双曲线的简单几何性质练习题
- 格式:doc
- 大小:54.00 KB
- 文档页数:8
3.2.2双双双双双双双双双双(2)一、单选题1. 已知斜率为1的直线l 与双曲线2214x y -=的右支交于A ,B 两点,若||8AB =,则直线l 的方程为 ( )A. 21y x =B. 21y x =C. 35y x = D. 35y x =2. 已知圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,则双曲线C 的离心率的取值范围是( )A. 3)B. (1,2]C. 3,)+∞D. [2,)+∞3. 设12,F F 是双曲线22:-=145x y C 的两个焦点,O 为坐标原点,点P 在C 上且||3OP =,则12PF F 的面积为( )A. 3B.72C.532D. 54. 已知1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点,12||23F F =,600(,)M x y 是双曲线C 上的一点,若120MF MF ⋅<,则0y 的取值范围是( )A. 33(B. 33(C. 2222(33-D. 2323( 5. 若直线2y x =与双曲线22221(0,0)x y a b a b-=>>有公共点,则双曲线的离心率的取值范围为( )A. 5)B. 5,)+∞C. 5]D. 5,)+∞6. 已知双曲线方程为2214y x -=,过(1,0)P 的直线L 与双曲线只有一个公共点,则L 的条数共有( )A. 4条B. 3条C. 2条D. 1条7. 已知双曲线C :2212x y -=,若直线l :(0)y kx m km =+≠与双曲线C 交于不同的两点M ,N ,且M ,N 都在以(0,1)A -为圆心的圆上,则m 的取值范围是( )A. 1(,0)(3,)3-⋃+∞B. (3,)+∞C. (,0)(3,)-∞⋃+∞D. 1(,3)3-二、多选题8. 已知双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点分别为1F ,2F ,过2F 作垂直于渐近线的直线l 交两渐近线于A ,B 两点,若223||||F A F B =,则双曲线C 的离心率可能为( )A.141B.6 C. 3 D. 59. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,左、右顶点分别为A 、B ,O 为坐标原点.点P 为双曲线上任意一点(异于实轴端点),过点1F 作12F PF ∠的平分线的垂线,垂足为Q ,连接.OQ 则下列结论正确的有.( )A. 2//OQ PFB. ||OQ a =C. 22||||2PF PF b ⋅=D. 2max()ABQ Sa =三、填空题10. 若直线0x y m -+=与双曲线2212y x -=交于不同的两点A ,B ,且线段AB 的中点在圆225x y +=上,则m 的值为__________.11. 直线1y kx =+与双曲线2231x y -=相交于不同的两点,.A B 若点,A B 分别在双曲线的左、右两支上,则实数k 的取值范围为__________;若以线段AB 为直径的圆经过坐标原点,则实数k 的值为__________.12. 已知双曲线C :22145x y -=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,若||5AB =,则满足条件的l 的条数为__________.13. 已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,1F ,2F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F 的面积分别为1S ,2S ,则21S S =__________. 四、解答题14. 设A ,B 分别为双曲线22221(0,0)x y a b a b-=>>的左,右顶点,双曲线的实轴长为43 3.(1)求双曲线的方程; (2)已知直线32y x =-与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM ON tOD +=,求t 的值及点D 的坐标.15. 如图,平面上,P 、Q 两地间距离为4,O 为PO 中点,M 处为一基站,设其发射的电波为直线,测量得60MOQ ︒∠=,且O 、M 间距离为23N 正在运行,它在运行过程中始终保持到P 地的距离比到Q 地的距离大2(P 、O 、M 、N 及电波直线均共面),请建立适当的平面直角坐标系.(1)求出机器人N 运行的轨迹方程;(2)为了使机器人N 免受M 处发射的电波的影响(即机器人接触不到过点M 的直线),求出电波所在直线斜率k 的取值范围.16. 已知双曲线E :22221(0,0)x y a b a b -=>>的两条渐近线方程为3y x =,且点(2,3)P 为E 上一点.(1)求E 的标准方程;(2)设M 为E 在第一象限的任一点,过M 的直线与E 恰有一个公共点,且分别与E 的两条渐近线交于点A ,B ,设O 为坐标原点,证明:AOB 面积为定值.17. 已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,过点且斜率为1的直线l 交双曲线C 于A ,B 两点.且 3.OA OB ⋅=(1)求双曲线C 的标准方程.(2)设Q 为双曲线C 右支上的一个动点,F 为双曲线C 的右焦点,在x 轴的负半轴上是否存在定点.M 使得2QFM QMF ∠=∠?若存在,求出点M 的坐标;若不存在,请说明理由.答案和解析1.【答案】B解:设直线l 的方程为y x m =+,,由2214y x m x y =+⎧⎪⎨-=⎪⎩得2238440x mx m +++=, 则212443m x x +=,1283m x x +=-,又因为||8AB =,且A 、B 是直线l 与双曲线2214x y -=右支的交点, 所以,且803m->, 即,且0m <,解得221m =,且0m <, 所以21m =-,所以直线l 的方程为21.y x =- 故选.B2.【答案】B解:由题意,圆心到直线的距离231d k ==+,3k ∴= 圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,与其中一条渐近线by x a=斜率比较即可, 3b a∴,2214b a+,∴双曲线C 的离心率的取值范围是(1,2].故答案选:.B11(,)A x y3.【答案】D解:由已知得2, 3.a c == 设(,)P x y ,由||3OP =,得229x y +=, 所以229x y =-,代入22145x y -=,解得5.3y =± 所以1212115||||6||5223F F PSF F y ==⨯⨯±=, 故选.D4.【答案】A解:由题意,3c =2a =1b =,∴双曲线方程为22 1.2x y -=120MF MF ⋅<,220030x y ∴+-<, 220022x y =+, 20310y ∴-<,03333y ∴-<<, 故选:.A5.【答案】B解:双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a=±,由双曲线与直线2y x =有交点, 则有2ba>, 即有22221()145c a b b e a a a+===+>+=则双曲线的离心率的取值范围为(5,).+∞ 故选:.B6.【答案】B解:由题意可得:双曲线2214y x -=的渐近线方程为:2y x =±, 点(1,0)P 是双曲线的右顶点,故直线1x =与双曲线只有一个公共点;过点(1,0)P 平行于渐近线2y x =±时,直线L 与双曲线只有一个公共点,有2条, 所以,过(1,0)P 的直线L 与双曲线只有一个公共点,这样的直线共有3条. 故选.B7.【答案】A解:设11(,)M x y ,22(,)N x y , 由,则①,且122412mkx x k+=-,21222(1)12m x x k -+=-, 设MN 的中点为00(,)G x y ,则02212km x k =-,0212my k=-, M ,N 在以A 为圆心的圆上,,G 为MN 的中点,AG MN ∴⊥,21212m k k km+-∴⋅=-,2231k m ∴=+②,由①②得103m -<<或3m >, 故选.A8.【答案】BC解:由题意得直线 l 垂直于渐近线by x a=,则2OA BF ⊥, 由双曲线性质得2||AF b =,||OA a =,由223||||F A F B =,得2||2||2AB AF b ==或2||4||4.AB AF b == 当2||2||2AB AF b ==时,如图:在Rt BOA 中,2tan b BOA a∠=, 由双曲线渐近线性质得21AOF BOF ∠=∠,2tan b AOF a∠=, 因此有22tan tan(2)tan(2)BOA AOF AOF π∠=-∠=-∠2222222tan 21tan 1bAOF b a b AOF a a⨯∠=-=-=-∠-,化简得2b a =,故离心率2213b e a=+=;当||4AB b =时,如图:在2Rt AOF 中,2tan b AOF a∠=,在Rt AOB 中,4tan b AOB a ∠=,因为22AOB AOF ∠=∠,利用二倍角公式,得2241()bb a b a a⨯=-, 化简得21()2b a =,故离心率2261.2b e a =+=综上所述,离心率e 的值为3或6.2故选.BC9.