:∵,,π(0,2α∈sin α=∴,π3α=∴. 2πtan 2tan3α==方法2:∵,π(0,2α∈∴, 1cos 2α===∴ sin tan cos ααα==∴22tan tan 21tan ααα===-故答案为:.14.已知复数,若是实数,则的值为__________.()()()21z m i m m i m R =+-+∈z m 【答案】0或1【详解】,由题意得:,得或,故答案为或.()()()221z m i m m i m m i =+-+=-20m m -=0m =10115.已知,,,则______.2a = 1b =a + ab -=r r【分析】将,两边同时平方,即可求得两向量乘积,再将要求的关系式平方代入即可.a + 【详解】因为,,,2a = 1b =a + 所以,,()2222523+=+⋅+=+⋅=a ba ab b a b 1a b ⋅=-则-=a r.16.求函数在区间上的最大值______.2()sin cos f x x x x =,42ππ⎡⎤⎢⎥⎣⎦【答案】32【详解】试题分析:∵,∵21()sin cos (1cos 2)22f x x x x x x =⋅=-+1sin(2)26x π=+-,∴,∴,∴,故填,42x ππ⎡⎤∈⎢⎥⎣⎦52,636x πππ⎡⎤-∈⎢⎥⎣⎦1sin(2,162x π⎡⎤-∈⎢⎥⎣⎦3()1,2f x ⎡⎤∈⎢⎥⎣⎦32【解析】本题考查了三角恒等变换及三角函数的最值点评:熟练掌握三角恒等变换公式及三角函数的单调性是解决此类问题的关键.四、解答题17.已知复数,其中i 为虚数单位,.()()2223232i z m m m m =--+-+R m ∈(1)若z 是纯虚数,求m 的值;(2)z 在复平面内对应的点在第二象限,求m 的取值范围. 【答案】(1);12m =-(2)1,12m ⎛⎫∈- ⎪⎝⎭【分析】(1)z 是纯虚数需要满足实部等于0,虚部不等于0,即可求出结果;(2)z 在复平面内对应的点在第二象限,需要满足实部小于0,虚部大于0. 【详解】(1)因为z 是纯虚数,所以,222320320m m m m ⎧--=⎨-+≠⎩解得.12m =-(2)因为z 在复平面内对应的点在第二象限,所以,222320320m m m m ⎧--<⎨-+>⎩解得, 112m -<<所以m 的取值范围为.1,12m ⎛⎫∈- ⎪⎝⎭18.已知,.π(,π)2α∈π3sin()45α+=(1)求;cos α(2)若,且,求.π(0)2β∈,4cos 5β=αβ+【答案】(1)(2) 3π4【分析】(1)利用同角三角函数的平方关系及两角差的余弦公式即可求解;(2)根据(1)的结论及同角三角函数的平方关系,结合两角和的正弦公式及三角函数的特殊值对应特殊角注意角的范围即可求解. 【详解】(1)由,得. π(,π)2α∈3ππ5π444α<+<,π3sin()45α+=π4cos(45α∴+==-ππππππcos cos[(]cos()cos sin()sin 444444αααα∴=+-=+++. 4355=-=(2)由, π(,π)2α∈cos α=sin α==由,得,π(0,2β∈4cos 5β=3sin 5β==. 43sin()sin cos cos sin (55αβαβαβ∴+=+=+⨯=又ππ(,π),(0,)22αβ∈∈π3π(,22αβ∴+∈ 3π4αβ∴+=19.已知分别为中角的对边,函数且. ,,a b c ABC A ,,A B C 2()3cos 2cos f x x x x =++()5f A =(1)求角的大小;A (2)若,求面积的最大值. 2a =ABC A 【答案】(1) π3A =【分析】(1)直接依据题设条件建立方程求解;(2)借助余弦定理结合基本不等式可求解出的最大值,然后结合第(1)问中角,借助面积bc A 公式即可求解面积的最大值.ABC A【详解】(1)由题意可得:,所以()23cos 2cos 5f A A A A =++=()221cos A =-)0sinAsinA -=()0,π0A sinA ∈∴≠∴,即sin A A =tan A =,所以.()0,πA ∈π3A =(2)由余弦定理可得:, 22π42cos3b c bc =+-(当且仅当时“=”成立).224b c bc bc =+-≥2b c ==∴,1sin 42ABC S bc A ==≤=A故ABC A20.已知△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且. sin cos c B a B b =-(1)求A ;(2)若,且BC 边上的高为a . 14b c =【答案】(1) π3A =(2) 13a =【分析】(1)根据正弦定理边化角,将原式化简即可求得结果. (2)由面积公式可得,再由条件结合余弦定理即可求得结果.4bc a =【详解】(1)由正弦定理,原式可化为, sin sin sin cos sin C A B A B B =-由于, ()sin sin sin cos cos sin C A B A B A B =+=+整理得. cos sin sin sin A B A B B =-又∵,∴, sin 0B ≠cos 1A A =-∴,π1sin 62A ⎛⎫-= ⎪⎝⎭∵,∴,()0,πA ∈ππ5π,666A ⎛⎫-∈- ⎪⎝⎭∴,即.ππ66A -=π3A =(2)由题意可知,由,得,11πsin 223ABC S a bc =⨯⨯=△4bc a =又,∴,, 14b c =216c a =2b a =由余弦定理知, 2222cos 16413a b c bc A a a a a =+-=+-=解得.13a =21.如图,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求的值.cos θ【分析】在△CBA 中根据余弦定理得即可 BC =cos θ【详解】在△CBA 中,AB =40,AC =20,∠BAC =,由余弦定理得120︒222402024020cos1202800BC BC =+-⨯⨯⨯︒=⇒=, 40sin sin ACB ACB ACB =⇒∠=∠=∠1cos cos(30)2ACB θ∴=︒+∠==22.已知函数. ()5sin 22cos sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)求函数的单调递增区间;()f x (2)若函数在区间上有且仅有两个零点,求实数k 的取值范围. ()y f x k =-11,612ππ⎡⎤-⎢⎥⎣⎦【答案】(1) ,,Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦(2) ()11,0,12k ⎛⎫∈--⋃ ⎪⎝⎭【分析】(1)由三角恒等变换化简,再利用正弦函数的单调性即可得出答案.()f x (2)函数在区间上有且仅有两个零点转化为曲线与直线()y f x k =-11,612ππ⎡⎤-⎢⎥⎣⎦sin 26y x π⎛⎫=+ ⎪⎝⎭在区间上有且仅有两个交点,即可求实数k 的取值范围. y k =11,612ππ⎡⎤-⎢⎥⎣⎦【详解】(1)()5sin 22cos sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ sin 2cos cos 2sin 2cos sin 6644x x x x ππππ⎛⎫⎛⎫=-+++ ⎪ ⎪⎝⎭⎝⎭112cos 2sin 22cos 2cos 2222x x x x x x π⎛⎫=-++=-+ ⎪⎝⎭, 12cos 2sin 2+26x x x π⎛⎫=+= ⎪⎝⎭令,所以,222,Z 262k x k k πππππ-+≤+≤+∈,Z 36k x k k ππππ-+≤≤+∈所以函数的单调递增区间为: ()f x ,,Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦(2)函数在区间上有且仅有两个零点,即曲线与直线()y f x k =-11,612ππ⎡⎤-⎢⎥⎣⎦sin 26y x π⎛⎫=+ ⎪⎝⎭在区间上有且仅有两个交点,由,当y k =11,612ππ⎡⎤-⎢⎥⎣⎦11,,2,261266x x πππππ⎡⎤⎡⎤∈-+∈-⎢⎥⎢⎥⎣⎦⎣⎦时,,设,则,且11,612x ππ⎡⎤∈-⎢⎥⎣⎦()[]sin 2+1,16f x x π⎛⎫=∈- ⎪⎝⎭26t x π=+sin ,y t =,26t ππ⎡⎤∈-⎢⎥⎣⎦, 1sin 62π⎛⎫-=- ⎪⎝⎭若要使曲线与直线区间上有且仅有两个交点, sin y t =y k =,26t ππ⎡⎤∈-⎢⎥⎣⎦则. ()11,0,12k ⎛⎫∈--⋃ ⎪⎝⎭。
2023-2024学年八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.学校甲、乙两支国旗护卫队队员的平均身高均为1.7米,要想知道哪支国旗护卫队队员的身高更为整齐,通常需要比较他们身高的( )A. 平均数B. 中位数C. 众数D. 方差2.一次函数y=43x+2的图象经过点(a,2),则a的值为( )A. ―1B. 0C. 1D. 23.数据2,1,1,5,1,4,3的众数和中位数分别是( )A. 2,1B. 1,4C. 1,3D. 1,24.若a―b+c=0,a≠0,则方程ax2+bx+c=0必有一个根是( )A. 1B. 0C. ―1D. 不能确定5.关于x的一元二次方程(a―1)x2+3x―2=0有实数根,则a的取值范围是( )A. a>―18B. a≥―18C. a>―18且a≠1 D. a≥―18且a≠16.已知关于x的一次函数为y=mx+4m―2,下列说法中正确的个数为( )①若函数图象经过原点,则m=12;②若m=13,则函数图象经过第一、二、四象限;③函数图象与y轴交于点(0,―2);④无论m为何实数,函数的图象总经过(―4,―2).A. 1个B. 2个C. 3个D. 4个7.如图,在平面直角坐标系中,直线y=x―2与y=kx+b(k<0)相交于点M,点M的纵坐标为1,则关于x的不等式x―2≤kx+b的解集是( )A. x≤1B. x<3C. x≤3D. x<18.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A. x 2+130x ―1400=0B. x 2+65x ―350=0C. x 2―130x ―1400=0D. x 2―65x ―350=09.O 是等边△ABC 内的一点,OB =1,OA =2,∠AOB =150°,则OC 的长为( )A. 3B. 5C. 7D. 310.如图,直线y =2x ―6与x 轴、y 轴分别交于A ,B 两点,C 在y 轴的正半轴上,D 在直线AB 上,且CB =10,CD =OD.若点P 为线段AB 上的一个动点,且P 关于x 轴的对称点Q 总在△OCD 内(不包括边界),则点P 的横坐标m 的取值范围为( )A. 13<m <23B. 23<m <45C. 23<m <125D. 43<m <125二、填空题:本题共8小题,共30分。
2023-2024学年山东省烟台一中高一(下)月考数学试卷(5月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数z 满足是虚数单位,则z 的共轭复数()A.B.C.iD.2.为了估计某高中的在校学生人数,用比例分配的分层随机抽样方法抽取一个容量为45的样本,其中高一年级被抽取20人,高三年级被抽取10人.若高二年级有300人,则这所学校共约有高中学生()A.1350人B.675人C.900人D.450人3.如果你正在筹划一次聚会,想知道该准备多少瓶饮料,你最希望得到所有客人需要饮料数量的()A.四分位数 B.中位数C.众数D.均值4.从中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.5.有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名女生的概率是()A. B.C. D.6.中,A ,B ,C 的对边分别为a ,b ,若,且,则b 为()A.2B.C. D.7.平面过正方体的顶点A ,平面平面,平面平面,则直线l 与直线所成的角为()A.B. C.D.8.如图,在棱长为1的正方体中,点E 、F 是棱BC 、的中点,P 是底面ABCD 上含边界一动点,满足,则线段长度的取值范围是()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知l,m是两条不同的直线,,是两个不同的平面,则下列命题正确的是()A.若平面,垂直同一个平面,则B.若且,则C.若平面,不平行,则在平面内不存在平行于平面的直线D.若,且,则l与所成的角和m与所成的角相等10.一个盒子里装有2个白球、2个黑球,从中有放回地取两次球,每次取出1个.设事件第一次取出白球,事件第二次取出黑球,事件两次至少取出1个白球,事件两次至少取出1个黑球,事件两次取出的都是黑球,则下列关系正确的是()A.A与B相互独立B.A与C互斥C.C与D互斥D.C与E互为对立11.如图,把等腰沿着其斜边BC上的中线AD折叠,将与折成互相垂直的两个平面.下面四个结论中正确的是A.平面ACDB.为等边三角形C.平面平面ABCD.点D在平面ABC内的射影为的外接圆圆心三、填空题:本题共3小题,每小题5分,共15分。
5月联合质量测评试题高一数学考试用时120分钟,满分150分注意事项:1.答题前,考生先将自己的学校、班级、姓名、考号、座号填涂在相应位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 某学校高一年级学生中对数学非常喜欢、比较喜欢和一般喜欢的人数分别为600、300、100,为了了解数学兴趣对数学成绩的影响,现通过分层抽样的方法抽取容量为的样本进行调查,其中非常喜欢的n 有18人,则的值是( ) n A. 20 B. 30C. 40D. 50【答案】B 【解析】【分析】按分层抽样的定义,建立比例关系可得答案.【详解】非常喜欢、比较喜欢和一般喜欢的人数比为, 600:300:1006:3:1=按分层抽样方法,其中非常喜欢的有18人可得, 61810n ⨯=解得. 30n =故选:B.2. 已知分别为三个内角的对边,若,则满足此条件的三角形,,a b c ABC ,,A B C π,4,3A c a ===个数为( ) A. 0 B. 1C. 2D. 1或2【答案】B 【解析】【分析】根据条件,利用正弦定理求出,,从而得出结果. π4C =5π12B =【详解】因为,由正弦定理,所以π,4,3A c a ===sin sin a c A C =4sin C =, sin C =又因为,故,. 2π(0,3C ∈π4C =5π12B =故选:B.3. A ,B ,C 表示不同的点,n ,l 表示不同的直线,,表示不同的平面,下列说法正确的是( ) αβA. 若,,,则 l αβ= n α∥n β∥n l ∥B. 若A ,,A ,,则B l ∈B α∉l α∥C. 若A ,,A ,B ,,,则 B α∈C β∈l αβ= C l ∈D. 若,,,则αβ∥l ⊂αn β⊂l n ∥【答案】A 【解析】【分析】根据点、线、面的位置关系,对各选项逐一分析即可得答案.【详解】解:选项A ,因为,,,所以,故A 正确; l αβ= n α∥n β∥n l ∥选项B ,因为A ,,A ,,所以或l 与相交,故B 不正确;B l ∈B α∉l α∥α选项C ,A ,,A ,B ,,,此时点C 不一定在平面a 内,所以不正确,故B α∈C β∈l αβ= C l ∈C 不正确;选项D ,由,,,则l 与n 可能平行,也可能异面,故D 不正确.αβ∥l ⊂αn β⊂故选:A.4. 已知向量的夹角为,且,则( ),a b 56π||1,||a b == (2)()a b a b -⋅+=A. B.C.D. 1-127252-【答案】D 【解析】【分析】根据数量积公式和运算律计算即可.【详解】. ()()225522cos 21362a b a b a a b b π⎛-⋅+=+⋅-=+-=- ⎝ 故选:D.5. 在中,角的对边分别为,已知,则的外接圆面积为ABC ,,A B C ,,a bc π3,4a c B ===ABC ( ) A.B. C.D.5π210π5π47π2【答案】A 【解析】【分析】由余弦定理及正弦定理求得结果. 【详解】已知, π3,4a c B===由余弦定理可得,(22222π2cos 323cos54b ac ac B =+-=+-⨯=由正弦定理可得2sin b R B ===R =则的外接圆面积. ABC 25ππ2S R ==故选:A .6. 如图,在长方体中,,且为的中点,则直线与1111ABCD A B C D -11,2AB AD AA ===E 1DD 1BD 所成角的大小为( )AEA.B.C.D.π3π4π65π6【答案】C 【解析】【分析】取的中点,可得直线与所成角即为直线与所成的,在1CC F 1BD AE 1BD AF1D BF ∠1D BF中由余弦定理可得答案.