《塑料注塑成型内应力研究》
- 格式:doc
- 大小:37.50 KB
- 文档页数:9
注塑制品后处理的主要方法分析摘要:存在内应力是注塑制品的缺陷,故注塑制品在使用一段时间后,就会出现变形和开裂的问题。
本文首先阐述注塑制品中内应力的存在形式,然后结合相关实例,对注塑制品后处理的主要方法进行分析,希望为相关行业提供借鉴。
关键词:注塑制品;内应力;退火处理引言:注塑制品在成型过程中,会在温度和压力等因素的影响下发生变形和流动。
由于冷却速度存在差异,不均匀结晶、收缩应力和取向应力会随之生成,因此注塑制品的性能和质量难以得到保证。
想要对这些问题进行解决和规避,需要采取调湿处理和退火处理等后处理方法。
注塑制品的内应力存在形式内应力产生注塑制品在加工生成阶段,会在多种因素的影响下出现内应力,影响因素包括冷却收缩、大分子链取向等等。
大分子链在加工阶段所形成的不平衡构象,就是内应力的本质,并且这种构象在注塑制品成型后,会显得与环境格格不入,通常不会在产品表面显现,只会以位能形式在其内部储存,在特定条件下,位能形式就会转变为动能在内部释放能量,如果能量超过大分子链的承受极限,并破坏注塑制品的内应力平衡,开裂、变形等问题就会接踵而至[1]。
内应力的种类通过上述分析可知,不平衡构象是导注塑制品产生内应力的重要原因之一。
除此之外,还包括外力。
将成因作为依据,可以将注塑制品中的内应力分为四种,分别为取向应力、体积温度应力、制件体积不平衡导致的应力以及制件顶出变形导致的应力。
注塑制品后处理的主要方法分析退火处理和调湿处理,是目前应用最普遍的处理方法。
退火处理方法及应用实例1.退火处理方法概述在冷却速度和塑化不均匀等因素的影响下,注塑制品内部会生成内应力,尤其是壁厚较大或带有金属镶嵌件的注塑制品,这种情况尤为常见。
存在内应力的注塑制品,与正常制品相比,在使用阶段,其力学性能会不断下降,故对其进行退火处理是确保其使用性能的关键。
将制品内部应力消除,是退火处理的主要作用。
具体表现在以下方面:退火处理方法的应用,能够调整注塑制品结晶的大小;;退火处理方法,可以使结晶生成速度增加;退火处理方法可以解除制件取向,使其硬度降低,有利于提升制件的柔韧度。
注塑制件内应力影响因素分析文章详细对注塑制件内应力的产生因素进行了分析,并针对其不同的影响因素提出了针对性的解决措施,从实践中证实热处理对于消除或降低注塑制件内应力的有效性,通过该种方式有效稳定热塑制件内部结构,从而保证热塑制件结构质量。
标签:注塑制件;内应力;因素;成型工艺;热处理塑料的加工成型特点优良,因而在加工行业得到了广泛的使用,其最主要的优势在于比强度高、电性能好、质量相对较强,且相比其他材料塑料耐磨性良好,能够消音减震,最重要的是加工方便。
但是注塑制件仍旧存在一个无法避免的缺陷——内应力。
热塑制件会因为内应力而出现翘曲变形现象,严重者会导致制件开裂,另外还会对制件的光学、电学、物理学等性能造成影响,表观质量也同样会受到内应力的影响。
所以寻找对热塑制件内应力影响因素,从而针对性的提出解决措施,是保证热塑制件质量的重要前提,通过有效措施使得热塑制件内应力能够均匀分布。
尤其在使用热塑制件时环境恶劣,例如需要直接接触高热、有机溶剂以及其他腐蚀性介质时,降低内应力可以保证热塑制件结构的稳定性。
1 影响因素分析影响注塑制件内应力大小的因素有很多,具体分析包括以下几点。
1.1 造型设计1.1.1 圆角。
注塑制件其表面相交之处应当采用圆弧进行过度,而其使用上则要求使用尖角。
这是因为注塑制件在注塑过程中截面、形状发生变化的过程中在尖角的位置容易产生极大的应力,并始终无法消除,一旦受到外界的冲击以及超出其能够承受的荷载时就会生生破裂,有些在脱膜过程中就会由于其内应力而出现开裂现象,特别在内角位置。