【答案】ABD解:如图所示:A 选项,延长1F Q 交2PF 于点C ,因为PQ 为12F PF ∠的平分线,1PQ F Q ⊥, 故Q 为1F C 的中点,1||||F Q QC =,又因为12||||FO F O =,即O 为12F F 的中点, 故OQ 为12F F C 的中位线, 所以2||2||F C OQ =,2//OQ F C , 又因为P 、2F 、C 共线, 故2//OQ PF ,故A 正确;B 选项,由定义可知12||||2PF PF a -=, 因为1||||F P PC =,而12||||2F P PF a -=, 故22||||||2PC PF F C a -==,而2||2||F C OQ =, 故1||22OQ a a =⨯=,故B 正确; C 选项,若212||||2PF PF b ⋅=,则222222212121212||||(||||)2||||444()PF PF PF PF PF PF a b c F F +=-+=+==,则1290F PF ∠=︒,题中无说明,故不成立,故C 错误; D 选项,因为||2AB a =,||OQ a =, 当OQ x ⊥轴时,2max1()22ABQ Sa a a =⨯⨯=,故D 正确.故选:.ABD10.【答案】1±解:设A ,B 两点的坐标分别为11(,)A x y ,22(,)B x y ,线段AB 的中点为00(,).M x y 由得22220(0)x mx m ---=∆>,则212122,2x x m x x m +==--,1202x x x m +∴==,002.y x m m =+= 点00(,)M x y 在圆225x y +=上,22(2)5m m ∴+=, 1.m ∴=±故答案为 1.±11.【答案】1±解:(1)由直线1y kx =+与双曲线2231x y -=,得22(3)220k x kx ---=, 因为A , B 在双曲线的左右两支上,所以230k -≠,2203k -<- 解得33;k -<<(2)假设存在实数k ,使得以线段AB 为直径的圆经过坐标原点,设11(,)A x y ,22(,)B x y ,则0OA OB ⋅=,即12120x x y y +=,1212(1)(1)0x x kx kx ∴+++=,即21212(1)()10k x x k x x ++++=,22222(1)1033kk k k k -∴+⋅+⋅+=--, 整理得21k =,符合条件,1.k ∴=±故答案为; 1.±12.【答案】3解:24a =,25b =,29c =,则(3,0)F ,若A 、B 都在右支上,当AB 垂直于x 轴时,将3x =代入22145x y -=得52y =±,则||5AB =,满足, 若A 、B 分别在两支上,2a =,∴两顶点的距离为2245+=<,∴满足||5AB =的直线有2条,且关于x 轴对称,综上满足条件的l 的条数为3. 故答案为:3.13.【答案】4解:离心率为2ce a==,即2c a =,3b a =, (,0)M a -,(0,)N b ,可得MN 的方程为0bx ay ab -+=,设(,)P m n ,1(,0)F c -,2(,0)F c ,可得22212(,)(,)PF PF c m n c m n m n c ⋅=---⋅--=+-, 由22222()m n m n +=+表示原点O 与P 的距离的平方, 显然OP 垂直于MN 时,||OP 最小, 由OP :ay x b=-,即33y x =-330x y a -+=, 可得33(,)44P a a -,即211332242S c a a =⋅⋅=, 当P 与N 重合时,可得||OP 最大, 可得2212232S c b a =⋅⋅=, 即有222123 4.3S a S a ==故答案为:4.14.【答案】解:(1)双曲线的渐近方程为by x a=±,焦点为(,0)F c ±, ∴焦点到渐近线的距离为,又243a =,23a ∴=,双曲线的方程为221.123x y -=(2)设点112200(,),(,),(,)M x y N x y D x y ,由得: 2163840x x -+=,1212123163,()4123x x y y x x ∴+=+=+-=, OM ON tOD +=,0,01212()(,)t x y x x y y ∴=++,有,又点00(,)D x y 在双曲线上, 2216312()()1123t t ∴-=,解得216t =,点D 在双曲线的右支上,0t ∴>,4t ∴=,此时点(43,3).D15.【答案】解:(1)如图所示,以点O 为坐标原点,以PQ 所在的直线为x 轴建立直角坐标系,则(2,0),(2,0)P Q -,设点(,)N x y ,则||||2||4NP NQ PQ -=<=, 所以动点N 是以点,P Q 为焦点的双曲线的右支, 由题得22,2,1a c a ===, 所以2413b =-=,所以动点N 的轨迹方程为221(1).3y x x -= (2)由题得点M 的坐标为3,3),设直线的方程为3(3)y k x -=,即:(3)3y k x =-+,联立直线和221(1)3y x x -=, 消去y 得2222(3)(236)633120k x k k x k k -+-+--=当230k -=时,若3k =当3k =当230k -≠时,由0∆<得2222(236)4(3)(63312)0k k k k k -----<,所以(3)(3)0k k --<, 32 3.k << 32 3.k <所以电波所在直线斜率k 的取值范围16.【答案】解:(1)当3ba =E 的标准方程为222213x y a a -=,代入(2,3),解得2 1.a =故E 的标准方程为221.3y x -=(2)直线斜率显然存在,设直线方程为y kx t =+,与2213y x -=联立得:222(3)230.k x ktx t -+++=由题意,3k ≠222244(3)(3)0k t k t ∆=--+=,化简得:2230.t k -+=设1122(,),(,)A x y B x y ,将y kx t =+与3y x =联立,解得13x k =-;与3y x =-联立,解得23x k=+ 212122113||||sin |2||2|sin1203|.22|3|AOBt S OA OB AOB x x x x k ︒∆=⋅⋅∠=⋅⋅==- 由2230t k -+=,3AOB S ∆∴AOB 3.17.【答案】解:(1)设双曲线C 的焦距为2c ,由双曲线C 的离心率为2知2c a =,所以223b c a a -=,从而双曲线C 的方程可化为222213x y a a-=,由得22226630x x a ---=,设11(,)A x y ,22(,)B x y , 因为,所以126x x +=,212332x x a ⋅=--, 因为3OA OB ⋅=,所以12121212(6)(6)3x x y y x x x x +=+=, 于是21212326()62(3)66632x x x x a ++=⨯--=,解得1a =, 所以双曲线C 的标准方程为2213y x -=; (2)假设存在,点(,0)(0)M t t <满足题设条件.由(1)知双曲线C 的右焦点为,设为双曲线C 右支上一点,当02x =时,因为290QFM QMF ︒∠=∠=, 所以45QMF ︒∠=,于是,所以 1.t =-当02x ≠时,00tan 2QF y QFM k x ∠=-=--,00tan QM y QMF k x t∠==-, 因为2QFM QMF ∠=∠,所以0002000221()y y x ty x x t⨯--=---, 将220033y x =-代入并整理得22200002(42)4223x t x t x tx t -++-=--++,所以,解得 1.t =-综上,满足条件的点M 存在,其坐标为。
2020-2021学年高中数学人教A版选修1-1配套作业:2.2.2 双曲线的简单几何性质含解析第二章2。
22。
2.2A级基础巩固一、选择题1.以椭圆错误!+错误!=1的顶点为顶点,离心率为2的双曲线方程为(C)A.错误!-错误!=1B.错误!-错误!=1C.错误!-错误!=1或错误!-错误!=1D.以上都不对[解析]当顶点为(±4,0)时,a=4,c=8,b=43,双曲线方程为错误!-错误!=1;当顶点为(0,±3)时,a=3,c=6,b=3错误!,双曲线方程为错误!-错误!=1。
2.双曲线2x2-y2=8的实轴长是(C)A.2B.2错误!C.4D.42[解析]双曲线2x2-y2=8化为标准形式为x24-y28=1,∴a=2,∴实轴长为2a=4。
3.(全国Ⅱ文,5)若a〉1,则双曲线x2a2-y2=1的离心率的取值范围是(C)A.(错误!,+∞) B.(错误!,2 )C.(1,错误!) D.(1,2)[解析]由题意得双曲线的离心率e=错误!.∴c2=a2+1a2=1+错误!.∵a>1,∴0〈错误!<1,∴1<1+错误!〈2,∴1〈e〈错误!.故选C.4.(2018·全国Ⅲ文,10)已知双曲线C:错误!-错误!=1(a>0,b>0)的离心率为错误!,则点(4,0)到C的渐近线的距离为(D) A. 2 B.2C.错误!D.2错误![解析]由题意,得e=错误!=错误!,c2=a2+b2,得a2=b2。
又因为a〉0,b>0,所以a=b,渐近线方程为x±y=0,点(4,0)到渐近线的距离为错误!=2错误!,故选D.5.(2019·全国Ⅲ卷理,10)双曲线C:错误!-错误!=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若|PO|=|PF|,则△PFO的面积为(A)A.错误!B.错误!C.2错误!D.3错误![解析]双曲线错误!-错误!=1的右焦点坐标为(错误!,0),一条渐近线的方程为y=错误!x,不妨设点P在第一象限,由于|PO|=|PF|,则点P的横坐标为错误!,纵坐标为错误!×错误!=错误!,即△PFO 的底边长为错误!,高为错误!,所以它的面积为错误!×错误!×错误!=错误!。