【详解】取的中点,连接,所以, 1CC F 1D F BF 、//AE BF 直线与所成角即为直线与所成的,1BD AE 1BD AF1D BF ∠所以,,22211112D F D C FC =+=2222BF BC CF =+=,222221*********D B D C D A D D =++=++=在中由余弦定理可得, 1D BF2221111cos 2D B BF D F D BF D B BF +-∠===⨯因为,所以.1π0,2D BF ⎡⎤∠∈⎢⎥⎣⎦1π6D BF ∠=故选:C.7. 已知分别为三个内角的对边,且满足,,a b c ABC ,,A BC 2cos ,(cos )a b C b c a C C =+=+,则的形状为( ) ABC A. 等腰三角形 B. 直角三角形C. 等边三角形D. 等腰直角三角形【答案】C 【解析】【分析】分别利用正弦定理和余弦定理即可求解.【详解】因为,由正弦定理可得,(cos )b c a C C +=+,sin sin sin (cos )sin cos sin B C A C C A C A C +=+=因为,所以,πA B C ++=π()B A C =-+则有,sin()sin sin cos sin A C C A C A C ++=+即,sin cos cos sin sin sin cos sin A C A C C A C A C ++=所以,因为,所以,cos sin sin sin A C C A C +=(0,π)C ∈sin 0C≠,即,因为,cos 1A A -=π1sin()62A -=(0,π)A ∈所以或,则或(舍去).ππ66A -=π5π66A -=π3A =πA =又因为,由正弦定理可得, 2cos a b C =sin 2sin cos A B C =因为,所以,πA B C ++=π()A B C =-+则,化简整理可得,, sin()2sin cos B C B C +=sin()0B C -=所以,又因为,所以为等边三角形, B C =π3A =ABC 故选:C.8. 已知梯形,且为平面内一点,则,ABCD AB CD ∥22,1,,AB CD AD AB AD P ===⊥ABCD 的最小值是( )()PC PB PC ⋅+A. B. C. D. 214-12-32-【答案】A 【解析】【分析】建立平面直角坐标系,求出和的坐标,再利用向量数量积的坐标运算即可求出结PC PB PC +果.【详解】如图,建立平面直角坐标系,因为,则,,设,22,1AB CD AD ===(1,1)C (2,0)B (,)P x y 所以,,故,(1,1)PC x y =-- (2,)PB x y =-- (32,12)PB PC x y +=--所以2222531()(1)(32)(1)(12)225342[((]444PC PB PC x x y y x y x y x y ⋅+=--+--=+--+=-+--,又为平面内一点,故当时,取到最小值.P ABCD 53,44x y ==()PC PB PC ⋅+ 14-故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知复数,其中为虚数单位,则( ) 20231ii z +=i A. 的虚部是 z 1-B.1i z =--C. 若复数满足,则的最大值是0z 01z z -=0z 1+D. 若是关于的实系数方程的一个复数根,则 z x 220x x b ++=2b =【答案】BCD 【解析】【分析】化简得到,,的虚部是,A 错误,,B 正确,1i z =-+z =z 11i z =--C 正确,代入计算得到D 正确,得到答案.011z z ≤+=+【详解】,,202331i 1i 1i1i i i iz -+++====-+z =对选项A :的虚部是,错误; z 1对选项B :,正确;1i z =--对选项C :,故 001z z z z -=≥-011z z ≤+=对选项D :,即,故,正确; ()()21i 21i 0b -++-++=20b --=2b =故选:BCD.10. 已知向量,,,设的夹角为,则( )()2,3a b += ()4,1a b -=- ()2,1c = ,a bθA.B.|2|26b a +=ac ⊥C. D. b c∥cos θ=【答案】BD 【解析】【分析】根据向量的坐标运算得到,,计算,A 错误,,()1,2a =- ()3,1b = 2b a += 0a c ⋅=B正确,与不平行,C 错误,计算夹角得到D 正确,得到答案.b c【详解】设,,则, ()11,a x y = ()22,b x y = ()()1212,2,3a b x x y y +=++=,故,,()()1212,4,1a b x x y y -=--=-121224x x x x +=⎧⎨-=-⎩121231y y y y +=⎧⎨-=⎩解得,,故,,1213x x =-⎧⎨=⎩1221y y =⎧⎨=⎩()1,2a =- ()3,1b = 对选项A :,故,错误; ()21,5b a +=2b a += 对选项B :,故,正确;()()01,22,1a c =⋅=-⋅ a c ⊥对选项C :,故与不平行,错误;3112⨯≠⨯b c对选项D :,正确;cos a b a bθ⋅===⋅ 故选:BD.11. 在中,内角所对的边分别为,已知,ABC ,,A B C ,,a b c 221sin sin (sin sin )cos B C B C A +=++则( ) A. 23A π=B. 若是底边为为其内心,则ABC N ::NBC NAC NAB S S S =△△△C. 若,则的周长为157,15a bc ==ABC D. 若,则0,2OA OB OC a ++== OBC S ≤△【答案】ACD 【解析】【分析】分别利用正弦定理、余弦定理、三角形面积公式和基本不等式的相关知识进行求解即可. 【详解】由可得,221sin sin (sin sin )cos B C B C A +=++,则,2221sin sin sin sin cos B C B C A =+++222sin sin sin sin sin A B C B C =++由正弦定理可得,,由余弦定理可得,A 为三角形内角, 222a b c bc =++2221cos 22b c a A bc +-==-所以,故选项A 正确; 2π3A =若是底边为的等腰三角形,因为,则, ABC 2π3A =2BC ABAC ===设内切圆圆心为, ABC r 则,故选项B 错误; 111:::::1:1222NBC NAC NAB S S S BC r AC r AB r =⋅⋅⋅= 若,因为,由余弦定理可得, 7,15a bc ==2π3A =2222()a b c bc b c bc =++=+-所以,则的周长为15,故选项C 正确;8+=b c ABC 因为,所以为的重心,则,0OA OB OC ++= O ABC 13OBC ABC S S =△△因为,由余弦定理可得(当且仅当时去等号), 2π3A =2223a b c bc bc =++≥b c =则,所以,故选项D 正确, 43bc ≤111sin 332OBC ABC S S bc A ==⨯≤ 故选:ACD.12. 传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球(与圆柱的两底面及侧面都相切的球),阿基米德认为这个“圆柱容球”是他最为得意的发现,在他的著作《论圆和圆柱》中,证明了数学史上著名的圆柱容球定理:圆柱的内切球的体积与圆柱的体积之比等于它们的表面积之比.亦可证明该定理推广到圆锥容球也正确,即圆锥的内切球(与圆锥的底面及侧面都相切的球)的体积与圆锥体积之比等于它们的表面积之比.若已知该比值为的圆锥,其母线长为,底面半径为,轴截面如图所12l r 示,则( )A. 若,则1r =3l =B. C. 用过顶点的平面去截圆锥,则所得的截面图形可以为直角三角形AD. 若一只小蚂蚁从点出发,沿着圆锥的侧面爬行一周到达 B G 【答案】ABD 【解析】【分析】先证明圆锥容球定理,写出推导过程,推出其中几何尺寸之间的代数关系,再根据本题的几何特征逐项分析.【详解】如图,O 为内切球的球心,设圆锥的高为,内切球的半径为R , AD h =则,,()()2222222,,,CE r OD R l r h AO h R R l r ==-==-=+-()l r r h R-∴=又三角形ABC 的面积,, ()1122222S rh l r R =⨯=+()()(),l r R l r r l r R h r R r+-+∴=∴= ①即, 22R l rr l r-=+ ②设内切球的体积为,圆锥的体积为,内切球的表面积为,圆锥的表面积为,1V 2V 1S 2S 则有,将①代入上式得, 3312224π4π31ππ3R V R V r h r h ==()321122224π4ππππV S R R l r R V rl r S rr ===++由题意,,,将②代入上式得:, 21224π1ππ2V R V rl r ==+()28R r l r ∴=+()()28r l r l r -=+即,所以当时,,A 正确;22960,3l r lr l r +-==1r =3l =由②式得:,由式得:,B 正确; 2221,42R r R r r ===①h =sin h ACB l ∴∠==由于圆锥的对称性,过A 点的平面截圆锥所得的图形必定是等腰三角形,其顶角最大为, BAC ∠由于,,C错误; ()()()22222222233,2,AB AC r r BC r AB AC BC +=+=∴+>π2BAC ∠<对于D ,圆锥展开后的扇形如下图:在上图的扇形中,,由前面的计算知:,, 2π2π33r BAC r ∠==2AG r =3AB r =由余弦定理得:,D 正确; 22222cos 19,BG AB AG AB AG BAC r BG =+-∠=∴= 故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.其中16题第一空2分,第二空3分.13. 已知一组数据1,2,,4,5的平均数为3,则这组数据的方差为__________. m 【答案】2 【解析】【分析】先根据平均数计算出的值,再根据方差的计算公式计算出这组数的方差. m 【详解】依题意,所以方差为12453,35m m ++++==.()()()()()22222113233343535⎡⎤⨯-+-+-+-+-⎣⎦[]1411425=⨯+++=故答案为:.214. 已知外接圆的圆心为,且是与方向相同的单ABC O ||||,||||1,AB AC AB AC OA AB e +=-== BC位向量,则在上的投影向量为__________. BABC【答案】12e 【解析】【分析】根据题意结合数量积的运算律分析可得,进而可得,结合投影向量运AB AC ⊥60ABC ∠=︒算求解即可.【详解】因为,即,||||AB AC AB AC +=-()()22AB ACAB AC +=- 则,222222AB AB AC AC AB AB AC AC +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 整理得,即,则为圆的直径,0AB AC ⋅= AB AC ⊥BC O 又因为,则为等边三角形,即, 1OB OA AB ===u u u r u u r u u u rOAB 60ABC ∠=︒所以在上的投影向量为.BA BC()11cos 122BA ABC e e e ⎛⎫∠=⨯= ⎪⎝⎭u u rr r r 故答案为:. 12e15. 直三棱柱的底面的直观图如图所示,其中,且111ABC A B C -ABC A B C '''2,1A B A C ''''==13AA =,则直三棱柱外接球的表面积为__________.111ABC A B C -【答案】 17π【解析】【分析】根据条件得出底面是等腰直角三角形,将把直三棱柱补成长方体,再利用ABC 111ABC A B C -长方体体对角线长即长方体外接球的直径,从而求出结果.【详解】因为在底面的直观图中,,由斜二测法知,底面中,ABC A B C '''2,1A B A C ''''==ABC ,且,2AB AC ==90CAB ∠=︒如图,把直三棱柱补成长方体,则长方体的体对线长是直三棱柱外接球的111ABC A B C -111ABC A B C -直径,设外接球的半径为,又,,所以,R 13AA =2AB AC ==12AD R ===故直三棱柱外接球的表面积为111ABC A B C -24π17πS R ==故答案为:.17π16. 在中,为的中点,的平分线分别交于点,且,ABC D AC A ∠BC BD 、E O 、2,6AB AC ==,则__________;__________.60BAC ∠=︒AE =cos EOD ∠=【答案】 ①.②. ##【解析】【分析】利用余弦定理求出,并借助三角形面积公式及角平分线求出,再用余弦定理求出;BC BE AE 然后利用向量数量积求出夹角余弦作答. 【详解】在中,由余弦定理得ABCBC ===因为平分,则,有, AE BAC ∠1sin 301213sin 302ABEACEAB AE S BE AB CE S ACAC AE ⋅====⋅14BE BC ==在中,,即有, ABE ABC BAC BAE ∠>∠>∠AE BE >=由,即,解得; 2222cos30BE AB AE AB AE =+-⋅2744AE =+-=AE 显然,则,12BD AC AB =- 2221136426cos 60744BD AC AB AC AB =+-⋅=⨯+-⨯=即,又,||BD =111()(3)444AE AB BE AB BC AB AC AB AB AC =+=+=+-=+ 于是2211(3)(2)(6)88AE BD AB AC AC AB AB AC AB AC ⋅=+⋅-=-++⋅ , 19(643626cos 60)84=-⨯++⨯= 因此cos cos ,||||AE BD EOD AE BD AE BD ⋅∠=〈〉===所以,=AE cosEOD ∠=四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (1)已知复数.若为纯虚数,求的值; ()2256232i,R z m m m m m =-++--∈z m (2)已知复数,若满足,求的值.i(,R)z a b a b =+∈z i 153i z z z ⋅+=+,a b【答案】(1);(2)或 3m =33a b =⎧⎨=⎩32a b =⎧⎨=-⎩【解析】【分析】(1)是纯虚数,则复数实部为0虚部不为0,计算得到答案.z (2)设,代入计算得到,解得答案. i z a b =+22315a a b b =⎧⎨+-=⎩【详解】(1)因为是纯虚数,所以,解得.z 225602320m m m m ⎧-+=⎨--≠⎩3m =(2)设,所以,i z a b =+i z a b =-.22i (i)(i)i(i)i 153i z z z a b a b a b a b b a ⋅+=+-++=+-+=+所以,解得或. 22315a a b b =⎧⎨+-=⎩33a b =⎧⎨=⎩32a b =⎧⎨=-⎩18. 某高校为了对该校研究生的思想道德进行教育指导,对该校120名研究生进行考试,并将考试的分值(百分制)按照分成6组,制成如图所示的频率分布直方图.已[40,50),[50,60),[60,70),,[90,100] 知,分值在的人数为15.2b a c =+[]90,100(1)求图中的值;,,a b c (2)若思想道德分值的平均数、中位数均超过75分,则认为该校研究生思想道德良好,试判断该校研究生的思想道德是否良好.【答案】(1),,0.0275a =0.02b =0.0125c =(2)该学校研究生思想道德良好. 【解析】【分析】(1)根据频率确定,再根据频率和为1计算得到答案. 0.0125c =(2)分别根据公式计算平均数和中位数,比较得到答案.【小问1详解】分值在的人数为15人,所以的频率为,即. [90,100][90,100]15=0.1251200.0125c =,又,所以,2a c b +=(0.030.00750.0025)101a b c +++++⨯=0.06a c b ++=解得,. 0.02b =0.0275a =【小问2详解】 这组数据的平均数为:,450.025550.075650.2750.3850.275950.1257675⨯+⨯+⨯+⨯+⨯+⨯=>前组频率和为, 3()100.00250.00750.020.3⨯++=前组频率和为,4()100.00250.00750.020.030.6⨯+++=故这组数据的中位数满足,解得, m 0.50.3(70)0.03m -=-⨯76.775m =>所以该学校研究生思想道德良好.19. 如图,在四棱台中,底面是正方形,侧面底面是ABCD PQSH -ABCD PADH ⊥,ABCD PAD 正三角形,是底面的中心,是线段上的点.N ABCD M PD(1)当//平面时,求证:平面;MN PABQ AM ⊥PCD (2)求二面角的余弦值. P BC A --【答案】(1)证明见解析(2. 