该类问题可以通过尖角改圆角的方式予以消除,采用0.5mm圆角就能够改善应力集中现象消除内应力的产生,从而改善制件的结构特性,避免由于冲击造成材料不满模腔或形成波纹等问题。
将注塑制件过度位置设计成圆角,那么模型内部也呈圆角,因而磨具也同样具有坚固特性。
由于制件圆角对应模型圆角,因而在热塑过程中不会造成应力过于几种,不但提高了制件的质量,还提升了模具的使用寿命。
影响注塑制件内应力的因素注塑制件是一种经济高效和具备多种形状及功能的重要制造技术,但是其内部应力却受到来自注塑工艺及其他外部因素的影响,使得注塑制件内应力产生变化,从而影响了其功能性能、使用寿命。
因此,探究影响注塑制件内部应力的因素和机理,对于改进注塑工艺及优化注塑制件的使用性能及使用寿命具有重要的意义。
首先,注塑参数是影响注塑制件内应力的重要因素之一。
注塑参数主要包括注塑温度、塑料填充量、熔料压力、射出速度等。
随着参数调整,注塑过程中塑料的塑形、熔料流动和成型性能以及塑料凝固动态特性发生明显变化,从而使得熔体在凝固过程中产生应力,由此导致注塑制件内部应力发生变化。
其次,注塑成型模具结构是影响注塑制件内应力的重要因素之二。
一般来说,注塑成型模具结构的设计会影响注塑的流植分布,而分布的不均衡会使得冷却水或空气在不同地方冷却速度不一,从而导致注塑件表面张力的不均匀,从而导致注塑制件内应力发生变化。
同时,模具中心热对流也会对注塑制件内应力产生影响。
此外,注塑材料也是影响注塑制件内应力的因素之一。
目前,注塑材料的选择一般是根据制件的用途来确定的,其受到多种因素的影响,例如熔点、熔体流动性、熔体弹性模量、收缩率等等。
这些因素的变化都会对注塑制件的内部应力产生影响。
另外,不良工艺及装配技术也是影响注塑制件内应力的因素之一。
如果在注塑过程中,采用了不合理的工艺操作,会使得塑料不均匀地冷却,而导致注塑制件内应力出现变化,从而影响制件的使用性能和使用寿命。
此外,注塑件装配时如果采用不正确的技术,也会导致注塑件内部应力发生变化。
综上所述,注塑参数、注塑模具结构、注塑材料、不良工艺及装配技术等多种因素都会影响注塑制件的内部应力,从而影响注塑制件的使用性能和使用寿命。
因此,在注塑工艺的设计和应用过程中,应该充分考虑这些因素,通过优化参数来改善注塑制件的内部应力,并采用合理的模具结构设计、优良的注塑材料,以及正确的装配技术,最大程度地降低注塑制件内部应力,提高其功能性能及使用寿命。
注塑制品内应力分析及控制注塑制品是指利用注塑成型技术制造的各类塑料产品。
在注塑制品的生产过程中,由于塑料的热胀冷缩以及流动性等特性,会产生内应力。
这些内应力如果不得到合理的控制和处理,将会导致注塑制品的变形、开裂等问题。
因此,注塑制品内应力的分析和控制非常重要。
首先,注塑制品内应力的分析应从材料的选择和设计的角度来考虑。
不同的塑料材料在注塑成型过程中,由于热胀冷缩的差异以及流动性的不同,会产生不同程度的内应力。
因此,在选择塑料材料时,应考虑其热胀冷缩系数和流动性等因素。
同时,在产品设计中,应尽量避免或减少注塑制品的复杂形状和薄壁结构,这样可以减少塑料在注射和冷却过程中的内应力。
其次,注塑制品内应力的控制主要通过优化注塑工艺参数来实现。
注塑工艺参数包括注射压力、注射速度、保压时间和冷却时间等。
在注射过程中,应控制注射压力和速度,避免塑料在注射过程中产生过大的内应力。
在保压过程中,应根据具体产品的形状和尺寸,适当延长保压时间,以提高塑料的流动性和均匀性,减少内应力。
在冷却过程中,应控制冷却时间和冷却速度,避免快速冷却引起的内应力。
此外,还可以采用一些工艺改进的方法来控制注塑制品内应力。
例如,合理设计模具结构,采用多点定位和多级冷却等方式,可以均匀分布注塑制品内应力,减少应力集中。
另外,还可以采用预应力或热处理等后处理方式来消除或降低注塑制品的内应力。