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。
双曲线的简单几何性质1.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =± 2xB .y =±2xC .y =± 22xD .y =± 12x答案:C2.双曲线2x 2-y 2=8的实轴长是( )A .2B .2 2C .4D .4 2答案:C3.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .-14B .-4C .4D.14答案:A4.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( )A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8D .y 2-x 2=4答案:A5.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2答案:D6.已知双曲线x 2a 2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________. 答案:337.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M ,N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________.答案:28.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.答案:x 2-y 23=1 10.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM→+ON →=tOD →,求t 的值及点D 的坐标. 解析:(1)由题意知a =23,∴一条渐近线为y =b23x ,即bx -23y =0,∴|bc |b 2+12=3, ∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0,将直线方程代入双曲线方程得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=12,∴⎩⎪⎨⎪⎧ x 0y 0=433,x 2012-y 203=1,∴⎩⎪⎨⎪⎧x 0=43,y 0=3, ∴t =4,点D 的坐标为(43,3).[B 组 能力提升]1.(2016·高考全国Ⅰ卷)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)解析:根据双曲线的焦距,建立关于n 的不等式组求解.若双曲线的焦点在x 轴上,则⎩⎪⎨⎪⎧ m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎪⎨⎪⎧ 1+n >0,3-n >0,∴-1<n <3.若双曲线的焦点在y 轴上,则双曲线的标准方程为y 2n -3m 2-x 2-m 2-n =1,即⎩⎪⎨⎪⎧ n -3m 2>0,-m 2-n >0,即n >3m 2且n <-m 2,此时n 不存在.故选A.答案:A2.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作垂直于x 轴的直线交双曲线于A 、B 两点,若△ABF 2为锐角三角形,则双曲线的离心率的范围是( )A .(1,1+2)B .(1+2,+∞)C .(1-2,1+2)D .(2,2+1)解析:由△ABF 2为锐角三角形得,b 2a 2c <tan π4=1,即b 2<2ac ,∴c 2-a 2<2ac , ∴e 2-2e -1<0,解得1-2<e <1+2,又e >1,∴1<e <1+ 2.答案:A3.已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A ()0,66,当△APF 周长最小时,该三角形的面积为________.解析:由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+(66)2=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎨⎧ y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去),所以S △APF =S △AF 1F -S △PF 1F=12×6×66-12×6×26=12 6.答案:12 64.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为________. 解析:由双曲线的渐近线y =±b ax 与圆(x -2)2+y 2=3相切 可知⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪±b a ×21+⎝ ⎛⎭⎪⎫b a 2=3,c =2,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧ a =1,b = 3. 故所求双曲线的方程为x 2-y 23=1.答案:x 2-y 23=1 5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且a 2c =33.(1)求双曲线C 的方程;(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.解析:(1)由题意得⎩⎪⎨⎪⎧ a 2c =33,c a =3,解得⎩⎪⎨⎪⎧a =1,c = 3. 所以b 2=c 2-a 2=2.所以双曲线C 的方程为x 2-y 22=1.(2)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0).由⎩⎨⎧ x -y +m =0,x 2-y 22=1,得x 2-2mx -m 2-2=0(判别式Δ>0).所以x 0=x 1+x 22=m ,y 0=x 0+m =2m .因为点M (x 0,y 0)在圆x 2+y 2=5上,所以m 2+(2m )2=5.故m =±1.6.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点是F 2(2, 0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线l 与双曲线C 相交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求直线l 的方程.解析:(1)由已知得c =2,e =2,∴a =1,b = 3.∴所求的双曲线方程为x 2-y 23=1.(2)设直线l 的方程为y =x +m ,点M (x 1,y 1),N (x 2,y 2)的坐标满足方程组⎩⎨⎧ y =x +m , ①x 2-y 23=1, ②将①式代入②式,整理得2x2-2mx-m2-3=0.(*) 设MN的中点为(x0,y0),则x0=x1+x22=m2,y0=x0+m=3m2,所以线段MN垂直平分线的方程为y-3m2=-⎝⎛⎭⎪⎫x-m2即x+y-2m=0,与坐标轴的交点分别为(0,2m),(2m,0),可得12|2m|·|2m|=4,得m2=2,m=±2此时(*)的判别式Δ>0,故直线l的方程为y=x±2.。
第二章 2.2 2.2.2基础练习1.双曲线-=1的焦点到渐近线的距离为( )x 24y 212A .1 B . 3C .2 D .23【答案】D【解析】不妨取焦点(4,0)和渐近线y =x ,则所求距离d ==2.3|43-0|3+132.已知0<θ<,则双曲线C 1:-=1与C 2:-=1的( )π4x 2sin2θy 2cos2θy 2cos2θx 2sin2θA .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等【答案】D【解析】对于双曲线C 1,a 1=sin θ,b 1=cos θ,c 1=1,则实轴长为2sin θ,虚轴长为2cos θ,离心率为,焦距为2;对于双曲线C 2,a 2=cos θ,b 2=sin θ,c 2=1,则实轴长为2cos θ,虚轴长为2sin1sin θθ,离心率为,焦距为2.故选D .1cos θ3.双曲线+=1的离心率e ∈(1,2),则实数k 的取值范围是( )x 24y 2k A .(-10,0)B .(-3,0)C .(-12,0)D .(-60,-12)【答案】C【解析】双曲线方程可变为-=1,则a 2=4,b 2=-k ,c 2=4-k ,e ==.又e ∈(1,2),x 24y 2-k c a 4-k 2则1<<2.解得-12<k <0.故选C .4-k24.双曲线C :-=1(a >0,b >0)的离心率e =,则它的渐近线方程为( )x 2a 2y 2b 2132A .y =±x B .y =±x 2332C .y =±x D .y =±x 9449【答案】B【解析】双曲线C :-=1(a >0,b >0)的离心率e =,可得=.∴+1=,可得=.x 2a 2y 2b 2132c 2a 2134b 2a 2134b a 32于是双曲线的渐近线方程为y =±x .故选B .325.(2019年河南郑州期末)已知双曲线-=1(a >0,b >0)的两个焦点分别为F 1,F 2,以线段F 1F 2y 2a 2x 2b 2为直径的圆与双曲线渐近线的一个交点是(4,3),则此双曲线的方程为__________________.【答案】-=1y 29x 216【解析】由题意,c ==5,∴a 2+b 2=c 2=25.