【解析】【分析】(1)连接,证得,由底面是正方形,所以,根据面面垂直的PB MN PB ∥ABCD CD AD ⊥性质,证得平面,得到,再由,利用线面垂直的判定定理,即可证CD ⊥PADH CD AM ⊥AM PD ⊥得平面;AM⊥PCD (2)取的中点分别为,连接,证得即为所求二面角的,AD BC ,G O ,,PG PO GO POG ∠P BC A --平面角,在直角中,结合,即可求解. PGO △cos GOPOG PO∠=【小问1详解】 证明:连接,PB 因为平面,平面,且平面平面, //MN PABQ MN ⊂PBD PBD PABQ PB =所以,MN PB ∥又因为在中,是的中点,所以是的中点,PBD △N BD M PD 因为底面是正方形,所以,又因为平面平面, ABCD CD AD ⊥PADH ⊥ABCD 平面平面平面,所以平面, PADH ⋂,ABCD AD CD =⊂ABCD CD ⊥PADH 因为平面,所以,所以是正三角形, AM ⊂PADH CD AM ⊥PAD 所以,因为,且平面,所以平面.AM PD ⊥PD CD D ⋂=,PD CD ⊂PCD AM ⊥PCD 【小问2详解】解:取的中点分别为,连接, ,AD BC ,G O ,,PG PO GO 所以是正三角形,所以,PAD PG AD ⊥因为平面平面,平面平面,平面, PAD ⊥ABCD PAD ⋂ABCD AD =PG ⊂PAD 所以平面,PG ⊥ABCD 因为平面,所以,BC ⊂ABCD PG BC ⊥又因为且平面,所以平面,BC GO ⊥,,PG GO G PG GO =⊂ PGO BC⊥PGO 因为平面,所以,则即为所求二面角的平面角, PO ⊂PGO BC PO ⊥POG ∠P BC A --设,则, AD a =,GO a PG ==在直角中,,所以, PGO △PO =cos GO POG PO ∠==即所求二面角. P BC A --20. 已知半圆圆心为,直径为半圆弧上靠近点的三等分点,以为邻边作平行四边O 4,AB C =A ,AO AC 形,且,如图所示,设AODC 2ED CE =,OC a AD b ==(1)若,求的值;OE a b λμ=+λμ+(2)在线段上是否存在一点,使得?若存在,确定点的位置,并求;若不存AC F DF OE ⊥F ||AF 在,请说明理由.【答案】(1)1 (2)存在,为线段靠近的四等分点,AC C 3||2AF = 【解析】【分析】(1)法一:以作为基底向量,利用平面向量的线性运算法则表示向量,结,OC a AD b == OE合平面向量基本定理列方程求得,即可得的值;法二:建立平面直角坐标系,利用向量的坐标,λμλμ+运算,列方程求解的值,即可得的值;,λμλμ+(2)法一:令,由得数量积为,根据向量的线性运算即可列方程求解即可得答AF t AC = DF OE ⊥0案;法二:根据数量积的坐标运算求解即可. 【小问1详解】法一:因为半圆弧上靠近点的三等分点,C A60AOC ∴∠=︒又因,则为正三角形且平行四边形为菱形AO CO =AOC AODC2ED CE = 为线段靠近的三等分点E ∴CD C因,令,OC a AD b ==AD OC K ⋂=∴1111151()3332266OE OC CE a CD a KD KC a b a a b ⎛⎫=+=+=+-=+-=+ ⎪⎝⎭ ,则51,66λμ==∴1λμ+=法二:如图,以为原点,以所在直线为轴建立平面直角坐标系O AB xxOy因为半圆弧上靠近点的三等分点,C A 且为正三角形、平行四边形为菱形60AOC ∴∠=︒,AOC COD AODC 则(2,0),(2,0),(A B C D --为线段靠近的三等分点2ED CE E =∴CD C ,故13E ⎛∴- ⎝13OE ⎛=- ⎝(a OC b AD ==-==OE a b λμ=+((13133λμλμ⎧-+=-⎪⎛∴-=-+∴ ⎝+=56116λλμμ⎧=⎪⎪∴∴+=⎨⎪=⎪⎩【小问2详解】法一:存在点,使得F DF OE ⊥令因平行四边形为菱形,所以AF t AC = AODC 0,||2,||a b a b ⋅===112()2222t t DF AF AD t AC b t KC KA b t a b b a b -⎛⎫=-=-=--=+-=+ ⎪⎝⎭2251252524120662212121212t t ta t t t DF OE a b a b b ---⎛⎫⎛⎫∴⋅=+⋅+=+=⨯+⨯= ⎪ ⎪⎝⎭⎝⎭ 34t ∴=则为线段靠近的四等分点3,4AF AC F =AC C 且33||||42AF AC == 法二:存在点,使得F DF OE ⊥令()AF t ACt t ===(3,()(DF DA AF t t ∴=+=-+=-33303t DF OE t -∴⋅=-+-=34t ∴=则为线段靠近的四等分点3,4AF AC F =AC C 且.33||||42AF AC == 21. 今年“五一”假期,“进淄赶烤”成为最火旅游路线,全国各地游客纷纷涌向淄博,感受疫情后第一个最具人间烟火气的假期.某地为了吸引各地游客,也开始动工兴建集就餐娱乐于一体的休闲区如图,在的长均为60米的区域内,拟修建娱乐区、就餐区、儿童乐园区,其中为了2π,,3BAC AB AC ∠=ABC 保证游客能及时就餐,设定就餐区域中.AEF △π3EAF ∠=(1)为了增加区域的美感,将在各区域分隔段与处加装灯带,若,则灯带AE AF π12CAF ∠=总长为多少米?AE AF +(2)就餐区域的面积最小值为多少平方米? AEF △【答案】(1)(2)平方米【解析】【分析】(1)根据题意,利用正弦定理即可求解;(2)利用正弦定理和三角形面积公式求出面积的表达式,然后利用正弦函数的图象和性质即可求解. 【小问1详解】因为为等腰角形,且顶角为,所以, ABC 2π3π6B C ==在中,由,则, AFC △ππ,126CAF C ∠==3π4CFA ∠=由正弦定理, πsin sin6AC AFCFA=∠12AF =中, AF ∴==ABE ππππ,31246BAE B ∠=-==则,由正弦定理可得, 7π12AEB ∠=πsin sin 6AB AEAE AEB=∴==-∠,所以灯带总长为.AE AF ∴+=AE AF +【小问2详解】设,则, CAF θ∠=π3BAE θ∠=-由正弦定理可, 3030,5πcos sin 6AF AE θθ==⎛⎫- ⎪⎝⎭1πsin 23AEF S AE AF ∴=⨯⨯=△=,πππ5π0,2,3666θθ⎛⎫⎛⎫∈∴+∈ ⎪ ⎪⎝⎭⎝⎭ ∴当即时,,ππ262θ+=π6θ=πsin 216θ⎛⎫+= ⎪⎝⎭面积最小为AEF S =△所以就餐区域面积最小值为平方米.22. 如图①,在梯形中,,,,将ABCD ,2,60AB CD AB A =∠=︒∥90ABD Ð=°45CBD ∠=︒沿边翻折至,使得,如图②,过点作一平面与垂直,分别交ABD △BD A BD ' A C '=B A C '于点.,A D A C '',E F(1)求证:平面; BE ⊥A CD '(2)求点到平面的距离. F A BD '【答案】(1)证明见解析(2【解析】【分析】(1)利用勾股定理得到,然后利用线面垂直的判定定理和性质得到,最后CD A D '⊥CD BE ⊥利用线面垂直的判定定理证明即可;(2)方法一:通过作垂线的方法得到垂线段的长度即为点到平面的距离,然后求距离即FG F A BD '可;方法二:利用等体积的方法求点到面的距离即可. 【小问1详解】 证明:如图①,,,,, 2AB = 60A ∠=︒90ABD ∠=︒45CBD ∠=︒,,4AD ∴=BD CD ==如图②,∵,,,4A D '=CD =A C '=,222A D CD A C ∴+='',CD A D '∴⊥,且,平面,CD BD ⊥ A D BD D '= ,A D BD '⊂A BD '平面,CD \^A BD '又平面,,BE ⊂ A BD 'CD BE ∴⊥平面,且平面,,A C '⊥ BEF BE ⊂BEF BE A C '∴⊥又,且平面,平面.A C CD C '⋂= ,A C CD '⊂A CD 'BE ∴⊥A CD '【小问2详解】方法一:过点作,垂足为,由(1)知平面, F FG A D '⊥G BE ⊥A CD '而平面,FG ⊂A CD ',BE FG ∴⊥且,平面,平面, A D BE E '⋂=,A D BE '⊂A CD 'FG ∴⊥A BD '则垂线段的长度即为点到平面的距离.FG F A BD '在中,,,A BC ' 2AB '=BC =A C '=,222A B CB A C ''∴+=,BC A B '∴⊥由已知得,则 BF A C '⊥A F '=由(1)知,,, CD A D '⊥A F FG A C CD '∴='FG ∴=即点到平面. F A BD '方法二:求点到平面的距离,即求点到平面的距离, F A BD 'F A BE '由(1)知平面,平面,, BE ⊥A CD 'A D '⊂A CD 'BE AD ∴⊥在直角三角形中,,,,A BD '2AB '=4A D '=BD =由等面积得,, 1122A B BD A D BE ''⨯⨯=⨯⨯即,, A B BD BE A D'⨯=='1A E '∴=平面,且平面,,A C '⊥ BEF EF ⊂BEF EF A C ∴⊥'由(1)知,∽,, CD A D '⊥A FE '∴△A DC ' A F A D A E A C ''∴=''A F '∴=则在直角三角形中, A FE 'EF =设点到平面的距离为, F A BE 'd 在三棱锥中,由等体积得,,F A BE '-F A BE B A EF V V ''--=即 1133A BE A EF d S BE S ''⨯⨯=⨯⨯ △, 11113232d BE A E BE EF A F ''∴⨯⨯⨯⨯=⨯⨯⨯⨯, d ∴=即点到平面. F A BD '。
人教版七年级第二学期5月份月考数学试卷含解析一、选择题1.已知方程组2x y x y a-=⎧⎨+=⎩,且5x y =,则a 等于( )A .5B .4C .3D .22.方程组2x y x y 3+=⎧+=⎨⎩的解为{x 2y ==,则被遮盖的两个数分别为( )A .2,1B .5,1C .2,3D .2,43.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm 和ycm ,则依题意列方程式组正确的是( )A .504x y y x +=⎧⎨=⎩B .504x y x y +=⎧⎨=⎩C .504x y y x -=⎧⎨=⎩D .504x y x y -=⎧⎨=⎩4.下列各组数是二元一次方程371x y y x +=⎧⎨-=⎩的解是( )A .12x y =⎧⎨=⎩B .01x y =⎧⎨=⎩C .70x y =⎧⎨=⎩D .12x y =⎧⎨=-⎩5.若45x y =-⎧⎨=-⎩是方程27x ky +=的解,则k 是( ).A .3B .5C .-3D .以上都不对6.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣27.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .12x y =⎧⎨=⎩B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩8.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319ad,则b c +的值为( )A .3-B .2-C .1-D .09.由方程组71x my m+⎧⎨-⎩==可得出x与y的关系式是()A.x+y=8 B.x+y=1 C.x+y=-1 D.x+y=-810.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为( )A.56156x yx y y x+=⎧⎨-=-⎩B.65156x yx y y x+=⎧⎨+=+⎩C.56145x yx y y x+=⎧⎨+=+⎩D.65145x yx y y x+=⎧⎨-=-⎩二、填空题11.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..12.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.13.已知a、b、c分别是一个三位数的百位、十位、个位上的数字,且a、b、c满足(|a ﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,则这个三位数的最大值为_____.14.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B、C产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______. 15.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a+b﹣m=_____.16.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒17.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.18.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.19.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)20.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题21.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值; 丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.22.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量 单位:元/吨15吨及以下a超过15吨但不超过25吨的部分 b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况. 24.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=-请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.25. 学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?26.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把x=5y 代入到方程组中,得到关于y 、a 的二元一次方程组,解方程组即可. 【详解】将5x y =代入方程组2x y x y a -=⎧⎨+=⎩,得525y y y y a -=⎧⎨+=⎩,解得123y a ⎧=⎪⎨⎪=⎩.故选C . 【点睛】此题考查了二元一次方程组,掌握加减消元法是解答此题的关键.2.B解析:B 【解析】把x=2代入x+y=3中,得:y=1, 把x=2,y=1代入得:2x+y=4+1=5, 故选B .3.B解析:B 【解析】分析:设小长方形的长为xcm ,宽为ycm ,根据图形可得:大长方形的宽=小长方形的长+小长方形的宽,小长方形的长=小长方形的宽×4,列出方程中即可. 详解:设小长方形的长为xcm ,宽为ycm , 则可列方程组:504x y x y +=⎧⎨=⎩.故选B.点睛:本题考查了由实际问题抽象出二元一次方程,解答本题关进是弄清题意,看懂图示,找出合适的等量关系,列出方程组,注意弄清小正方形的长与宽的关系.4.A解析:A 【解析】分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择. 详解:∵y ﹣x =1,∴y =1+x . 代入方程x +3y =7,得:x +3(1+x )=7,即4x =4,∴x =1,∴y =1+x =1+1=2.∴解为12x y =⎧⎨=⎩.故选A .点睛:本题要注意方程组的解的定义.5.C解析:C 【分析】根据题意,将45x y =-⎧⎨=-⎩代入方程27x ky +=,通过计算即可得到答案.【详解】∵45x y =-⎧⎨=-⎩是方程27x ky +=的解 ∴把45x y =-⎧⎨=-⎩代入方程27x ky +=,得:()()2457k ⨯-+-=∴3k =- 故选:C . 【点睛】本题考查了二元一次方程和一元一次方程的知识;求解的关键是熟练掌握二元一次方程和一元一次方程的性质,从而完成求解.6.C解析:C 【分析】方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值. 【详解】解:()21119x y kx k y +=⎧⎪⎨+-=⎪⎩①②,②-①得:()()2218k x k y -+-=,即()()218k x y -+=, 代入x+y=3得:k-2=6, 解得:k=8, 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7.D解析:D 【分析】 将方程组变形,设32,55x ym n ==,结合题意得出m=3,n=4,即可求出x ,y 的值. 