总之,注塑制品内应力的分析和控制是注塑制品生产过程中非常重要的问题。
通过选择合适的塑料材料、优化注塑工艺参数以及合理设计模具结构等方式,可以有效减少注塑制品的内应力,并提高产品的质量和性能。
《塑料注塑成型内应力研究》塑料注塑成型是一种常用于制造塑料制品的方法,它可以通过将加热熔化的塑料材料注入到模具中,然后冷却固化来制造各种形状的产品。
然而,在注塑成型过程中,塑料制品会产生内部应力,这可能对产品的性能和质量产生不良影响。
因此,研究塑料注塑成型内应力具有重要的意义。
首先,塑料注塑成型内应力的研究可以帮助我们了解注塑成型过程中塑料材料的变形和形状保持能力。
在注塑成型过程中,塑料材料会经历加热、熔化、注入、冷却和固化等阶段。
在这些过程中,塑料材料会因为温度变化和形状变化而产生内部应力。
通过研究这些内应力的产生机制和分布规律,我们可以更好地理解塑料材料的变形特性,从而提高产品的成型质量和性能。
其次,塑料注塑成型内应力的研究对于改善产品的外观和尺寸稳定性也具有重要作用。
塑料制品在注塑成型后,由于内部应力的存在,可能出现缩水、翘曲、变形等问题,从而影响产品的外观和尺寸稳定性。
通过研究内应力的分布规律,我们可以针对性地优化模具结构和成型工艺,控制塑料制品的变形,从而得到更好的外观和尺寸稳定性。
此外,塑料注塑成型内应力的研究还可以为改善塑料制品的力学性能提供指导。
塑料制品的力学性能包括强度、刚度、韧性等方面。
内应力的存在会影响塑料材料的分子结构和链层结构,从而对力学性能产生影响。
通过研究内应力与力学性能的关系,我们可以优化成型工艺和后处理工艺,提高塑料制品的力学性能。
需要注意的是,塑料注塑成型内应力的研究是一个复杂的课题,其中涉及到温度场、应力场、流动场等多个因素的相互作用。
因此,进行这方面的研究需要综合运用力学、热学、流体力学等多个学科的知识,并结合实验和数值模拟等方法进行。
只有通过深入研究和理解塑料注塑成型内应力的机理和规律,我们才能更好地控制塑料制品的成型过程,提高产品的质量和性能。
综上所述,《塑料注塑成型内应力研究》是一个有益且有挑战性的研究课题。
通过深入研究内应力的产生机制、分布规律和对塑料制品性能的影响,我们可以为改善塑料制品的成型质量、外观和力学性能提供重要的理论指导和实践应用。
注塑产品内应力问题?塑胶产品在注塑的过程中往往会产生内应力,如不加以消除会对后序喷涂产生不良.有几个问题请高手赐教: 1内应力是怎么产生的,它与哪些因素有关?2内应力如何检测,有什么直观且方便的方法?3内应力如何消除,有没有方便快捷操作性强的方法?4内应力对喷涂到底还有哪些影响?内应力在其它方面还有什么危害?它有没有有利的一面呢?下面是回答请高手亮招所谓应力,是指单位面积里物体所受的力,它强调的是物体内部的受力状况;一般物体在受到外力作用下,其内部就会产生抵抗外力的应力;物体在不受外力作用的情况下,内部固有的应力叫内应力,它是由于物体内部各部分发生不均匀的塑性变形而产生的。
按照内应力作用的范围,可将它分为三类:(一)第一类内应力(宏观内应力),即由于材料各部分变形不均匀而造成的宏观范围内的内应力;(二)第二类内应力(微观内应力),即物体的各晶粒或亚晶粒(自然界中,绝大多数固体物质都是晶体)之间不均匀的变形而产生的晶粒或亚晶粒间的内应力;(三)第三类内应力(晶格畸变应力),即由于晶格畸变,使晶体中一部分原子偏离其平衡位置而造成的内应力,它是变形物体(被破坏物体)中最主要的内应力。
塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。
内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。