① 又双曲线的渐近线为y =±x ,∴=.② 42+32ab a b 34由①②解得a =3,b =4.∴双曲线方程为-=1.y 29x 2166.设F 1,F 2是双曲线C :-=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2x 2a 2y 2b 2且∠PF 1F 2=30°,则C 的离心率为________.【答案】+13【解析】由PF 1⊥PF 2,∠PF 1F 2=30°,|F 1F 2|=2c ,可得|PF 1|=2c cos 30°=c ,|PF 2|=2c sin 30°=c .3又||PF 1|-|PF 2||=2a ,∴c -c =2a ,则e ===+1.3c a 23-137.已知双曲线过点P (3,-),离心率e =,试求此双曲线的方程.252解:依题意,双曲线的焦点可能在x 轴上,也可能在y 轴上,分别讨论如下.若双曲线的焦点在x 轴上,设双曲线方程为-=1(a >0,b >0).x 2a 2y 2b 2由e =,得=.①52c 2a 254由点P (3,-)在双曲线上,得-=1.②29a 22b 2又a 2+b 2=c 2.③所以由①②③可得a 2=1,b 2=.14若双曲线的焦点在y 轴上,设双曲线方程为-=1(a >0,b >0).y 2a 2x 2b 2同理有=,-=1,a 2+b 2=c 2.c 2a 2542a 29b 2解得b 2=-(不合题意,舍去).172故双曲线的焦点只能在x 轴上,所求双曲线方程为x 2-4y 2=1.8.已知双曲线C :-=1(a >0,b >0)的离心率为,=.x 2a 2y 2b 23a 2c 33(1)求双曲线C 的方程;(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,线段AB 的中点在圆x 2+y 2=5上,求实数m 的值.解: (1)∵=,=,∴a =1,c =.c a 3a 2c 333∴b 2=c 2-a 2=2.∴双曲线C 的方程为x 2-=1.y 22(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点 M (x 0,y 0).由Error!得x 2-2mx -m 2-2=0(判别式Δ>0).∴x 0==m ,y 0=x 0+m =2m .x 1+x 22∵点M (x 0,y 0)在圆x 2+y 2=5上,∴m 2+(2m )2=5,解得m =±1.能力提升9.(2019年山东枣庄十六中模拟)已知双曲线C 1:-y 2=1,双曲线C 2:-=1(a >0,b >0)的x 24x 2a 2y 2b 2左、右焦点分别为F 1,F 2,点M 是双曲线C 2的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,且双曲线C 1,C 2的离心率相同,则双曲线C 2的实轴长是( )A .4 B .8C .16D .32【答案】C【解析】双曲线C 1:-y 2=1的离心率为,设F 2(c,0),双曲线C 2一条渐近线方程为y =x ,可x 2452b a 得|F 2M |==b ,即有|OM |==a .由S △OMF 2=16,得ab =16,即ab =32.又bc a 2+b 2c 2-b 212a 2+b 2=c 2,且=,解得a =8,b =4,c =4,∴双曲线的实轴长为16.c a 52510.(2019年江西南昌模拟)已知等腰梯形ABCD 中AB ∥CD ,AB =2CD =4,∠BAD =60°,双曲线以A ,B 为焦点,且与线段CD (包括端点C ,D )有两个交点,则该双曲线的离心率的取值范围是( )A .[,+∞) B .[,+∞)23C .[+1,+∞)D .[+1,+∞)23【答案】D【解析】当双曲线过点C ,D 时,由平面几何可知∠ACB =90°,AB =4,BC =2,AC =2,所以32c =4,|CA |-|CB |=2(-1)=2a ,即a =-1,c =2,此时==+1.若双曲线与线段CD 相33ca 23-13交,则双曲线的张口变大,离心率变大,即e ≥+1,故选D .311.已知双曲线E :-=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E x 2a 2y 2b 2的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.【答案】2【解析】如图,由题意得|BC |=|F 1F 2|=2c .又2|AB |=3|BC |,∴|AF 1|=c .在Rt △AF 1F 2中,32|AF 2|===.|AF 1|2+|F 1F 2|2(32c )2+(2c )25c 2∴2a =|AF 2|-|AF 1|=c -c =c .∴e ==2.5232ca 12.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为且过点(4,-),点210M (3,m )在双曲线上.(1)求双曲线方程;(2)求证:MF 1⊥MF 2;(3)求△F 1MF 2的面积.(1)解:∵e =,2∴可设双曲线方程为x 2-y 2=λ(λ≠0).∵双曲线过点(4,-),∴16-10=λ,解得λ=6.10∴双曲线方程为x 2-y 2=6.(2)证明:易知F 1(-2,0),F 2(2,0),33∴kMF 1=,kMF 2=.m 3+23m3-23∴kMF 1·kMF 2=·=-.m 3+23m 3-23m 23∵点M (3,m )在双曲线上,∴9-m 2=6,即m 2=3.∴kMF 1·kMF 2=-1.∴MF 1⊥MF 2.(3)解:S △F 1MF 2=|F 1F 2|·|m |=×4×=6.121233。
2.2.2 双曲线的简单几何性质基础梳理1.直线与双曲线的位置关系.一般地,设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),② 把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线的渐近线平行,直线与双曲线C 相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有________公共点,此时称直线与双曲线相交;Δ=0⇒直线与双曲线有________公共点,此时称直线与双曲线相切;Δ<0⇒直线与双曲线________公共点,此时称直线与双曲线相离.想一想:直线和双曲线只有一个公共点,直线一定和双曲线相切吗?2.弦长公式.斜率为k (k ≠0)的直线l 与双曲线相交于A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2(y 1+y 2)2-4y 1y 2.想一想:当直线的斜率k 不存在或为0时,如何求弦长?自测自评1.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( ) A .y =±54x B .y =±45x C .y =±43x D .y =±34x 2.设F 1和F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是正三角形的三个顶点,则双曲线的离心率为( )A.32 B .2 C.52 D .33.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4条B .3条C .2条D .1条基础巩固1.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A .y =±2x B .y =±2xC .y =±22xD .y =±12x 2.已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) A.53 B.43 C.54 D.323.若圆x 2+y 2-4x -9=0与y 轴的两个交点A ,B 都在双曲线上,且A ,B 两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为( )A.x 29-y 272=1B.y 29-x 272=1 C.x 216-y 281=1 D.y 281-x 216=1 4.若双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),则双曲线的方程是______________.能力提升5.若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( ) A .实半轴长相等 B .虚半轴长相等C .离心率相等D .焦距相等6.设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0个 B .1个 C .2个 D .3个7.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是__________. 8.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为__________,渐近线方程为__________.9.双曲线与椭圆有共同的焦点F 1(0,-5),F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,试求双曲线方程与椭圆的方程.10.P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC →=λOA →+OB →,求λ的值.答 案基础梳理1.【答案】(2)两个 一个 没有想一想:【解析】不一定.