【详解】解:方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可以变形为:方程组11122232··5532··55xy a b c x y a b c ⎧+=⎪⎪⎨⎪+=⎪⎩设32,55x ym n ==, 则方程组可变为111222····a m b n c a m b n c +=⎧⎨+=⎩,∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴方程组111222····a m b n c a m b n c +=⎧⎨+=⎩的解是34m n =⎧⎨=⎩,∴323,455x y ==,解得:x=5,y=10, 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.8.C解析:C 【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可. 【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1, 代入b+c=-1. 故选:C . 【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.9.A解析:A【分析】将第二个方程代入第一个方程消去m 即可得. 【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.C解析:C 【分析】根据题意,可以列出相应的方程组,从而可以解答本题. 【详解】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x+6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x+y =5y+x, 故选C. 【点睛】此题考查二元一次方程组应用,解题关键在于列出方程组二、填空题11.31800 【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800 【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值. 【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元). 设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯,∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=,100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元. 故答案为:31800. 【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.12.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于解析:【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可. 【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩,即25217251942a b c b c ++=⎧⎨+=⎩,其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a+60b+40c=150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b+c=42,得知b=1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a,b,c,均为正整数.13.536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1解析:536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,分三种情况讨论:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c ﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10,求出a、b、c的值,即可得出最大三位数.【详解】∵|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,∴(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)≥30.∵a、b、c是整数,(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.∴要使三位数最大,首先要保证a尽可能大.当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;∴a=5.当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.解得:0≤b≤3,1≤c≤6,∴由a、b、c组成的最大三位数为536.故答案为:536.【点睛】本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.14.34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意解析:34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B 型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.15.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.16.98【解析】【分析】设未知的三块面积分别为x ,y ,z (如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y 的值.【解析:98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y的值.【详解】设未知的三块面积分别为x,y,z(如图),则x+y+76=24+87+55+19+z,z+y+87=55+x+24+19+76,即x+y-z=109①,z+y-x=87②由①+②得,y=98.即图中阴影部分的面积是98﹒故答案为:98.【点睛】本题主要考查了矩形的性质,解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再通过加减消元,得到阴影部分的面积.17.3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.18.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.19.①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组,得,,,,当时,,,x ,y 的值互为相反数,结论正确;当时,,,方程两解析:①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组343x y ax y a +=-⎧-=⎨⎩,得{121x a y a =+=-, 31a -≤≤,53x ∴-≤≤,04y ≤≤,①当2a =-时,123x a =+=-,13y a =-=,x ,y 的值互为相反数,结论正确; ②当1a =时,23x y a +=+=,43a -=,方程4x y a +=-两边相等,结论正确; ③当1x ≤时,121a +≤,解得0a ≤,且31a -≤≤,30a ∴-≤≤,114a ∴≤-≤,14y ∴≤≤结论正确,故答案为①②③.【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x 、y 的表达式及x 、y 的取值范围.20.520【解析】试题分析:解决此题可以先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.设0有a 个,1有b 个,2有c 个, 由题意得, 解得, 故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a 个,1有b 个,2有c个,根据据题意列出方程组求解即可.设0有a 个,1有b 个,2有c 个, 由题意得, 解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.三、解答题21.(1)见解析;(2)a 和b 的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩ (4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.∵点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,, 1.5MC t ON t ∴==,4,6 1.5BM t NA t ∴=-=-,11()(4 1.5)4822MNOB S BM ON OB t t t ∴=+⋅=⨯-+⨯=+四边形, 11()(6 1.5)41222MNAC S MC NA OB t t t =+⋅=⨯+-⨯=-+四边形. 当812t t +>-+时,即2t >时,MNOB MNAC S S >四边形四边形;当812t t +=-+时,即2t =时,MNOB MNAC S S =四边形四边形;当812t t +<-+时,即2t <时,MNOB MNAC S S <四边形四边形.【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键.23.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.24.(1)0≤x≤1;(2)①x=1;②a=b=c ;③存在 063a b c =⎧⎪=⎨⎪=⎩使等式成立 . 【解析】【分析】(1)根据题意可得关于x 的不等式组,解不等式组即可求得答案;(2)①先求出{}21,21M x x x +=+,,继而根据题意可得{}min 2,1,21x x x +=+,由此可得关于x 的不等式组,求解即可得;②M{a ,b ,c}=3a b c ++,如果min{a ,b ,c}=c ,则a ≥c ,b ≥c ,即3a b c ++=c ,由此可推导得出a=b=c ,其他情况同理可证,故a=b=c ;③由②的结果可得关于a 、b 、c 的方程组,由此进行求解即可得.【详解】(1)由题意得2224-22x x +≥⎧⎨≥⎩, 解得0≤x≤1; (2)①{}21221,213x x M x x x ++++==+, {}{}21,2min 2,1,2M x x x x ,+=+所以{}min 2,1,21x x x +=+则有1212x x x +≤⎧⎨+≤⎩ 即11x x ≤⎧⎨≥⎩ 所以x=1②∵M{a ,b ,c}=3a b c ++, 如果min{a ,b ,c}=c ,则a ≥c ,b ≥c , 则有3a b c ++=c , 即a+b-2c=0,∴(a-c)+(b-c)=0,又a-c ≥0,b-c ≥0,∴a-c=0且b-c=0,∴a=b=c , 其他情况同理可证,故a=b=c ;③存在,理由如下:由题意得:()()273212741a b a b a b c ⎧-+=++⎪⎨-+=+⎪⎩ⅠⅡ, 由(Ⅰ)得 a+3b=6,即23a b =-, 因为a ,b ,c 是非负整数 ,所以a=0,3,6 ,b=2,1,0,即06a b =⎧⎨=⎩,代入(Ⅱ)得c=3, 或31a b =⎧⎨=⎩,代入(Ⅱ)得c=114,不符合题意,舍去, 或60a b =⎧⎨=⎩ ,代入(Ⅱ)得c=92,不符合题意,舍去, 综上所述: 存在063a b c =⎧⎪=⎨⎪=⎩使等式成立.【点睛】本题考查了一元一次不等式组的应用,方程组的应用,读懂题意,正确进行分析得出相应的不等式组或方程组是解题的关键.25.(1)A 种魔方的单价为20元/个,B 种魔方的单价为15元/个;(2)购进A 种魔方45个时,两种活动费用相同.【解析】【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0<m ≤50),则购进B 种魔方(100-m )个,根据图片描述列出两种活动方案需花费的总价格,使得两种价格相等求得m .【详解】解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意,得2613034x y x y +=⎧⎨=⎩解此方程组,得2015x y =⎧⎨=⎩答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个,则购进B 种魔方(100-m)个,根据题意,得0.8×20m +0.4×15(100-m)=20m +15(100-m -m),解此方程,得m =45.答:购进A 种魔方45个时,两种活动费用相同.【点睛】本题考查了二元一次方程组的应用、解题的关键是找准等量关系,列出关于x 、y 的二元一次方程组.26.(1)每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车.(2) ①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【分析】(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;(2)设调熟练工m 人,招聘新工人n 名,根据一年的安装任务列出方程整理用m 表示出n ,然后根据人数m 是整数讨论求解即可.【详解】(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车, 根据题意得:282314x y x y +=⎧⎨+=⎩, 解之得42x y =⎧⎨=⎩. 答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车; (2)设抽调熟练工m 人,招聘新工人n 名,由题意得:12(4m+2n )=240,整理得,n=10-2m ,∵0<n <10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【点睛】本题考查了二元一次方程的应用,解二元一次方程组,(1)理清题目数量关系列出方程组是解题的关键,(2)用一个未知数表示出另一个未知数,是解题的关键,难点在于考虑人数是整数.。