当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。
几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。
内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。
通用工艺规程名称:塑料件去内应力塑料制品内应力检测方法(PC)拟制:xx审核:批准:版号:3版编号:SKTG055二〇一三年三月三十日xx星际实业股份有限公司通用工艺规程编号SKTG0551.塑料件去内应力1.1.适应范围本工艺规程规定了塑料件去内应力的操作程序,适用于本公司警示灯所用的塑料件去内应力,凡本公司所用的塑料件都按本工艺规程去除内应力。
1.2.设备、工具:恒温烘箱,300℃水银温度计。
1.3.材料:转灯转盘、环形变压器压环以及各类ABS和PC塑料件。
1.4.工艺过程1.4.1.领料并检查塑料件注塑成型后是否符合设计要求。
1.4.2.将烘箱开启,升温度至75℃~85℃。
1.4.3.将塑料件平放入烘箱放置网上,不能堆放,而造成受热不均,在恒温PC 料为100℃±5℃、ABS料为80℃±3℃温度下烘6小时以上去应力。
1.4.4.等待烘箱温度自然下降至室温(或20℃)取出塑料件。
1.4.5.检验塑料的外观及设计的关键尺寸是否符合设计要求。
1.5.安全、注意事项1.5.1.塑料件放入烘箱时,应戴粗纱手套,防止手烫伤。
1.5.2.塑料件放在烘箱不能堆放,不能紧靠发热部位,防止工件烤变形。
1.5.3.要用温度计检测烘箱内的实际温度是否符合与设置温度相符,如超出误差范围应立即调整。
签名日期拟制审核标准化批准xx05.07.25版号:3版更改标记数量更改单号通用工艺规程编号SKTG0552.塑料制品的内应力检测方法(PC)2.1.材料与工具甲苯,正丙醇,皮手套,防毒面罩,盆。
(注:甲苯︰正丙醇=1︰3)2.2.操作过程2.2.1.将甲苯与正丙醇的溶剂倒入盆中混和。
2.2.2.把塑料制品放入盆,浸泡3分钟后拿出,用清水迅速冲洗干净。
2.2.3.目测制品外观有无裂纹、断裂。
2.2.4.如在限定时间内没有发生开裂,表示制品中的内应力是可以接受的。
2.2.5.如在限定时间内发生裂纹、开裂,表示制品已严重分解,不能使用。
注塑制品内应力的分析及控制注塑成型是一种常见的塑料制品成型方法,其特点是成型周期短、生产效率高、成型精度高等。
然而,注塑制品在生产过程中往往会产生内应力,如果不及时进行分析和控制,会对产品的质量和性能造成不利影响。
本文将从注塑制品内应力的分析和控制两个方面进行详细探讨。
一、注塑制品内应力分析1.内应力形成原因:注塑制品在注塑过程中,由于塑料材料的热胀冷缩、固化收缩以及注塑工艺参数的变化等原因,会产生一定的内应力。
内应力存在的主要原因包括材料性能、注塑工艺参数、产品几何形态等。
2.内应力对产品的影响:内应力会直接影响注塑制品的力学性能、外观质量和尺寸稳定性。
例如,内应力过大会导致产品变形、开裂,甚至影响产品的使用寿命。
因此,分析注塑制品内应力,对产品质量的控制至关重要。
二、注塑制品内应力的控制1.材料选择:合理选择适合注塑成型的塑料材料,具有良好的流动性、热稳定性和机械性能。
材料的选择与产品的使用环境及要求有关,同时要考虑到产品的成本控制。
2.工艺参数控制:合理调整注塑工艺参数,包括注塑温度、注塑压力、注射速度等。
通过优化工艺参数,可以减小注塑过程中的温度梯度和压力差,减少内应力的产生。
3.产品设计优化:在注塑制品的产品设计阶段,考虑使用适当的加强件、结构设计等手段,使得产品的应力分布更加均匀,减少应力集中的区域。
4.合理模具设计:模具结构的设计对于控制注塑制品的内应力也非常重要。
合理的模具结构可以减小内应力的产生,减轻产品变形的风险。