当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.2.想一想:【解析】把直线的方程直接代入双曲线方程,求出交点坐标,再求其弦长.自测自评1.【解析】依题意,得e =c a =53.设a =3k ,c =5k ,则b 2=c 2-a 2=25k 2-9k 2=16k 2,则b =4k .又双曲线焦点在y 轴上,∴其渐近线方程为y =±34x . 【答案】D2.【答案】B3.【解析】过P 与渐近线平行的直线与双曲线只有一个公共点,另外x =1与双曲线只有一个公共点,∴l 的条数是3.【答案】B基础巩固1.【解析】由题意得b =1,c =3,所以a =2,所以双曲线的渐近线方程为y =±b ax ,即y =±22x .故选C. 【答案】C2.【解析】双曲线焦点在x 轴,由渐近线方程可得b a =43,可得e =c a =32+423=53. 【答案】A3.【解析】因为圆x 2+y 2-4x -9=0与y 轴的两个交点A ,B 都在双曲线上,且A ,B 两点恰好将此双曲线的焦距三等分,所以A ,B 是双曲线的顶点.令x =0,则y =-3或y =3,A (0,-3),B (0,3),在双曲线中a =3,2c =3×2a =18,所以c =9,得b 2=81-9=72,因此,双曲线的标准方程是y 29-x 272=1.故选B. 【答案】B4.【解析】由渐近线方程知b a=3,又c =10, a 2+b 2=c 2⇒a 2+9a 2=10⇒a 2=1,b 2=9.【答案】x 2-y 29=1能力提升5.【解析】∵0<k <5,∴5-k >0,16-k >0.对于双曲线:x 216-y 25-k=1,其焦距是25-k +16=221-k ;对于双曲线:x 216-k -y 25=1,其焦距是216-k +5=221-k .故焦距相等. 【答案】D6.【解析】由方程t 2cos θ+t sin θ=0,解得t 1=0,t 2=-tan θ,不妨设点A (0,0),B (-tan θ,tan 2θ),则过这两点的直线方程为y =-x tan θ,该直线恰是双曲线x 2cos 2θ-y 2sin 2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A.【答案】A7.【解析】由渐近线方程为y =±m 2x =±32x ,得m =3,c =7,且焦点在x 轴上. 【答案】(±7,0)8.【解析】椭圆的焦点坐标为(4,0),(-4,0),故c =4,且满足c a=2,故a =2,b =c 2-a 2=23,所以双曲线的渐近线方程为y =±b ax =±3x . 【答案】(4,0),(-4,0) y =±3x9.【答案】解:由共同的焦点F 1(0,-5),F 2(0,5),可设椭圆方程为y 2a 2+x 2a 2-25=1(a 2>25); 双曲线方程为y 2b 2-x 225-b 2=1(0<b 2<25), 点P (3,4)在椭圆上,所以16a 2+9a 2-25=1,得a 2=40, 双曲线过点P (3,4)的渐近线为y =b 25-b 2x , 即4=b 25-b 2×3,b 2=16, 所以椭圆方程为y 240+x 215=1,双曲线方程为y 216-x 29=1. 10.【答案】解:(1)由点P 在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1, 由题意又有y 0x 0-a ·y 0x 0+a =15, 可得a 2=5b 2,c 2=a 2+b 2=6b 2,则e =c a =305. (2)联立方程得⎩⎪⎨⎪⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=5c 2,x 1x 2=35b 24. 设OC →=(x 3,y 3),由OC →=λOA →+OB →得⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2. 又C 为双曲线E 上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2,又A (x 1,y 1),B (x 2,y 2)在双曲线E 上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2. 又x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得:λ2+4λ=0,解出λ=0或λ=-4.。
双曲线一、单选题(共29题;共58分)1.已知双曲线的焦距为,则的离心率为()A. B. C. D.2.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率为()A. B. C. D.3.双曲线的渐近线方程为()A. B. C. D.4.双曲线的一个焦点到一条渐近线的距离为()A. 4B.C. 2D.5.实轴长为的双曲线上恰有个不同的点满足,其中,分别是双曲线的左、右顶点.则的离心率的取值范围为()A. B. C. D.6.双曲线方程为x2-2y2=1,则它的左焦点的坐标为( )A. (-,0)B. (-,0)C. (-,0)D. (-,0)7.已知双曲线的离心率,且其右焦点,则双曲线的方程为()A. B. C. D.8.已知双曲线的渐近线为,实轴长为,则该双曲线的方程为()A. B. 或C. D. 或9.双曲线的焦点坐标是( )A. B. C. D.10.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B. (1,2), C. D.11.设F1,F2是双曲线的两个焦点,P在双曲线上,当△F1PF2的面积为时,的值为()A. 2B. 3C. 4D. 612.已知双曲线的左、右焦点为、,在双曲线上存在点P满足,则此双曲线的离心率e的取值范围是()A. B. C. D.13.设为双曲线的右焦点,过坐标原点的直线依次与双曲线的左.右支交于点,若,则该双曲线的离心率为()A. B. C. D.14.已知双曲线:的离心率为,则的渐近线方程为()A. B. C. D.15.双曲线C的对称轴与坐标轴重合,两个焦点分别为F1,F2,虚轴的一个端点为A,若△AF1F2是顶角为120°的等腰三角形,则双曲线C的渐近线方程为()A. B. 或 C. D. 或16.若双曲线的一条渐近线被圆所截得的弦长为2,则的离心率为()A. 2B.C.D.17.过点,且与双曲线有相同渐近线的双曲线的方程是()A. B. C. D.18.若双曲线的实轴长、虚轴长、焦距成等差数列,则双曲线的渐近线方程是()A. B. C. D.19.设、分别为双曲线的左、右顶点,、是双曲线上关于轴对称的不同两点,设直线、的斜率分别为、,若,则双曲线的离心率是()A. B. C. D.20.双曲线的焦点坐标为()A. B. C. D.21.双曲线的渐近线方程是()A. B. C. D.22.已知双曲线:(,)的左右顶点分别为,,点,若三角形为等腰直角三角形,则双曲线的离心率为()A. B. C. 2 D. 323.已知中心在原点,对称轴为坐标轴的双曲线的一条渐近线方程为,则该双曲线的离心率是()A. B. C. 或 D. 或24.若双曲线与直线无交点,则离心率的取值范围()A. B. C. D.25.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是()A. B. C. D.26.已知点为双曲线上一点,则它的离心率为()A. B. C. D.27.设双曲线的一个焦点为F,虚轴的一个端点为B,焦点F到一条渐近线的距离为d,若,则双曲线离心率的取值范围是()A. B. C. D.28.设点是双曲线上的一点,分别是双曲线的左、右焦点,已知,且,则双曲线的一条渐近线方程是()A. B. C. D.29.以原点为中心,焦点在y轴上的双曲线C的一个焦点为,一个顶点为,则双曲线C的方程为()A. B. C. D.二、填空题(共12题;共13分)30.设为曲线上一点,,,若,则________.31.已知双曲线的离心率为2,则点到的渐近线的距离为________.32.若点在双曲线上,它的横坐标与双曲线的右焦点的横坐标相同,则点与双曲线的左焦点的距离为________33.双曲线上的一点到一个焦点的距离等于1,那么点到另一个焦点的距离为________.34.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点. 设到双曲线的同一条渐近线的距离分别为和,且,则双曲线的方程为________.35.双曲线- =1的渐近线方程是________,实轴长为________.36.已知双曲线C的中心在原点,焦点在x轴上,其渐近线方程为2x±3y=0,焦距为2 ,则双曲线C的标准方程为________.37.双曲线的一个焦点是,一条渐近线是,那么双曲线的方程是________38.已知双曲线(,)满足,且双曲线的右焦点与抛物线的焦点重合,则该双曲线的方程为________.39.设是双曲线上一点,双曲线的一条渐近线方程为,分别是双曲线的左、右焦点,若,则的值为________.40.双曲线的其中一个焦点坐标为,则实数________.41.已知分别为双曲线的左、右焦点,过与双曲线的一条渐近线平行的直线交双曲线于点,若,则双曲线的离心率为________.三、解答题(共5题;共55分)42.已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点.(1)求双曲线的方程;(2)若点在双曲线上,求的面积.43.已知双曲线与椭圆有相同焦点,且经过点(4,6).(1)求双曲线方程;(2)若双曲线的左,右焦点分别是F1,F2,试问在双曲线上是否存在点P,使得|PF1|=5|PF2|.请说明理由.44.