一、选择题1.如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:①若∠A=70°,则∠ABE=35°;②若点F是CD的中点,则S△ABE13=S菱形ABCD下列判断正确的是()A.①,②都对B.①,②都错C.①对,②错D.①错,②对2.如图所示,E为正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于点F,那么∠AFC的度数为()A.112.5°B.125°C.135°D.150°3.如图,菱形ABCD的边长为4,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为 ( )A.23B.4C.232+D.423+4.如图,在正方形ABCD中,点G是对角线AC上一点,且CG=CB,连接BG,取BG上任意一点H,分别作HM⊥AC于点M,HN⊥BC于点N,若正方形的边长为2,则HM+HN的值为()A2B.1 C3D.2 25.如图,点E是矩形ABCD的边AB的中点,点F是边CD上一点,连接ED,EF,ED平分∠AEF ,过点D 作DG ⊥EF 于点M ,交BC 于点G ,连接GE ,GF ,若FG ∥DE ,则AB AD 的值是( )A .32B .22C .2D .36.如图,平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,且AB AE =,延长AB 与DE 的延长线交于点F ,连接AC ,CF .下列结论:①ABC EAD ∆∆≌;②ABE ∆是等边三角形;③AD BF =;④BEF ACD S S ∆∆=;⑤CEF ABE S S ∆∆=中正确的有( )A .1个B .2个C .3个D .4个7.如图,菱形ABCD 中,60BAD ∠=︒,AC 与BD 交于O ,E 为CD 延长线上的一点,且CD DE =,连结BE 分别交AC ,AD 于点F ,G ,连结OG 则下列结论:①12OG AB =;②与EGD ∆全等的三角形共有5个;③ABF S S ∆>四边形ODGF ;④由点A ,B ,D ,E 构成的四边形是菱形.其中正确的是( )A .①④B .①③④C .①②③D .②③④8.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④9.如图,平行四边形ABCD 中,AB=18,BC =12,∠DAB =60°,E 在AB 上,且AE :EB =1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则下列结论正确的个数是( )(1)CE 平分∠BCD ;(2)AF=CE ;(3)连接DE 、DF ,则ADF CDE SS ∆=;(4)DP :DQ=23:13 A .4个 B .3个 C .2个 D .1个10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②△APD 一定是等腰三角形;③AP ⊥EF ;④22PD=EF .其中正确结论的番号是( )A .①③④B .①②③C .①③D .①②④二、填空题11.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.12.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.13.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).14.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)15.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.16.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.17.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.18.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.19.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =32S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG .其中正确的是_____.(把所有正确结论的序号都选上)三、解答题21.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.22.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 的面积为3cm 2; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.23.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.24.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.25.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).26.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE =.27.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD 的平分线,则线段AB ,AD ,DC 之间的等量关系为 ;(2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.28.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.29.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG =BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB =AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.30.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】只要证明BF BC =,可得ABF BFC C 70∠∠∠===,即可得出ABE 35∠=;延长EF 交BC 的延长线于M ,只要证明DEF ≌CMF ,推出EF FM =,可得EMB BCDE S S =四边形,BEF MBE 1S S 2=,推出ABE ABCD 1S S 3菱形=.【详解】①∵四边形ABCD是菱形,∴AB∥CD,∠C=∠A=70°.∵BA=BF=BC,∴∠BFC=∠C=70°,∴∠ABF=∠BFC=70°,∴∠ABE12=∠ABF=35°,故①正确;②如图,延长EF交BC的延长线于M,∵四边形ABCD是菱形,F是CD中点,∴DF=CF,∠D=∠FCM,∠EFD=∠MFC,∴△DEF≌△CMF,∴EF=FM,∴S四边形BCDE=S△EMB,S△BEF12=S△MBE,∴S△BEF12=S四边形BCDE,∴S△ABE13=S菱形ABCD.故②正确,故选A.【点睛】本题考查了菱形的性质、等腰三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.A解析:A【解析】【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=12×45°=22.5°,在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.故答案为:A.【点睛】本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.3.C解析:C【分析】如下图,△BEP 的周长=BE+BP+EP ,其中BE 是定值,只需要BP+PE 为最小值即可,过点E 作AC 的对称点F ,连接FB ,则FB 就是BP+PE 的最小值.【详解】如下图,过点E 作AC 的对称点F ,连接FB ,FE ,过点B 作FE 的垂线,交FE 的延长线于点G∵菱形ABCD 的边长为4,点E 是BC 的中点∴BE=2∵∠DAB=60°,∴∠FCE=60°∵点F 是点E 关于AC 的对称点∴根据菱形的对称性可知,点F 在DC 的中点上则CF=CE=2∴△CFE 是等边三角形,∴∠FEC=60°,EF=2∴∠BEG=60°∴在Rt △BEG 中,EG=1,3∴FG=1+2=3∴在Rt △BFG 中,()2233+3根据分析可知,BF=PB+PE∴△PBE 的周长32故选:C【点睛】本题考查菱形的性质和利用对称性求最值问题,解题关键是利用对称性,将BP+PE 的长转化为FB 的长. 4.A解析:A【分析】连接CH ,过G 点作GP ⊥BC 于点P ,根据BHC GHC BCG S S S ∆∆∆+=将HM HN +转化为GP 的长,再由等腰直角三角形的性质进行求解即可得解.【详解】连接CH ,过G 点作GP ⊥BC 于点P ,如下图所示:由题可知:12HBC S BC HN ∆=⨯,12HGC S GC HM ∆=⨯,12BGC S BC GP ∆=⨯ ∵BHC GHC BCG S S S ∆∆∆+= ∴111222BC HN GC HM BC GP ⨯+⨯=⨯ ∵CG =CB ,∴HN HM GP += ∵四边形ABCD 是正方形,正方形的边长为2∴45BCA ∠=︒,22AC =∴22CB CG AC === ∵GP ⊥BC∴GPC ∆是等腰直角三角形 ∴22GP ==∴2HN HM +=,故选:A.【点睛】 本题主要考查了三角形的面积求法,正方形的性质,等腰直角三角形的性质等,熟练掌握相关知识点是解决本题的关键.5.C解析:C【分析】由题意得△AED ≌△MED 、△BEG ≌△MEG 、△MGF ≌△CGF ,设CG=x ,用含x 的式子表示AD =2x ,AB 22x =,即可得出AB 22x 2AD ==【详解】∵ED 平分∠AEF∴∠AED=∠DEM在矩形ABCD 中,∠A=∠B=∠BCD=90°∵DG ⊥EF∴∠DME=∠EMG=∠GMF=90°∴∠A=∠DME=90°∵DE=DE∴△AED ≌△MED∴ME=AE∵点E 是矩形ABCD 的边AB 的中点∴AE=BE∴ME=BE∵∠EMC=∠B=90°, EG=EG∴Rt △BEG ≌Rt △MEG∵AD ∥BC∴∠ADG=∠CGD∵ED ∥GF∴∠EDM=∠FGM∴∠ADE=∠CGF∴∠CGF=∠FGM∴△MGF ≌△CGF∴MG=CG=BG设CG=x∴BC=2x∴AD=DM=2x∴DG=3x根据勾股定理可得CD =∴AB =∴AB AD 2x==故选:C【点睛】本题考查了矩形的性质和全等三角形的判定和性质、勾股定理,掌握和全等三角形的判定和性质、勾股定理是解题的关键.6.C解析:C【分析】由平行四边形的性质得出AD ∥BC ,AD=BC ,由AE 平分∠BAD ,可得∠BAE=∠DAE ,可得∠BAE=∠BEA ,得AB=BE ,由AB=AE ,得到△ABE 是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS 证明△ABC ≌△EAD ,①正确;由△FCD 与△ABD 等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF ,⑤正确.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴△ABE 是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE ,BC=AD ,在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS );①正确;∵△FCD 与△ABC 等底(AB=CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;⑤正确;若AD 与AF 相等,即∠AFD=∠ADF=∠DEC ,即EC=CD=BE ,即BC=2CD ,题中未限定这一条件,∴③④不一定正确;故选C .【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.7.A解析:A【分析】连结AE ,可说明四边形ABDE 是平行四边形,即G 是BE 的中点;由有题意的可得O 是BD 的中点,即可判定①;运用菱形和平行四边形的性质寻找判定全等三角形的条件,找出与其全等的三角形即可判定②;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S 四边形0DGF =S △ABF .即可判定③;先说明△ABD 是等边三角形,则BD=AB,即可判定④.【详解】解:如图:连结AE .DE CD AB ==,//CD AB ,∴四边形ABDE 是平行四边形,G ∴是BE 的中点,∵O 是BD 的中点1122OG DE AB ∴==,①正确; 有BGA ∆,BGD ∆,AOD ∆,COD ∆,COB ∆,AOB ∆,共6个,②错误; ∵OB=OD ,AG=DG ,∴OG 是△ABD 的中位线,∴OG//AB,OG=12AB , ∴△GOD∽△ABD,△ABF∽△OGF,∵△GOD 的面积=14△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF:OF=2:1, ∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△A0G 的面积=△B0G 的面积,.∴=ABF S S ∆四边形ODGF ;不正确;③错误;60AB AD BAD =⎧⎨∠=︒⎩ABD ∴∆是等边三角形.BD AB ∴=,ABDE ∴是菱形,④正确.故答案为A.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;考查知识点较多、难道较大,解题的关键在于对所学知识的灵活应用.8.A解析:A【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【详解】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵AD CDADM CDM DM DM⎧⎪∠∠⎨⎪⎩===,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵90CBF CDEBC CDBCF DCE∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF ≌△CDE , ∴CF=CE , ∵FM=EM , ∴CM ⊥EF , 故③正确;④过M 作MN ⊥AD 于N , 设MN=x ,则AM=AF=2x ,3AN x =,DN=MN=x , ∴331)x x x +=,∴DE=BF=AB-AF=31)231)x x x -=,∴22(31)26BF MD x x x +==,∵BC=AD= 31)6x x ≠, 故④错误; 所以本题正确的有①②③;故选:A .【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM 是等边三角形是解题的关键.9.B解析:B【分析】由平行四边形ABCD 中,AB=18,BC =12,AE :EB =1:2,得EB= BC ,结合AB ∥CD ,即可判断(1);过点F 作FM ⊥AB 交AB 的延长线于点M ,在Rt ∆AMF 中,利用勾股定理求出AF=13∆BCE 中,求出CE 的值,即可判断(2);由12A DF BCD A S S =,12A DE BCD C S S =,即可判断(3);由1122AF DP CE DQ ⋅=⋅,即可判断(4). 【详解】 ∵平行四边形ABCD 中,AB=18,BC =12,AE :EB =1:2,∴EB= BC =12,∴∠BEC=∠BCE ,∵AB ∥CD ,∴∠BEC=∠DCE ,∴∠BCE=∠DCE ,∴CE 平分∠BCD ,∴(1)正确;过点F 作FM ⊥AB 交AB 的延长线于点M ,∵AD∥BC,∴∠CBM=∠DAB =60°,∠BFM=30°,∵F 是BC 的中点,∴BF=12BC=6, ∴BM=12BF=3,FM=3BM=33, ∴AM=18+3=21,∴AF=222221(33)613AM FM +=+=,∵EB= BC =12,∠ABC=180°-60°=120°,∴CE=3×BC=123,∴AF ≠CE ,∴(2)错误;∵在平行四边形ABCD 中,12A DF BCD A SS =,12A DE BCD C S S =, ∴ADF CDE S S ∆=,∴(3)正确; ∵DP ⊥AF ,DQ ⊥CE ,ADF CDE SS ∆= ∴1122AF DP CE DQ ⋅=⋅, ∴DP :DQ=CE :AF=23:13,∴(4)正确.故答案是:B .【点睛】本题主要考查平行四边形的性质,含30°角的直角三角形的性质以及勾股定理,添加辅助线构造直角三角形,是解题的关键.10.C解析:C【分析】过P 作PG ⊥AB 于点G ,根据正方形对角线的性质及题中的已知条件,证明△AGP ≌△FPE 后即可证明①AP=EF ;在此基础上,根据正方形的对角线平分对角的性质,在Rt △DPF 中,DP2=DF2+PF2=EC2+EC2=2EC2,求得22DP EC=,即可得到答案.【详解】证明:过P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB-GB,FP=GF-GP=AB-GB,∴AG=PF,∴△AGP≌△FPE,∴AP=EF;故①正确;延长AP到EF上于一点H,∴∠PAG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;故③正确;∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故②错误.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴22DP EC=,故④错误.∴正确的选项是①③;故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.二、填空题11.8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC .∵根据题意,四边形ABED 为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO ,在△CAO 和△GBO 中,CA GBCAO GBOAO BO=⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=627=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴CG=()()2222=6262=12CO GO ++, ∵CG=CB+BG , ∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.12.37【分析】如图,延长CB 到T ,使得BT=DE ,连接DT ,作点B 关于直线AC 的对称点W ,连接TW ,DW ,过点W 作WK ⊥BC 交BC 的延长线于K .