5.后处理措施:包括产品的冷却、固化和放松等过程,都可以对内应力进行控制。
通过合理的冷却方式和固化条件,可以使注塑制品内部的应力得到释放和均衡。
6.检测与调整:对于关键零件和高要求的注塑制品,可以采用应力检测等方法,及时发现问题,进行调整和优化。
综上所述,注塑制品内应力的分析和控制对于改善产品质量、提高生产效率至关重要。
通过合理的材料选择、工艺参数控制、产品设计优化、模具设计、后处理措施以及检测和调整等综合手段,可以降低内应力的产生,保证产品的力学性能和外观质量。
塑料注塑成型内应力影响分析与消除方法研究1 引言注塑制品一个普遍存在的缺点是有内应力。
内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因,也是影响制件光学性能、电学性能、物理力学性能和表观质量的重要因素。
因此找出各种成型因素对注塑制品内应力影响的规律性,以便采取有效措施减少制件的内应力,并使其在制件断面上尽可能均匀地分布,这对提高注塑制品的质量具有重要意义。
特别是在制件使用条件下要承受热、有机溶剂和其他能加速制件开裂的腐蚀介质时,减少制件的内应力对保证其正常工作具有更加重要的意义。
此外,掌握注塑制品内应力的消除方法和测试方法也很有必要。
2内应力的种类高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。
另外,外力使制件产生强迫高弹形变也会在其中形成内应力。
根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。
对注塑制件力学性能影响最大的是取向应力和体积温度应力。
2.1 取向应力高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的取向应力。
试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。
2.2 体积温度应力体积温度应力是制件冷却时不均匀收缩引起的。
因内外收缩不均而产生的体积温度应力主要靠减少制件内外层冷却降温速率的差别来降低。
这可以通过提高模具温度、降低加工温度来达到。
加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。
模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。
带金属嵌件的塑件成型时,嵌件周围的料层由于两种材料线膨胀系数不等而出现收缩应力,可通过预热嵌件降低应力。
这两种内应力主要是由于收缩不均而产生的,也属于体积温度应力。
2.3 与制件体积不平衡有关的应力高分子在模腔内凝固时,甚至在极其缓慢的条件下要使制件在脱模后立即达到其平衡体积,在实际上是不可能的。
实验测定表明,注塑制件中这种形式的内应力一般很小。
2.4 与制件顶出变形有关的内应力这种内应力主要与开模条件和模具顶出机构的设计有关。
正确选择开模条件使开模前的模腔压力接近于零,根据制件的结构和形状设计合理的顶出机构,使制件顶出时不致变形,是可以将这种形式的内应力减少到不会影响制件力学性能的限度以内的。
3 影响注塑制品内应力的因素分析注塑制品的造型设计不合理、模具设计不合理、成型工艺条件不正确、注射机选用不当等都会使制品内存在比较大的内应力。
影响制品内应力的因素很多,也很复杂。
主要影响因素见下图所示。
3.1 造型设3.1.1 圆角塑料制品除了使用上要求采用尖角外,各表面相交处应尽可能采用圆弧过渡。
由于制品形状和截面的变化,使注塑过程中熔料在尖角处的流态发生急剧变化而产生大的应力,而且残留在尖角处。
在有载荷或受冲击振动时会发生破裂,甚至在脱模过程中即由于模塑内应力而开裂,特别是制品的内圆角。