已知双曲线:的实轴长为2.(1)若的一条渐近线方程为,求的值;(2)设、是的两个焦点,为上一点,且,的面积为9,求的标准方程.45.已知双曲线的中心在原点,焦点,在坐标轴上,离心率为,且过点.(1)求双曲线的方程;(2)若点在双曲线上,求证:;(3)求的面积.46.双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b= ,若l的斜率存在,M为AB的中点,且=0,求l的斜率.答案解析部分一、单选题1.【答案】C【考点】双曲线的简单性质【解析】【解答】依题意可知,所以,故,所以,故答案为:C.【分析】根据求得的值,进而求得双曲线离心率.2.【答案】C【考点】双曲线的简单性质【解析】【解答】依题意可知双曲线的焦点为,,,三角形高是,,边的中点,,代入双曲线方程得:,整理得:,,,整理得,求得,,.故答案为:C.【分析】先根据双曲线方程求得焦点坐标的表达式,进而可求得三角形的高,则点的坐标可得,进而求得边的中点的坐标,代入双曲线方程求得,和的关系式化简整理求得关于的方程求得.3.【答案】D【考点】双曲线的简单性质【解析】【解答】令,整理得,所以双曲线的渐近线方程为.故答案为:D【分析】令双曲线的为,从而得到方程,化简后即得渐近线方程.4.【答案】C【考点】双曲线的简单性质【解析】【解答】双曲线的,,,一个焦点设为,,一条渐近线设为,可得一个焦点到一条渐近线的距离为.故答案为:C.【分析】求得双曲线的,,,可设一个焦点和一条渐近线方程,由点到直线的距离公式,可得所求值.5.【答案】A【考点】双曲线的简单性质【解析】【解答】依题意可得,,,设,则由,得,整理得.由,得,因为双曲线上恰有个不同的点满足,所以方程有两不等实根,所以只需,解得,则.故答案为:A【分析】先由题意,得到,,,设,根据,得,再与双曲线联立,消去,得到,根据双曲线上存在个不同的点满足,得到只需,求出,进而可求出离心率的范围.6.【答案】C【考点】双曲线的标准方程【解析】【解答】由,可得,,由得,所以左焦点坐标为(-,0)故答案为:C【分析】将双曲线化成标准式,再结合双曲线的关系式求解7.【答案】B【考点】双曲线的标准方程【解析】【解答】由双曲线的离心率,且其右焦点为,可得,所以,所求双曲线的方程为,故答案为:B.【分析】由已知双曲线的离心率,右焦点为列式,得到,即可求出双曲线的标准方程.8.【答案】B【考点】双曲线的标准方程,双曲线的简单性质【解析】【解答】当双曲线的焦点在轴上时, ,又,即,所以,所求双曲线的方程为: ;当双曲线的焦点在轴上时, ,又,即,所以,所以所求双曲线的方程为: .所以所求双曲线方程为: 或.故答案为:.【分析】根据双曲线的焦点所在位置分两种情况讨论: 当双曲线的焦点在轴上时, ; 当双曲线的焦点在轴上时, ,结合可解得.9.【答案】D【考点】双曲线的简单性质【解析】【解答】由得,故,故焦点坐标为故答案为:D【分析】将化简成标准方程再进行焦点坐标运算即可.10.【答案】A【考点】双曲线的简单性质【解析】【解答】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故答案为:.【分析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.11.【答案】C【考点】双曲线的简单性质【解析】【解答】双曲线的两个焦点坐标为,设的坐标为,则△的面积为,,,代入双曲线方程解得,不妨取,,,故答案为:.【分析】求得双曲线的焦点坐标,利用△的面积为,确定的坐标,运用两点的距离公式,即可求得结论.12.【答案】B【考点】双曲线的应用【解析】【解答】因为为的边的中线,可知,双曲线上存在点满足,则,由,可知,则。
双曲线的简单几何性质练习题班级 姓名 学号1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1B.x 212-y 24=1C.x 210-y 26=1D.x 26-y 210=1 2.(新课标卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x 3.下列双曲线中离心率为62的是( ) A.x 22-y 24=1 B.x 24-y 22=1C.x 24-y 26=1 D.x 24-y 210=1 4.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( )A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8D .y 2-x 2=45.已知双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,则双曲线的离心率为( ) A.3B.2C.52D.226.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-10,0) B .(-12,0)C .(-3,0) D .(-60,-12)7.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 8.(江苏高考)双曲线x 216-y 29=1的两条渐近线的方程为________. 9.已知双曲线中心在原点,一个顶点的坐标是(3,0)且焦距与虚轴长之比为5∶4,则双曲线的标准方程为.10.过双曲线x 2-y 23=1的左焦点F 1,作倾斜角为π6的直线AB ,其中A ,B 分别为直线与双曲线的交点,则|AB |的长为________.11.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M ,N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________.12.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.13.求适合下列条件的双曲线的标准方程:(1)过点(3,-2),离心率e=5 2;(2)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,实轴长和虚轴长相等,且过点P(4,-10).14.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为3,且a2c=33.(1)求双曲线C的方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.参考答案1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1B.x 212-y 24=1 C.x 210-y 26=1D.x 26-y 210=1 解析:选A 由题意知c =4,焦点在x 轴上, 所以⎝⎛⎭⎫b a 2+1=e 2=4,所以b a =3,又由a 2+b 2=4a 2=c 2=16,得a 2=4,b 2=12.所以双曲线方程为x 24-y 212=1. 2.(新课标卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13x C .y =±12x D .y =±x 解析:选C 因为双曲线x 2a 2-y 2b 2=1的焦点在x 轴上,所以双曲线的渐近线方程为y =±b ax .又离心率为e =c a =a 2+b 2a =1+⎝⎛⎭⎫b a 2=52,所以b a =12,所以双曲线的渐近线方程为y =±12x .3.下列双曲线中离心率为62的是( ) A.x 22-y 24=1 B.x 24-y 22=1 C.x 24-y 26=1 D.x 24-y 210=1 解析:选B 由e =62得e 2=32,∴c 2a 2=32, 则a 2+b 2a 2=32,∴b 2a 2=12,即a 2=2b 2.因此可知B 正确. 4.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( )A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8D .y 2-x 2=4 解析:选A 令y =0得,x =-4,∴等轴双曲线的一个焦点坐标为(-4,0),∴c =4,a 2=12c 2=12×16=8,故选A. 5.已知双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则双曲线的离心率为( ) A.3B. 2 C.52D.22解析:选B 由题意可知,此双曲线为等轴双曲线.等轴双曲线的实轴与虚轴相等,则a =b ,c = a 2+b 2=2a ,于是e =c a= 2. 6.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-10,0)B .(-12,0)C .(-3,0)D .(-60,-12)解析:选B 由题意知k <0,∴a 2=4,b 2=-k .∴e 2=a 2+b 2a 2=4-k 4=1-k 4. 又e ∈(1,2),∴1<1-k 4<4,∴-12<k <0. 7.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1 解析:选B 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9, 设A (x 1,y 1),B (x 2,y 2)则有⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 1)=-12b 2-15a 2=4b 25a2, 又AB 的斜率是-15-0-12-3=1, 所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1. 