证明BE=DT ,BD=DW ,把问题转化为求DT+DW 的最小值.【详解】 解:如图,延长CB 到T ,使得BT=DE ,连接DT ,作点B 关于直线AC 的对称点W ,连接TW ,DW ,过点W 作WK ⊥BC 交BC 的延长线于K .∵△ABC ,△DEF 都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE ∥TC ,∵DE=BT=1,∴四边形DEBT 是平行四边形,∴BE=DT ,∴BD+BE=BD+AD ,∵B ,W 关于直线AC 对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW ,∴∠WCK=60°,∵WK ⊥CK ,∴∠K=90°,∠CWK=30°,∴CK=12CW=32,3332, ∴TK=1+3+32=112,∴TW=2222113322TK WK⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭=37,∴DB+BE=DB+DT=DW+DT≥TW,∴BD+BE≥37,∴BD+BE的最小值为37,故答案为37.【点睛】本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.13.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=12EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DMF 中,A FDM AF DF AFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF(ASA),∴EF=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴CF=12EM=EF , ∴∠FEC=∠ECF , ∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC ,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB ∥CD ,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°, ∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF ≌△DMF 是解题关键.14.①②④【分析】①根据平行四边形的性质和等腰三角形的性质即可判断;②延长EF ,交CD 延长线于点M ,首先根据平行四边形的性质证明AEFDFM ≅△△,得出,FE MF AEF M =∠=∠,进而得出90ECD AEC ∠=∠=︒,从而利用直角三角形斜边中线的性质即可判断;③由FE MF =,得出EFC CFM SS =,从而可判断正误; ④设FEC x ∠= ,利用三角形内角和定理分别表示出∠DFE 和∠AEF ,从而判断正误.【详解】①∵点F 是AD 的中点,∴AF FD = .∵在平行四边形ABCD 中,AD =2AB , //,AD BC AF FD CD ∴==,,DFC FCB DFC DCF ∴∠=∠∠=∠ ,FCB DCF ∴∠=∠,∴∠BCD =2∠DCF ,故①正确;②延长EF ,交CD 延长线于点M ,∵四边形ABCD 是平行四边形,//AB CD ∴,A MDF ∴∠=∠,∵点F 是AD 的中点,∴AF FD = .在AEF 和DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩()AEF DFM ASA ∴≅△△,FE MF AEF M ∴=∠=∠.CE AB ⊥ ,90AEC ∴∠=︒,90ECD AEC ∴∠=∠=︒,12CF EM EF ∴==,故②正确; ③∵FE MF =,∴EFC CFM S S = .CFM CDF MDF S S S =+△△△CDF EFC S S ∴<△△,故③错误;④设FEC x ∠= ,则FCE x ∠=,90DCF DFC x ∴∠=∠=︒- ,1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒- .90AEF x ∠=︒- ,3DFE AEF ∴∠=∠,故④正确;综上所述,正确的有①②④,故答案为 :①②④.【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,三角形内角和定理,掌握这些性质和定理是解题的关键.15.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA ,∠ABF=∠BFC ,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD 中,AB ∥CD ,BC=AD=5,∴∠BAE=∠DEA ,∠ABF=∠BFC ,∵BAD ∠的平分线交CD 于点E ,∴∠BAE=∠DAE ,∴∠DAE=∠DEA ,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.16.2【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×22=2 故答案为2.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.17.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.18.4【分析】证明CF ∥DB ,CF=DB ,可得四边形CDBF 是平行四边形,作EM ⊥DB 于点M ,解直角三角形即可.【详解】解:∵CF ∥AB ,∴∠ECF=∠EBD .∵E 是BC 中点,∴CE=BE .∵∠CEF=∠BED ,∴△CEF ≌△BED (ASA ).∴CF=BD .∴四边形CDBF 是平行四边形.作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,22BC =∴BE=122BC =,DF=2DE , 在Rt △EMB 中,EM 2+BM 2=BE 2且EM=BM∴EM=1,在Rt △EMD 中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,19.1382+【分析】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=2,进一步可得2221382=+=+,再延长NS交ML于点Z,利用全等三角形性质与判定证FN FR NR明四边形FHMN为正方形,最后进一步求解即可.【详解】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,∵ABCD为正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD面积为1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四边形DEFG为菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE∥DG,CT∥SN,DG⊥CT,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴2FQ=FE+EQ=22+∵∠NKT=∠KQR=∠FRN=90°,∴四边形NKQR是矩形,∴,∴FR=FQ+QR=2+,NR=KQ=DK−11=,∴22213FN FR NR=+=+再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),∴FN=MN,∠NFR=∠MNZ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四边形FHMN为正方形,∴正方形FHMN的面积=213FN=+故答案为:13+【点睛】本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.20.①②④.【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到43DE AFDF AB==,而623ABAG==,所以AB DEAG DF≠,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF=8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴ABDF=AFDE,∴DEDF=AFAB=86=43,而ABAG=63=2,∴ABAG≠DEDF,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=12×6×3=9,S△GHF=12×3×4=6,∴S△ABG=32S△FGH,所以②正确.故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.三、解答题21.(1)见解析;(2)24;(3)5AI .【分析】(1)证∠BDA=∠CEA=90°,∠CAE=∠ABD,由AAS证明△ABD≌△CAE即可;(2)连接CE,交AF于O,由菱形的性质得∠COA=∠ADB=90°,同(1)得△ABD≌△CAO(AAS),得OC=AD=3,OA=BD=4,由三角形面积公式求出S△AOC=6,即可得出答案;(3)过E作EM⊥HI的延长线于M,过点G作GN⊥HI于N,同(1)得△ACH≌△EAM(AAS ),△ABH ≌△GAN (AAS ),得EM =AH =GN ,证△EMI ≌△GNI (AAS ),得EI =GI ,证∠EAG =90°,由勾股定理求出EG =10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =12OA •OC =12×4×3=6, ∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示: ∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE =∠BAG =90°,AC =AE =8,AB =AG =6,同(1)得:△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),∴EM =AH =GN ,在△EMI 和△GNI 中,EIM GIH EMI GNI EM GN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点,∵∠CAE =∠BAG =∠BAC =90°,∴∠EAG =90°,在Rt △EAG 中, EG =22AE AG +=2286+=10,∵I 是EG 的中点,∴AI =12EG =12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.22.(1)见解析;(2)t =2;(3)t =1. 【分析】(1)由菱形的性质可得AB =CD ,AB ∥CD ,可求CF =AE ,可得结论;(2)由菱形的性质可求AD =2cm ,∠ADN =60°,由直角三角形的性质可求AN 3=3cm ,由三角形的面积公式可求解;(3)由菱形的性质可得EF ⊥GH ,可证四边形DFEM 是矩形,可得DF =ME ,由直角三角形的性质可求AM =1,即可求解.【详解】证明:(1)∵动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动, ∴DF =BE ,∵四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,∴CF =AE ,∴四边形AECF 是平行四边形,∴AF ∥CE ;。
一、选择题1.七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD中,BD为对角线,E、F分别为BC、CD的中点,AP⊥EF分别交BD、EF于O、P两点,M、N分别为BO、DO的中点,连接MP、NF,沿图中实线剪开即可得到一副七巧板.若AB=1,则四边形BMPE的面积是()A.17B.18C.19D.1102.□ABCD中,∠A=60°,点E、F分别在边AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,则EF的长度为()A.21B.25C.26D.53.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.22B.5C.352D.104.将个边长都为1cm的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )A .B .C .D .5.如图所示,正方形ABCD 中,E 为BC 边上一点,连接AE ,作AE 的垂直平分线交AB 于G ,交CD 于F ,若2DF =,4BG =,则AE 的长为( )A .47B .310C .10D .126.如图,将一个矩形纸片ABCD 折叠,使点B 与点D 重合,若3,9,AB BC ==则折痕EF 的长度为( )A .3B .23C .10D .3107.已知四边形ABCD 中,对角线BD 被AC 平分,那么再加上下述中的条件( ) 可以得到结论: “四边形ABCD 是平行四边形”. A .AB =CDB .∠BAD=∠BCDC .∠ABC=∠ADCD .AC= BD8.已知,在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 均在x 轴正半轴上,若已知正方形1111D C B A 的边长为1,1160B C O ︒∠=,且112233////B C B C B C ,则点3A 的坐标是( )A .331(3++B .33332+C .33132++D .333(3++ 9.如图,点,,A BE 在同一条直线上,正方形ABCD 、正方形BEFC 的边长分别为23,、H 为线段DF 的中点,则BH 的长为( )A.21B.26C.33D.2910.如图,正方形ABCD的边长为2,Q为CD边上(异于C,D)的一个动点,AQ交BD 于点M.过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下面结论:①AM=MN;②MP=2;③△CNQ的周长为3;④BD+2BP=2BM,其中一定成立的是()A.①②③④B.①②③C.①②④D.①④二、填空题11.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是直线AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连结AM、MN,若AC=6,AB=5,则AM-MN的最大值为________.12.如图,菱形ABCD的BC边在x轴上,顶点C坐标为(3,0),顶点D坐标为(0,4),点E在y轴上,线段//EF x轴,且点F坐标为(8,6),若菱形ABCD沿x轴左右运动,连接AE、DF,则运动过程中,四边形ADFE周长的最小值是_______.13.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDGFDGS S =,正确的有__________________.14.如图,正方形ABCD 中,DAC ∠的平分线交DC 于点E ,若P ,Q 分别是AD 和AE 上的动点,则DQ+PQ 能取得最小值4时,此正方形的边长为______________.15.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.16.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.17.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).18.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,19.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由; (2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______. 23.综合与实践. 问题情境:如图①,在纸片ABCD □中,5AD =,15ABCDS=,过点A 作AE BC ⊥,垂足为点E ,沿AE 剪下ABE △,将它平移至DCE '的位置,拼成四边形AEE D '. 独立思考:(1)试探究四边形AEE D '的形状.深入探究:(2)如图②,在(1)中的四边形纸片AEE D '中,在EE '.上取一点F ,使4EF =,剪下AEF ,将它平移至DE F ''的位置,拼成四边形AFF D ',试探究四边形AFF D '的形状;拓展延伸:(3)在(2)的条件下,求出四边形AFF D '的两条对角线长;(4)若四边形ABCD 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.24.如图,ABC 是等腰直角三角形,90,ACB ∠=︒分别以,AB AC 为直角边向外作等腰直角ABD △和等腰直角,ACE G 为BD 的中点,连接,,CG BE ,CD BE 与CD 交于点F .(1)证明:四边形ACGD 是平行四边形;(2)线段BE 和线段CD 有什么数量关系,请说明理由; (3)已知2,BC =求EF 的长度(结果用含根号的式子表示).25.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.26.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积; (2)若CG CB =,求证:2BG FH CE +=. 27.在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数是否发生改变?探究问题:(1)首先考察点的两个特殊位置:①当点与点重合时,如图1所示,____________②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.28.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE. (1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.29.在直角梯形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm 。