一般,即使采用R为0.5mm的圆角就能使塑件强度大为增加。
一般情况下,理想的内圆角半径应有壁厚的1/4以上。
外圆角半径可取壁厚的1.5倍。
采用圆弧过渡既可以减少应力集中,还可大大改善塑料的充模特性,避免在转角处产生冲击形成波纹或充不满模腔。
塑件设计成圆角,使模具型腔对应部位也呈圆角,这样增加了模具的坚固性,塑件的外圆角对应着型腔的内圆角,它使模具在淬火或使用时不至于因应力集中而开裂,提高了模具的使用寿命。
但是在塑件的某些部位如分型面、型芯与型腔配合处等不便做成圆角而只能采用尖角。
除相交表面的尖角外,尖锐的螺纹牙也是严重的应力集中源,采用倒圆角的螺纹可减少应力集中,提高螺纹强度。
3.1.2 制品壁厚制品壁厚是结构设计时所需要考虑的重要因素。
不合理的壁厚会给制品带来很多缺陷。
增加壁厚既可改善树脂的充模特性,又可降低取向应力,减少变形,提高制品强度。
但同时收缩加大,保压和冷却时间加长,生产效率降低,消耗材料多。
较大的收缩应力还将造成制品表面产生凹陷或内部出现缩孔与气泡,既影响外观又降低了强度。
增加壁厚的同时也增加了制品的表面积,表面积与体积之比越大,表面冷却越快,取向应力和体积温度应力都随之增大。
如果制品壁太薄,会降低强度,脱模时易破裂,还有碍于树脂的充模流动,造成填充不足或出现明显的熔合纹,严重影响制品质量。
每种塑料根据充模能力都有一个最小壁厚。
确定壁厚时在满足强度要求的前提下,壁厚尽量取薄些,可节省材料,减轻制品重量,降低成本,但不能小于最小壁厚。
ABS常用的标准壁厚为1.2~3.5mm。
壁厚设计还应注意均匀一致,否则将会由于收缩应力引起制品的翘曲变形。
同一制品中,若必须存在壁厚相差较大的情况时,连接处应逐渐过渡,避免截面的突变。
3.1.3 金属嵌件由于金属嵌件冷却时尺寸变化与塑料的热收缩值相差很大,使嵌件周围产生很大的内应力,而造成塑件的开裂。
对某些高刚性的工程塑料更甚,如聚碳酸酯;但对于弹性和冷流动性大的塑料则应力值较低。
当有金属嵌件存在时,应尽量避免制件开裂:(1)如能选用与塑料线膨胀系数相近的金属作嵌件,内应力值可以降低;(2)嵌件周围的塑料应有足够的厚度,否则会由于存在收缩应力而开裂;(3)嵌件的顶部也应有足够厚的塑料层,否则嵌件顶部塑件表面会出现鼓包或裂纹;(4)嵌件不应带尖角、锐边,以减少应力集中;(5)热塑性塑料注射成型时,将金属嵌件预热到接近物料温度,可减少由于金属与塑料热膨胀系数不同而产生的收缩应力;(6)对于内应力难以自消的塑料,可先在嵌件周围被覆一层高分子弹性体或在成型后进行退火处理来降低内应力;(7)在塑件成型后再装配或压入嵌件,可调节因嵌入嵌件而造成的内应力值,使制件不致破裂。
3.2 注塑机选用注射机选用不当,也会产生内应力。
那种认为大容量注射机注射小模具中的制品会减少内应力的说法不正确。
有时会因为压力过高、喷嘴结构不合适或混料造成较大的内应力。
3.3 模具设计模具浇注系统和顶出机构设计不当都会使制件产生内应力。
3.3.1 浇注系统模具浇注系统设计不合理如浇口大小不合适、浇道太窄、主流动太长、浇口位置不合理都会造成内应力:(1)浇口尺寸太大,补料时间就会延长,会增大大分子的冻结取向和冻结应变,造成很大的补料内应力,特别在浇口附近内应力更大。
小浇口的适时封闭,能适当地控制补料时间。
但浇口尺寸也不宜太小,过小的浇口会造成太大的流动阻力,产生取向应力。
(2)主流道太长、流道太窄、流道的急剧转折都会使流动阻力加大,延长进料时间或需增大注射压力和保压压力,会使制品产生更高的取向应力。
(3)浇口位置的选取除考虑制品外观和熔接缝外,还应尽量减少在流动方向上由于充模和补料而造成的定向作用。
3.3.2 顶出机构顶出机构设计不当,使脱模力不均衡或型芯表面在脱模过程中形成真空或施加过大的脱模力,都会造成塑件产生强迫高弹形变形成内应力,甚至龟裂,严重时发生开裂。