8.(江苏高考)双曲线x 216-y 29=1的两条渐近线的方程为________. 解析:令x 216-y 29=0,解得y =±34x . 答案:y =±34x 9.已知双曲线中心在原点,一个顶点的坐标是(3,0)且焦距与虚轴长之比为5∶4,则双曲线的标准方程为________.解析:由题意得双曲线的焦点在x 轴上,且a =3,焦距与虚轴长之比为5∶4,即c ∶b =5∶4,解得c =5,b =4,∴双曲线的标准方程为x 29-y 216=1. 答案:x 29-y 216=1 10.过双曲线x 2-y 23=1的左焦点F 1,作倾斜角为π6的直线AB ,其中A ,B 分别为直线与双曲线的交点,则|AB |的长为________.解析:双曲线的左焦点为F 1(-2,0),将直线AB 方程:y =33(x +2)代入双曲线方程, 得8x 2-4x -13=0.显然Δ>0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=12,x 1x 2=-138, ∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+13×⎝⎛⎭⎫122-4×⎝⎛⎭⎫-138=3. 答案:311.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M ,N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________.解析:由题意知,a +c =b 2a, 即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0,解得e =2或e =-1(舍去).答案:212.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x . 不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝⎛⎭⎫175,-3215. 所以S △AFB =12|AF ||y B |=12(c -a )|y B |=12×(5-3)×3215=3215. 答案:3215. 13.求适合下列条件的双曲线的标准方程:(1)过点(3,-2),离心率e =52; (2)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,实轴长和虚轴长相等,且过点P (4,-10).解:(1)若双曲线的焦点在x 轴上,设其标准方程为x 2a 2-y 2b2=1(a >0,b >0). 因为双曲线过点(3,-2),则9a 2-2b2=1.① 又e =c a =a 2+b 2a 2=52,故a 2=4b 2.② 由①②得a 2=1,b 2=14,故所求双曲线的标准方程为x 2-y 214=1. 若双曲线的焦点在y 轴上,设其标准方程为y 2a 2-x 2b 2=1(a >0,b >0).同理可得b 2=-172,不符合题意. 综上可知,所求双曲线的标准方程为x 2-y 214=1. (2)由2a =2b 得a =b ,∴e =1+b 2a2=2,所以可设双曲线方程为x 2-y 2=λ(λ≠0).∵双曲线过点P (4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 2-y 2=6.∴双曲线的标准方程为x 26-y 26=1. 14.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且a 2c =33. (1)求双曲线C 的方程;(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.解:(1)由题意得⎩⎨⎧a 2c =33,c a =3,解得⎩⎪⎨⎪⎧a =1,c = 3. 所以b 2=c 2-a 2=2. 所以双曲线C 的方程为x 2-y 22=1. (2)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0). 由⎩⎪⎨⎪⎧x -y +m =0,x 2-y 22=1,得x 2-2mx -m 2-2=0(判别式Δ>0).所以x 0=x 1+x 22=m ,y 0=x 0+m =2m . 因为点M (x 0,y 0)在圆x 2+y 2=5上,所以m 2+(2m )2=5.故m =±1.。
2.3.2 双曲线的简单几何性质自测自评1.双曲线x 24-y 29=1的渐近线方程是( )A .y =±23xB .y =±49xC .y =±32xD .y =±94x2.双曲线x 22-y 214=1的离心率为( ) A .2 B .2 2 C .3 D .43.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 自测自评1.解析:a 2=4,b 2=9,焦点在x 轴上,∴渐近线方程为y =±b a x =±32x .答案:C2.解析:∵a 2=2,∴a = 2.又b 2=14,∴c 2=a 2+b 2=16.∴c =4.∴e =ca=2 2. 答案:B3.解析:考虑焦点在x 轴或y 轴两种情况,选B. 答案:B忽略标准方程与渐近线的对应关系致错. 基础巩固1.双曲线2x 2-y 2=8的实轴长是 ( ) A .2 B .2 2 C .4 D .4 21.解析:双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,2a =4.故选C.答案:C2.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1C.y 24-x 28=1 D.x 28-y 24=1 2.解析:2a +2b =22c ,即a +b =2c ,又a =2,且a 2+b 2=c 2,∴a =2,b =2. 答案:B3.已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414 B.324 C.32 D.433.解析:根据离心率的定义求解.由双曲线中a ,b ,c 的关系c 2=a 2+b 2,得32=a 2+5,∴a 2=4,∴e =c a =32.答案:C4.椭圆x 24+y 2a =1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是________.4.解析:∵a >0,∴焦点在x 轴上,∴4-a =a +2,∴a =1. 答案:1 能力提升5.(2014·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y225=1 5.解析:由题意知,双曲线的渐近线为y =±b a x ,∴b a=2.∵双曲线的左焦点(-c ,0)在直线l 上,∴0=-2c +10,∴c =5.又∵a 2+b 2=c 2,∴a 2=5,b 2=20,∴双曲线的方程为x 25-y 220=1.答案:A6.(2014·重庆卷)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P ,使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D .3 6.解析:不妨设P 为双曲线右支上一点,根据双曲线的定义有|PF 1|-|PF 2|=2a ,联立|PF 1|+|PF 2|=3b ,平方相减得|PF 1|·|PF 2|=9b 2-4a 24,则由题设条件,得9b 2-4a 24=94ab ,整理得b a =43(负值舍去),∴e =ca=1+(ba)2=1+(43)2=53.答案:B7.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.7.解析:由题意得m >0,所以a =m ,b =m 2+4,c =m 2+m +4,由e =c a =5得m 2+m +4m=5,解得m =2.答案:28.双曲线C 1与椭圆C 2:x 29+y 225=1共焦点,且C 1与C 2的离心率之和为145,则双曲线C 1的标准方程为______________.8.解析:椭圆的焦点是(0,4),(0,-4),所以c =4,e =45,所以双曲线的离心率等于145-45=2,所以4a=2,所以a =2,所以b 2=42-22=12.所以双曲线的标准方程为y 24-x 212=1.答案:y 24-x 212=19.设F 1,F 2是双曲线x 29-y 216=1的两个焦点,点P 在双曲线上,且∠F 1PF 2=60°,求△F 1PF 2的面积.9.解析:双曲线x 29-y 216=1中a =3,c =5,不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a =6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 而|F 1F 2|=2c =10,得|PF 1|2+|PF 2|2-|PF 1|·|PF 2|= (|PF 1|-|PF 2|)2+|PF 1|·|PF 2|=100, 即|PF 1|·|PF 2|=64,S =12|PF 1|·|PF 2|sin 60°=16 3.10.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.10.解析:(1)因为e =2,所以可设双曲线方程为x 2-y 2=λ(λ≠0).因为双曲线过点P (4,-10),所以16-10=λ,即λ=6. 所以双曲线方程为x 2-y 2=6. (2)由(1)可知,双曲线中a =b =6,所以c =23,所以F 1(-23,0),F 2(23,0), 所以kMF 1=m 3+23,kMF 2=m3-23,所以kMF 1·kMF 2=m 29-12=-m 23,因为点M (3,m )在双曲线上, 所以9-m 2=6,得m 2=3.故kMF 1·kMF 2=-1,所以MF 1⊥MF 2,所以MF 1→·MF 2→=0. (3)△F 1MF 2的底边|F 1F 2|=43,底边F 1F 2上的高h =|m |=3, 所以S △F 1MF 2=6.。