高一年段五月月考数学科试题(考试时间:120分钟;满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知向量,若,则()()()2,4,6,a b m ==-()a a b⊥+ m =A. B.C. 0D. 32-1-【答案】A 【解析】【分析】求出,利用向量垂直列出方程,求出答案.()4,4a b m +=-+【详解】因为,由,得,所()()()2,4,6,,4,4a b m a b m ==-+=-+()a ab ⊥+ ()8440m -+⨯+=以. 2m =-故选:A .2. 已知函数是定义在上的单调减函数:若,则的取值范围是( ) ()f x [)0,∞+()1213f a f ⎛⎫-> ⎪⎝⎭a A. B. C. D.2,3⎛⎫-∞ ⎪⎝⎭12,23⎛⎫⎪⎝⎭2,3⎛⎫+∞⎪⎝⎭12[,23【答案】D 【解析】【分析】根据函数的单调性即可解不等式. 【详解】由已知,解得, 10213a ≤-<1223a ≤<故选:D3. 已知复数是关于的方程的一个根,则 ( )2i -x ()20,x px q p q R ++=∈pi q +=A. 25B. 5C.D. 41【答案】C 【解析】【分析】将代入原方程,然后根据复数相等求解出的值,则可求.2i -,p q pi q +【详解】因为复数是关于的方程的一个根, 2i -x 20x px q ++=所以,所以, ()()2220i p i q -+-+=423pi q i p +=+-所以,所以, 4,23p q p ==-4,5p q ==则,45pi q i +=+=故选:C .4. 设有两条不同的直线和两个不同的平面,则下列命题正确的是( ) m n 、αβ、A. 若,则,m n αα∥∥m n ∥B. 若,则 ,,,m n m n ααββ⊂⊂∥∥αβ∥C. 若,则 ,m n m α⊂∥n α∥D. 若,则 ,m αβα⊂∥//m β【答案】D 【解析】【分析】根据线面平行的性质与判定逐个选项分析即可.【详解】若,则可以平行、相交或异面,故A 错误; ,m n αα∥∥,m n 若与相交,则,故B 错误; ,,,,m n m n m ααββ⊂⊂∥∥n αβ∥若,则或,故C 错误; ,m n m α⊂∥n α∥n ⊂α若,则,故D 正确. ,m αβα⊂∥//m β故选:D.5. 如图是底面半径为的圆锥,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点滚动,当这个圆3S 锥在平面内转回原位置时,圆锥本身恰好滚动了周,则该圆锥的表面积为( )3A. B.C.D.36π27π9π【答案】A 【解析】【分析】设圆锥的母线长为,题意可知,再利用圆锥的表面积公式进行计算. l 2π33πl l =⨯【详解】设圆锥的母线长为,以为圆心,母线为半径的圆的面积为, l S l 2πS l =又圆锥的侧面积,π3πS rl l ==圆锥侧因为圆锥在平面内转到原位置时,圆锥本身滚动了周,所以,解得,32π33πl l =⨯9l =所以圆锥的表面积,23π9π336πS S S =+=⨯⨯+⨯=圆锥侧底故选:A . 6. 函数的图象大致是( ) ()21sin 1e xf x x ⎛⎫=-⎪+⎝⎭A.B.C.D.【答案】A 【解析】【分析】根据奇偶性和的符号,使用排除法可得. ()2f 【详解】的定义域为R ,()f x 因为 ()e 12122e e 1sin()1sin sin 11e e x x xx x f x x x x -⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪++++⎭⎝-⎝⎝⎭⎭,所以为偶函数,故CD 错误;1sin 1sin ()e e 2211x x x x f x ⎛⎫⎛⎫=--=-= ⎪ ⎪++⎝⎭⎝⎭()f x 又因为,,所以,故B 错误. ()2221sin 21e f ⎛⎫=- ⎪+⎝⎭2210,sin 201e -<>+()20f <故选:A7. 正方体的棱长为2,点分别是棱中点,则过点三点1111ABCD A B C D -,,P Q R 1111,,A D C D BC ,,P Q R 的截面面积是( )A.B.C. D. 【答案】D 【解析】【分析】作图作出过点三点的截面,说明截面为正六边形,求得边长皆可求得截面面积. ,,P Q R 【详解】如图,设AB 的中点为H ,连接HR 并延长,交DA 延长线于E ,交DC 延长线于F ,连接PE 交于G ,连接QF 交 于I ,连接GH,RI ,则六边形PQIRHG 为过点三点的截面,1A A 1C C ,,P Q R由题意可知, ,则 ,AHE BHR A A ≌1AE BR ==故,可知 ,即G 为的中点, 1AGE AGP A A ≌1AG A G =1A A 同理可证I 为的中点,故可知六边形PQIRHG 为正六边形, 1C C,故其面积为 ,即过点三点的截面面积是, 26=,,P Q R 故选:D8. 将边长为2的正沿着高折起,使,若折起后四点都在球的ABC ∆AD 120BDC ∠= A B C D 、、、O 表面上,则球的表面积为( )OA.B. C.D.72π7π132π133π【答案】B 【解析】【分析】通过底面三角形BCD 求出底面圆的半径DM ,判断球心到底面圆的距离OM ,求出球O 的半径,即可求解球O 的表面积.【详解】△BCD 中,BD=1,CD=1,∠BDC=120°,底面三角形的底面外接圆圆心为M ,半径为:r,由余弦定理得到,再由正弦定理得到2 1.r r =⇒=见图示:AD 是球的弦,,将底面的圆心M 平行于AD 竖直向上提起,提起到AD 的高度的一半,即为球心的位置O ,∴在直角三角形OMD 中,应用勾股定理得到OD ,OD 即为球的半径.∴球的半径. 该球的表面积为:4π×OD 2=7π; 故选B .【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知向量,,则( )()2,1a = ()1,3b =-A.B.1a b ⋅= 2-=a b C. 与同向的单位向量是D. 向量在上的投影向量是aa b 110b 【答案】ABD 【解析】【分析】由向量的数量积的坐标运算可判断A ;由向量的坐标减法运算和模长计算可判断B ;由单位向量的定义可判断C ;由投影向量的定义可判断D.【详解】对于A ,由题意可得,则A 正确.()21131⋅=⨯-+⨯=a b 对于B ,因为,,所以,所以,则B正确.()2,1a = ()1,3b =-()25,1-=-ab2-=a b 对于C ,与同向的单位向量是,则C 错误.a )2,1==对于D ,向量在上的投影向量是,则D 正确. a b110a b b b bb ⋅⋅=故选:ABD.10. 若函数图象的一个最高点为,且相邻两条对()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>><<⎪⎝⎭π,26⎛⎫⎪⎝⎭称轴间的距离为,则下列各选项正确的是( ) π2A.π2,2,6A ωϕ===B. 在上单调递增()f x π0,2⎡⎤⎢⎥⎣⎦C.是的一个零点 5π12()f x D. 的图象向右平移个单位得到的图象()f x π62sin2y x =【答案】AC 【解析】【分析】根据已知可求出,,进而得出,.代入点的坐标,结合2A =πT =2ω=()()2sin 2x x f ϕ=+的范围即可得出,,得出A 项;求出,根据正弦函数ϕπ6ϕ=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭ππ7π2666x ≤+≤的单调性,即可判断B 项;将代入解析式,即可判断C 项;根据图象平移变换得出解析式,即可判5π12断D 项.【详解】对于A 项,由已知可得,,,所以,,,2A =π22T =πT =2π2πω==所以,. ()()2sin 2x x f ϕ=+又, πππ2sin 22sin 2663f ϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以,,所以,sin 13πϕ⎫⎛+= ⎪⎝⎭ππ2π,32k k ϕ+=+∈Z 所以,. π2π,6k k ϕ=+∈Z 因为,所以,,故A 项正确; π02ϕ<<π6ϕ=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭对于B 项,因为,所以, π02x ≤≤ππ7π2666x ≤+≤函数在上单调递增,在上单调递减,故B 项错误; sin y x =ππ,62⎡⎤⎢⎥⎣⎦π7π,26⎡⎤⎢⎥⎣⎦对于C 项,因为,所以是的一个零点,故C 项正5π5ππ2sin 22sin π012126f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭5π12()f x 确;对于D 项,将的图象向右平移个单位,可以得到的图()f x π6πππ2sin 22sin 2666y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦象,故D 错误. 故选:AC.11. 对于,角所对的边分别为,下列说法正确的有( ) ABC A ,,A B C ,,a b c A. 若,则一定为等腰三角形 sin2sin2A B =ABC A B. 若,则一定为等腰三角形 sin sin A B =ABC A C. 若,则有两解 ,5π6,4A b a ===ABC A D. 若,则一定为锐角三角形 tan tan tan 0A B C ++>ABC A 【答案】BD 【解析】【分析】根据已知可得或,即可判断A 项;根据正弦定理可得,即可判断22A B =22πA B +=a b =B 项;根据已知可推得只有一解,即可判断C 项;根据两角和的正切公式,可推得B ,即可得出D 项.tan tan tan 0A B C ⋅⋅>【详解】对于A 项,由可知,或, sin2sin2A B =22A B =22πA B +=所以,或, A B =π2A B +=所以,为等腰三角形或直角三角形,故A 错误; ABC A 对于B 项,根据正弦定理可得,,所以, sin sin a bA B =sin 1sin a A b B==a b =所以一定为等腰三角形,故B 正确; ABC A 对于C 项,因为,所以,又, a b >A B >sin 20sin 15b A B a <==<所以只有一解,所以,有一解,故C 错误; B ABC A 对于D 项,因为, ()πC A B =-+所以,,()tan tan tan tan 1tan tan A B C A B A B+=-+=--整理可得,. tan tan tan tan tan tan A B C A B C ++=⋅⋅因为,所以,tan tan tan 0A B C ++>tan tan tan 0A B C ⋅⋅>所以,都是锐角,所以一定为锐角三角形,故D 正确. ,,A B C ABC A 故选:BD .12. 已知点O 为所在平面内一点,且,则下列选项正确的是()ABC A 230AO OB OC ++=u u u r u u u r u u u r rA.1324AO AB AC =+u u u r u u u r u u u rB. 直线必过边的中点 AO BCC.:3:2AOB AOC S S =△△D. 若,且,则1OB OC ==u u u r u u u r OB OC ⊥OA =u u r 【答案】ACD 【解析】【分析】根据题设条件,化简得到,可判定A 是正确的;根据向量的线性运算法423AO AB AC =++u u u r u u u r u u u r则,化简得到,可判定B 不正确;根据,得到,结2()4OB OC AC OD +=-=- 4AC OD =- 32BE EC =合三角形的面积公式,可判定C 正确;根据向量的数量积和模的运算公式,可判定D 是正确的.【详解】如图所示,点O 为所在平面内一点,且,ABC A 230AO OB OC ++=u u u r u u u r u u u r r可得,即,223350AO OB OA OC OA OA +-+-+=u u u r u u u r u u r u u u r u u r u u r r()()23AO OB OA OC OA =-+- 即,所以,所以A 是正确的;423AO AB AC =+1324AO AB AC =+u u u r u u u r u u u r 在中,设为的中点,ABC A D BC 由,可得,230AO OB OC ++=u u u r u u u r u u u r r()2()0AO OC OB OC +++=u u u r u u u r u u u r u u u r r 所以,所以直线不过边的中点,所以B 不正确;2()4OB OC AC OD +=-=-AO BC 由,可得且,4AC OD =-4AC OD = //AC OD 所以,所以,可得,所以 14DE OD EC AC ==14DE EC =25EC BC =32BE EC =所以,所以C 正确; 1sin 3212sin 2AOB AOC AD BE AEB S BE S EC AD EC OEC ⨯∠===⨯∠△△由,可得230AO OB OC ++=u u u r u u u r u u u r r 23OA OB OC =+u u r u u u r u u u r 因为,且,1OB OC ==u u u r u u u r OB OC ⊥ 可得, 222223412913OA OB OC OB OB OC OC =+=+⋅+=u u r u u u r u u u r u uu r u u u r u uu r u u u r 所以D 是正确的.OA =u u r故选:ACD.【点睛】本题主要考查了平面向量的基本概念,向量的线性运算,以及向量的数量积和向量的模的运算及应用,其中解答中熟记向量的线性运算法则,以及平面向量的数量积和模的计算公式是解答的关键,着重考查推理与运算能力.三、填空题:本题共4小题,每小题5分,共20分.13. 已知复数满足(是虚数单位),则 .z ()117i z i +=-i z =【答案】5 【解析】【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【详解】由(1+i )z=1﹣7i , 得, ()()()()1711768341112i i i iz i i i i -----====--++-则. 5=故答案为5.【点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题. 14. 如图是用斜二测画法画出的直观图,则的面积是________.AOB A AOB A【答案】. 16【解析】 【分析】根据斜二测法,所得直观图中三角形的高为4,即有的高为8,而底边为4不变,根据三角形面积AOB A 公式即可求的面积.AOB A 【详解】由斜二测法画图原则:横等纵半, ∴的高为8,即, AOB A 184162AOB S =⨯⨯=A 故答案为:.16【点睛】本题考查了根据斜二测法所得直观图求原图面积,属于基础题. 15. 图(1)阴影部分是由长方体和抛物线围成,图(2)阴影部分是由半径为3的半圆ABCD 213y x =和直径为3的圆围成的,这两个阴影部分高度相同,利用祖暅原理,可得出图(1)阴影部分绕轴O P y 旋转而成的几何体的体积为______.【答案】## 272π13.5π【解析】【分析】分析图一与图二旋转后的几何体的结构特征,根据祖暅原理,求几何体一的体积. 