龟裂和开裂看上去相似,本质上有区别。
龟裂不是空隙状的缺陷,是高分子本身同所加应力成平行方向排列,经过加热又能恢复到无龟裂的状态,所以能用热处理方法解决。
注塑成型后立即热处理效果较好。
防止顶出产生内应力需改善脱模条件,如仔细磨光型芯侧面;增加脱模斜度;平衡顶出力;顶杆应布置在脱模阻力最大的部位如型芯凸台附近及能承受较大顶出力的部位,如加强筋、凸缘、塑件端面等部位。
3.4 机械加工注塑制品除为切除大浇口冷凝料而进行机械加工外,当制件尺寸精度和形位公差要求很高而无法通过模具设计与调整工艺条件得到保证,或零件上有难以一次成型出的形状(如小而深的孔或螺纹等)时,成型之后就需要进行机械加工。
常用的机械加工工艺有车、铣、刨、钻、锯、铰孔和拱螺纹等。
但机械加工会使塑件内部产生内应力,因此加工时应用专用刀具、宜采用较低的切削速度、小切削量和低速度,还应保证充分冷却。
对于易产生内应力的制品应进行多次热处理。
3.5 注塑成型工艺条件注塑制品由于成型工艺特点不可避免的存在内应力,但工艺条件控制得当就会使塑件内应力降低到最小程度,能够保证制件的正常使用。
相反,如果工艺控制不当,制件就会存在很大的内应力,不仅使制件强度下降,而且在储存和使用过程中出现翘曲变形甚至开裂。
需要控制的工艺条件如嵌件预热、模具温度、加工温度、注射速度、注射压力、保压压力、注射时间、保压时间、冷却时间等。
温度、压力、时间是塑料成型工艺的主要因素。
3.5.1 金属嵌件预热注射成型时,应将金属嵌件预热到接近物料温度,预热嵌件的目的是减少金属与塑料冷却时收缩值的差距,从而降低由于二者热膨胀系数的不同而在嵌件周围产生的收缩应力。
收缩应力是注塑制品内容易形成的内应力的一种,这种内应力的存在,是带金属嵌件的注塑制品出现裂纹和强度下降的重要原因。
3.5.2 模具温度提高模具温度,可以降低因内外收缩不均而产生的体积温度应力和高分子取向应力,也可以降低结晶塑料制品的结晶应力。
但模温也不能过高,模温升高使冷却时间延长,降低了生产效率。
3.5.3 加工温度提高加工温度可降低取向应力,但同时会使因收缩不均而产生的体积温度应力增加,同时也使封口压力升高,延长冷却时间才能顺利脱模。
3.5.4 注射压力、注射速度和注射时间增大注射压力使取向应力和结晶塑料的结晶应力增加,同时使封口压力增大,必须延长冷却时间才能顺利脱模,否则会造成脱模应力;注射速度增加也会使取向应力和结晶应力增加,但对冷凝快的塑料还是用高的注射速度充模较为有利,因为冷凝快的塑料慢速注射需要更高的注射压力来维持熔体的流动;注射时间不宜太长,模腔充满以后就相当于在注射压力下保压了,也会使制件的取向应力增加。
3.5.5 保压压力和保压时间冷却中的熔体在外压作用下产生的总形变中,有相当大一部分是弹性的,故使熔体在高压下冷凝会在制件中产生较大的内应力和高分子取向。
压实后立即降压或补料过程中分步降压有利于高分子解取向,所以降低保压压力和缩短保压时间有利于取向应力的降低;延长保压时间仅在一定范围内取向度增大,浇口封闭之后再延长保压时间对取向度的变化就不再影响。
3.5.6 冷却时间当注射压力、保压压力、熔体温度升高,浇口尺寸较大时都会使封口压力升高,这时必须延长冷却时间才能使开模前模腔内的残余压力降到很低或接近于零,否则要将制件顺利地从模具内顶出是很困难的。
若强制脱模,制件在顶出时会产生很大的应力,以至制件可能被划伤,严重时会出现破裂。
但冷却时间也不宜过长,否则不但生产效率低,而且制件内部压力降到零以后进一步冷却可能在制件内部形成负压,即由于冷却收缩使制件内外层之间产生拉应力。
4 注塑制品内应力的消除方法在注塑成型或机械加工之后及时对制件进行热处理是降低或消除其内应力,使其内部结构加速达到稳定状态的一个有效措施。