课时作业(十一)[学业水平层次]一、选择题1.等轴双曲线的一个焦点是F 1(-6,0),则它的标准方程是( ) -x 218=1 -y 218=1 -y 28=1-x 28=1【解析】 设等轴双曲线方程为x 2a 2-y 2a 2=1(a >0),∴a 2+a 2=62,∴a 2=18,故双曲线方程为x 218-y218=1.【答案】 B2.(2014·天水高二考试)已知双曲线方程为x 2-y24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则共有l ( )A .4条B .3条C .2条D .1条【解析】 因为双曲线方程为x 2-y24=1,所以P (1,0)是双曲线的右顶点,所以过P (1,0)并且和x 轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外还有两条就是过P (1,0)分别和两条渐近线平行的直线,所以符合要求的共有3条,故选B.【答案】 B3.(2014·大纲全国卷)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A .2B .2 2C .4D .42【解析】 由已知得e =c a =2,所以a =12c ,故b =c 2-a 2=32c ,从而双曲线的渐近线方程为y =±ba x =±3x ,由焦点到渐近线的距离为3,得32c =3,解得c =2,故2c =4,故选C.【答案】 C4.(2014·广东高考)若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等【解析】 若0<k <5,则5-k >0,16-k >0,故方程x 216-y 25-k =1表示焦点在x 轴上的双曲线,且实半轴的长为4,虚半轴的长为5-k ,焦距2c =221-k ,离心率e =21-k 4;同理方程x 216-k -y 25=1也表示焦点在x 轴上的双曲线,实半轴的长为16-k ,虚半轴的长为5,焦距2c =221-k ,离心率e =21-k16-k .可知两曲线的焦距相等,故选D.【答案】 D 二、填空题5.(2014·南京高二检测)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________. 【解析】 ∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m=5, ∴m 2-4m +4=0,∴m =2. 【答案】 26.(2013·辽宁高考)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.【解析】 由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ |=16.由左焦点F (-5,0),且A (5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF |-|PA |=2a ,|QF |-|QA |=2a ,两式相加得,|PF |+|QF |-(|PA |+|QA |)=4a ,则|PF |+|QF |=4a +|PQ |=4×3+16=28,故△PQF 的周长为28+16=44.【答案】 447.(2014·浙江)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B ,若点P (m,0)满足|PA |=|PB |,则该双曲线的离心率是________.【解析】由⎩⎨⎧x -3y +m =0,y =b a x ,得点A 的坐标为⎝ ⎛⎭⎪⎫am 3b -a ,bm 3b -a ,由⎩⎨⎧x -3y +m =0,y =-b a x ,得点B 的坐标为⎝⎛⎭⎪⎫-am 3b +a ,bm 3b +a , 则AB 的中点C 的坐标为⎝ ⎛⎭⎪⎫a 2m 9b 2-a 2,3b 2m 9b 2-a 2,∵k AB =13,∴k CP =3b 2m 9b 2-a 2a 2m 9b 2-a 2-m=-3,即3b 2a 2-9b 2-a 2=-3,化简得a 2=4b 2, 即a 2=4(c 2-a 2),∴4c 2=5a 2, ∴e 2=54,∴e =52.【答案】 52 三、解答题8.双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线为y =x ,求双曲线的标准方程和离心率.【解】由椭圆x 216+y 264=1,知c 2=64-16=48,且焦点在y 轴上, ∵双曲线的一条渐近线为y =x , ∴设双曲线方程为y 2a 2-x 2a 2=1. 又c 2=2a 2=48,∴a 2=24. ∴所求双曲线的方程为y 224-x 224=1.由a 2=24,c 2=48,得e 2=c2a 2=2,又e >0,∴e = 2.9.(2014·玉溪高二检测)已知双曲线x 23-y 2b 2=1的右焦点为(2,0). (1)求双曲线的方程;(2)求双曲线的渐近线与直线x =-2围成的三角形的面积. 【解】 (1)∵双曲线的右焦点坐标为(2,0),且双曲线方程为x 23-y 2b 2=1,∴c 2=a 2+b 2=3+b 2=4,∴b 2=1,∴双曲线的方程为x 23-y 2=1. (2)∵a =3,b =1,∴双曲线的渐近线方程为y =±33x , 令x =-2,则y =±233,设直线x =-2与双曲线的渐近线的交点为A 、B ,则|AB |=433,记双曲线的渐近线与直线x =-2围成的三角形面积为S ,则S =12×433×2=43 3.[能力提升层次]1.(2014·山东省实验中学高二检测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均与C :x 2+y 2-6x +5=0相切,则该双曲线离心率等于( )【解析】 圆的标准方程为(x -3)2+y 2=4,所以圆心坐标为C (3,0),半径r =2,双曲线的渐近线为y =±b a x ,不妨取y =ba x ,即bx -ay =0,因为渐近线与圆相切,所以圆心到直线的距离d =|3b |a 2+b 2=2,即9b 2=4(a 2+b 2),所以5b 2=4a 2,b 2=45a 2=c 2-a 2,即95a 2=c 2,所以e 2=95,e =355,选A.【答案】 A2.(2014·北京市东城区)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .3x ±4y =0B .3x +5y =0C .5x ±4y =0D .4x ±3y =0【解析】 由题意可知|PF 2|=|F 1F 2|=2c ,所以△PF 1F 2为等腰三角形,所以由F 2向直线PF 1作的垂线也是中线,因为F 2到直线PF 1的距离等于双曲线的实轴长2a ,所以|PF 1|=24c 2-4a 2=4b ,又|PF 1|-|PF 2|=2a ,所以4b -2c =2a ,所以2b -a =c ,两边平方可得4b 2-4ab +a 2=c 2=a 2+b 2,所以3b 2=4ab ,所以4a =3b ,从而b a =43,所以该双曲线的渐近线方程为4x ±3y =0,故选D.【答案】 D3.过双曲线x 2-y 23=1的左焦点F 1,作倾斜角为π6的直线AB ,其中A 、B 分别为直线与双曲线的交点,则|AB |的长为________.【解析】 双曲线的左焦点为F 1(-2,0), 将直线AB 方程y =33(x +2)代入双曲线方程, 得8x 2-4x -13=0.显然Δ>0, 设A (x 1,y 1)、B (x 2,y 2), ∴x 1+x 2=12,x 1x 2=-138, ∴|AB |=1+k 2·x 1+x 22-4x 1x 2 =1+13×⎝ ⎛⎭⎪⎫122-4×⎝ ⎛⎭⎪⎫-138=3. 【答案】 34.(2014·安徽师大)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2,其中O 为原点,求k 的取值范围.【解】 (1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知得a =3,c =2.又因为a 2+b 2=c 2,所以b 2=1, 故双曲线C 的方程为x 23-y 2=1. (2)将y =kx +2代入x 23-y 2=1中,得(1-3k 2)x 2-62kx -9=0, 由直线l 与双曲线交于不同的两点得⎩⎪⎨⎪⎧1-3k 2≠0,Δ=-62k 2+361-3k 2>0,即k 2≠13且k 2<1.①设A (x A ,y A ),B (x B ,y B ),则x A +x B =62k1-3k 2,x A x B =-91-3k 2,由OA →·OB →>2得x A x B +y A y B >2,而x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2=(k 2+1)·-91-3k 2+2k ·62k 1-3k 2+2=3k 2+73k 2-1,于是3k 2+73k 2-1>2,解此不等式得13<k 2<3.②由①②得13<k 2<1.故k 的取值范围是⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.。