【详解】图一绕轴旋转一周可得一圆柱挖去中间的部分, y 将图二以小圆的直径为轴旋转一周可得一个半球挖去一个小球,将两个几何体放在同一水平面上,用与圆柱下底面距离为的平面截两个几何体,可得截面都(03)t t <<为圆环,纵截面图如下,几何体一的截面面积为223=93t ππππ⨯--几何体二的截面面积为,22=93t ππππ⨯--又两几何体等高,由祖暅原理可得两几何体的体积相等,又几何体二的体积332144327323322V πππ⎛⎫=⨯⨯⨯-⨯⨯=⎪⎝⎭所以几何体一的体积, 1272V π=故答案为:272π16. 如图,在Rt △AOC 中,,圆O 为单位圆.3AO CO ==(1)若点P 在圆O 上,,则______________60AOP ∠=︒AP =(2)若点P 在△AOC 与圆O 的公共部分的圆弧上运动,则的取值范围为__________14PA PC ⋅ 【答案】 ①.②.12⎡⎤--⎣⎦【解析】【分析】(1)根据结合数量积的运算律即可求出;AP =AP (2)法一:根据,结合余弦函数的性()()1,PA PC PO OA PO OC PO OA OC ⋅=+⋅+=++质即可得解.法二:以O 为原点,OA 所在直线为y 轴,OC 所在直线为x 轴建立坐标系,设,再根据数量积的坐标运算结合三角函数的性质即可得解.()πcos ,sin ,0,2P θθθ⎡⎤∈⎢⎥⎣⎦【详解】(1)在△AOP 中,,,,3AO =1OP =60AOP ∠=︒,AP OP OA =- 则,AP ====即AP =(2)法一:()()()2PA PC PO OA PO OC PO PO OA OC OA OC ⋅=+⋅+=+⋅++⋅()11cos ,PO OA OC PO OA OC PO OA OC =+⋅+=+++,1,PO OA OC =++因为,所以,3,π,π4PO OA OC ⎡⎤+∈--⎢⎥⎣⎦cos ,1,PO OA OC ⎡+∈-⎢⎣ 故的取值范围为.PA PC ⋅12⎡⎤--⎣⎦法二:以O 为原点,OA 所在直线为y 轴,OC 所在直线为x 轴建立坐标系, 设,,,()πcos ,sin ,0,2P θθθ⎡⎤∈⎢⎥⎣⎦()0,3A ()3,0C 所以,,()cos ,3sin PA θθ=-- ()3cos ,sin PC θθ=--则 ()()22cos cos 3sin sin 3cos sin 3cos 3sin PA PC θθθθθθθθ⋅=-+-=+--,()π13cos sin 14θθθ⎛⎫=-+=-+ ⎪⎝⎭∵,则,∴, π0,2θ⎡⎤∈⎢⎥⎣⎦ππ3π,444θ⎡⎤+∈⎢⎥⎣⎦πsin 4θ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦, π1124θ⎛⎫⎡⎤-+∈-- ⎪⎣⎦⎝⎭即.12PA PC ⎡⎤⋅∈--⎣⎦故答案为:(1;(2).12⎡⎤--⎣⎦【点睛】方法点睛:求向量模的常见思路与方法:(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用,勿忘记开方; 22a a =(2)或,此性质可用来求向量的模,可实现实数运算与向量运算的相互转化; 22a a a a ⋅== = a (3)一些常见的等式应熟记:如,等.()2222a ba ab b ±=±⋅+()()22a b a b a b +⋅-=- 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知圆锥的侧面展开图为半圆,母线长为(1)求圆锥的表面积;(2)如图,过的中点作平行于底面的截面,以该截面为底面挖去一个圆柱,求剩下几何体的体AO 1O 积.【答案】(1);9π(2). 158π【解析】【分析】(1)设圆锥的底面半径为r ,高为h ,分别求出侧面积和底面积即可得到答案.(2)先求出圆锥的体积,为的中点,利用相似比求出圆柱的底面半径,即可求出圆柱的体积,剩1O AO 下几何体的体积为圆锥体积减去圆柱体积,即可得到答案. 【小问1详解】设圆锥的底面半径为r ,高为h由题意,得:,∴,∴2r π=r =3h =∴圆锥的侧面积 16S rl ππ===圆锥的底面积 223S r ππ==∴圆锥的表面积 129S S S π=+=【小问2详解】由(1)可得:圆锥的体积为 211133333V r h πππ==⨯⨯=又圆柱的底面半径为,高为 2r =322h =∴圆柱的体积为 2233922428r hV πππ⎛⎫==⨯⨯=⎪⎝⎭∴剩下几何体的体积为 12915388V V V πππ=-=-=18. 如图,在平面内将两块直角三角板接在一起,已知,记.45,60ABC BCD ∠=∠= ,AB a AC b →→→→==(1)试用表示向量; ,a b →→,AD CD →→(2)若,求.1b →=AB CD →→⋅【答案】(1),;(2.AD a →→=+)1CD a b →→→=+-1+【解析】【分析】(1)由题易知,再结合即可得,进而即CB a b →→→=-BD →=AD a →→=CD AD AC →→→=-可得答案;(2)由题知,,进而根据向量数量积运算求解即可.1a b →→⋅=a →=【详解】(1)因为,所以,,AB a AC b →→→→==CB AB AC a b →→→→→=-=-由题意可知, ,//,AC BD BD ==所以,则,BD →=AD AB BD a →→→→=+=)1CD AD AC a b →→→→→=-=+(2)因为,所以, ,1b →=a →=cos 114a b a b π⋅=⋅==所以))211211AB CD a a b a a b →→→→→→→→⎡⎤⋅=⋅+=+-⋅==+⎢⎥⎣⎦19. 某学校开展“测量故宫角楼高度”的综合实践活动.如图1所示,线段表示角楼的高,为AB ,,C D E 三个可供选择的测量点,点在同一水平面内,与水平面垂直.从以下六个几何量中选择三个进行,B C CD 测量,并根据所选择的几何量测量故宫角楼高度,请写出选择的编号(只需写出一种方案)①D ,E 两点间的距离; ②C ,E 两点间的距离; ③由点观察点A 的仰角; C α④由点观察点A 的仰角; D β⑤和; ACE ∠AEC ∠⑥和.ADE ∠AED ∠【答案】①③④(答案不唯一,也可选择②③⑤) 【解析】【分析】要想求出角楼的高,应该知道其中一边的长度,即应选择①②中的一个,然后在对应的三角形中,找寻其他的量,逐步求解,即可得出答案.【详解】若要求角楼的高即长,必要知道一边长,若知,两点间的距离长,在梯形AB C D CD ABCD 中解和即可,此时可选①③④;若知,两点间的距离即长,则解和ACD A ABC A C E CE ACE △即可得解,此时可选②③⑤.ABC A 若选①③④,由已知可得,, π2ABC BCD ∠=∠=在中,,,, ACD A π2ACD α∠=-π2ADC β∠=+CAD αβ∠=-所以, πsin()sin 2AC CDαββ=-⎛⎫+ ⎪⎝⎭所以,cos sin()AC CD βαβ=⋅-所以,其中各个量均已知;cos sin sin sin()AB AC CD βαααβ=⋅=⋅-若选②③⑤,已知和,则,ACE ∠AEC ∠πCAE ACE AEC ∠=-∠-∠由,sin sin sin()AC CE CEAEC CAE ACE AEC ==∠∠∠+∠所以,sin sin()AECAC CE ACE AEC ∠=⋅∠+∠所以 其中各个量均已知.sin sin sin sin()AEC AB AC CE ACE AEC αα∠⋅==⋅∠+∠其他选择方案均不可求得长.AB 20. 如图:在正方体中,,为的中点.1111ABCD A B C D -2AB =M 1DD(1)求证:平面;1//BD AMC (2)若为的中点,求证:平面平面. N 1CC //AMC 1BND 【答案】(1)证明见解析(2)证明见解析 【解析】【分析】(1)连接,交于点,连接,由已知可证明,再根据线面平行的判定BD AC O OM 1//OM BD 定理即可得证;(2)证明四边形为平行四边形,从而可得,即可证得平面,再根据1CND M 1//D N CM 1//D N AMC 面面平行的判定定理即可得证. 【小问1详解】如图1,连接,交于点,连接, BD AC O OM 根据正方体的性质可知,是中点. O BD 因为是的中点,M 1DD 所以在中,有.1DBD △1//OM BD 因为平面,平面, 1BD ⊄AMC OM ⊂AMC 所以,平面. 1//BD AMC 【小问2详解】如图2,连接,1,D N BN 因为为的中点,为的中点, N 1CC M 1DD 所以.1CN D M =根据正方体的性质可知,,所以. 11//CC DD 1//CN D M 所以,四边形为平行四边形, 1CND M 所以.1//D N CM 因为平面,平面,1D N ⊄AMC CM ⊂AMC 所以,平面.1//D N AMC 因为,平面,平面, 111D N BD D = 1D N ⊂1BND 1BD ⊂1BND 所以,平面平面.//AMC 1BND 21. 的角A ,B ,C 的对边分别为a ,b ,c ,已知. ABC A sin sin (sin sin )bA CBC a c-=-+(1)求角A ;(2)从三个条件:①;②;③的面积为周3a =3b =ABC A ABC A长的取值范围. 【答案】(1);(2)答案不唯一,具体见解析.3A π=【解析】【分析】(1)利用正弦定理将角化边,可得,然后利用余弦定理,可得. 222b c a bc +-=A (2)若选①,使用正弦定理以及辅助角公式可得,根据的范围可得结果;选6sin 36π⎛⎫=++ ⎪⎝⎭l B B ②,利用正弦定理可得,可得结果.选③结合不等式可得结果. 92=+l 【详解】(1)因为, sin sin (sin sin )bA CBC a c-=-+所以,得, ()ba cbc a c-=-+222b c a bc +-=所以,因为,所以. 2221cos 22b c a A bc +-==(0,)A π∈3A π=(2)分三种情况求解: 选择①,因为,3a =,33Aa π==由正弦定理得sin sin sin b c aB CA===即的周长ABC A 3=++=++l ab c B C233π⎛⎫=+-+ ⎪⎝⎭l B B3cos 3B B =++,6sin 36B π⎛⎫=++ ⎪⎝⎭因为,所以, 20,3B π⎛⎫∈ ⎪⎝⎭51,sin 166626B B ππππ⎛⎫<+<<+ ⎪⎝⎭…即周长的取值范围是. ABC A (6,9]选择②,因为,3b=,33A b π==由正弦定理得=a23sin 3sin 33sin sin 2π⎛⎫- ⎪⎝⎭===+B C c B B 即的周长ABCA 92=++=+l a b c992222B B =+=+,92=+因为,所以,所以20,3B π⎛⎫∈ ⎪⎝⎭023B π<<0tan 2B <<即周长的取值范围是.ABC A (6,)+∞选择③. ABC S =A 因为,得, 1,sin 32ABC A S bc A π====A 12bc =由余弦定理得, 22222()3()36a b c bc b c bc b c =+-=+-=+-即的周长,ABCAl a b c b c =++=++因为,当且仅当时等号成立,b c +=…b c ==所以l +=…即周长的取值范围是.ABC A )+∞【点睛】本题考查正弦定理、余弦定理、面积公式的应用,熟练掌握公式,边角互化化繁为简,考查分析问题的能力,属中档题.22. 已知为坐标原点,对于函数,称向量为函数的伴随向O ()sin cos f x a x b x =+(),OM a b =()f x 量,同时称函数为向量的伴随函数.()f x OM(1)设函数,试求的伴随向量;()2π3πsin cos 32g x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()g x OM(2)记向量的伴随函数为,求当且时,的值;(ON = ()f x ()65f x =ππ,36x ⎛⎫∈- ⎪⎝⎭sin x (3)当向量时,伴随函数为,函数,求在区间OM = ()f x ()()2h x f x =()h x π,4t t ⎡⎤+⎢⎥⎣⎦上最大值与最小值之差的取值范围.【答案】(1)12OM ⎛= ⎝ (2)sin x =(3)【解析】【分析】(1)化简的解析式,从而求得伴随向量.()g x OM (2)先求得,由求得,进而求得,从而求得. ()f x ()65f x =πsin 3x ⎛⎫+ ⎪⎝⎭πcos 3x ⎛⎫+ ⎪⎝⎭sin x (3)先求得,然后根据三角函数的最值求得正确答案.()h x 【小问1详解】()2π3πsin cos 32g x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,11sin sin sin 22x x x x x =-++=所以.12OM ⎛= ⎝ 【小问2详解】依题意, ()πsin 2sin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭由得, ()65f x =π6π32sin ,sin 3535x x ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,所以, ππππ,,0,3632x x ⎛⎫⎛⎫∈-+∈ ⎪ ⎪⎝⎭⎝⎭π4cos 35x ⎛⎫+= ⎪⎝⎭所以ππ1ππsin sin sin 33233x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦【小问3详解】的函数解析式, ()f x ()πsin 4f x x ⎛⎫=+ ⎪⎝⎭所以 ()sin 24h x x π⎛⎫=+ ⎪⎝⎭区间的长度为,函数的周期为, ,4t t π⎡⎤+⎢⎥⎣⎦4π()sin 24h x x π⎛⎫=+ ⎪⎝⎭π若的对称轴在区间内, ()h x π,4t t ⎡⎤+⎢⎥⎣⎦不妨设对称轴在内,最大值为1, 8x π=,4t t π⎡⎤+⎢⎥⎣⎦当即在区间上的最大值与最小值之差取得()π4h t h t ⎛⎫+= ⎪⎝⎭()π04h h ⎛⎫== ⎪⎝⎭()h x ,4t t π⎡⎤+⎢⎥⎣⎦最小值为; 1=其它的对称轴在, ,4t t π⎡⎤+⎢⎥⎣⎦若的对称轴不在区间内,则在区间内单调,在两端点处取得最大值与最()h x ,4t t π⎡⎤+⎢⎥⎣⎦()h x ,4t t π⎡⎤+⎢⎥⎣⎦小值,则最大值与最小值之差为:()sin 2sin 24244h t h t t t ππππ⎛⎫⎛⎫⎛⎫+-=++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()cos 2sin 2224π⎛⎫⎛⎛=+-+≤ ⎪ ⎝⎭⎝⎝t t t t故函数在区间上的最大值与最小值之差的取值范围为 ()sin 24h x x π⎛⎫=+ ⎪⎝⎭,4t t π⎡⎤+⎢⎥⎣⎦【点睛】方法点睛:求解新定义函数有关的问题,关键点在于理解新的定义,解题过程中,要将“新”问题,转化为所学的知识来进行求解,体现了化归与转化的数学思想方法.。
2023-2024学年湖北省潜江市初中联考协作体八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列式子是最简二次根式的是()A. B. C. D.2.若函数是正比例函数,则k的值为()A.0B.1C.D.3.已知是整数,则n的可以为()A.1B.2C.D.64.如图,在▱ABCD中,AC,BD相交于点O,若,,,则的周长为()A.13B.14C.15D.185.下列计算正确的是()A. B. C. D.6.下列条件能判定是直角三角形的是()A.B.:::4:5C.,,D.AB:BC::2:37.下列命题的逆命题是真命题的是()A.平行四边形的一组对边平行,另一组对边相等B.矩形的对角线互相垂直平分C.菱形的四条边相等D.正方形的四个角都是直角8.下列关于正比例函数的结论中,正确的是()A.当时,函数值为2B.y随x的增大而增大C.它的图象经过一、三象限D.它的图象一定不经过点9.如图,已知线段,分别以点A和点B为圆心,以AB长为半径画弧,两弧相交于点C,D,连接AC,AD,BC,BD,CD,再以点D为圆心,以任意长为半径画弧,分别与DC,DB交于点M,N,分别以点M和点N为圆心,大于长为半径画弧,两弧交于点E,连接DE并延长与BC交于点F,则DF的长为()A.2B.3C.D.10.如图1所示,刘强家、体育场、图书馆在同一条直线上,某周六,刘强的爸爸骑电动车带刘强从家出发去体育馆打羽毛球,一会后因家中有急事爸爸先回家了,刘强则步行去图书馆看书,刘强到达图书馆后看了1个小时的书,立即以相同的步行速度返程回家并同时打电话给爸爸让爸爸骑电动车来接,爸爸立刻从家出发骑车在途中接到刘强后一同回家注:①整个过程中爸爸骑电动车的速度相同:②打电话及爸爸接到电话后去骑电动车的时间忽略不计图2反映了这个过程中,刘强离家的距离与时间之间的对应关系.则下列推断正确的有()①爸爸骑电动车的速度为;②点E的坐标为;③A.0个B.1个C.2个D.3个二、填空题:本题共5小题,每小题3分,共15分。