matlab实验五答案1
- 格式:pdf
- 大小:733.60 KB
- 文档页数:5
实验一 MATLAB运算根本之五兆芳芳创作1. 先求下列表达式的值,然后显示MATLAB任务空间的使用情况并保管全部变量.(1)0 122sin851ze =+(2)21ln( 2z x=+,其中2120.455i x+⎡⎤=⎢⎥-⎣⎦(3)0.30.330.3sin(0.3)ln, 3.0, 2.9,,2.9,3.0 22a ae e az a a--+=++=--(4)2242011122123t tz t tt t t⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t解:4. 完成下列操纵:(1) 求[100,999]之间能被21整除的数的个数.(2) 成立一个字符串向量,删除其中的大写字母.解:(1) 结果:(2). 成立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB矩阵阐发与处理1. 设有分块矩阵33322322E RAO S⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E、R、O、S辨别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计较验证22E R RS AO S+⎡⎤=⎢⎥⎣⎦.解: M文件如下;5. 下面是一个线性方程组:(1) 求方程的解.(2) 将方程右边向量元素b3改成0.53再求解,并比较b3的变更息争的相对变更.(3) 计较系数矩阵A的条件数并阐发结论.解: M文件如下:实验三选择结构程序设计1. 求分段函数的值.用if语句实现,辨别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y值.解:M文件如下:2. 输入一个百分制成绩,要求输出成绩等级A、B、C、D、E.其中90分~100分为A,80分~89分为B,79分~79分为C,60分~69分为D,60分以下为E.要求:(1) 辨别用if语句和switch语句实现.(2) 输入百分制成绩后要判断该成绩的公道性,对不公道的成绩应输出出错信息.解:M文件如下3. 硅谷公司员工的工资计较办法如下:(1) 任务时数超出120小时者,超出部分加发15%.(2) 任务时数低于60小时者,扣发700元.(3) 其余按每小时84元计发.试编程按输入的工号和该号员工的工时数,计较应发工资.解:M文件下实验四循环结构程序设计1. 按照2222211116123nπ=++++,求π的近似值.当n辨别取100、1000、10000时,结果是多少?要求:辨别用循环结构和向量运算(使用sum函数)来实现.解:M文件如下:运行结果如下:2. 按照11113521yn=++++-,求:(1) y<3时的最大n值.(2) 与(1)的n值对应的y值.解:M—文件如下:3. 考虑以下迭代公式:其中a、b为正的学数.(1) 编写程序求迭代的结果,迭代的终止条件为|x n+1-x n|≤10-5,迭代初值x0=1.0,迭代次数不超出500次.(2) 如果迭代进程收敛于r,那么r的准确值是(a,b)的值取(1,1)、(8,3)、(10,0.1)时,辨别对迭代结果和准确值进行比较.解:M 文件如下:运算结果如下;5. 若两个连续自然数的乘积减1是素数,则称这两个边陲自然数是亲密数对,该素数是亲密素数.例如,2×3-1=5,由于5是素数,所以2和3是亲密数,5是亲密素数.求[2,50]区间内:(1) 亲密数对的对数.(2) 与上述亲密数对对应的所有亲密素数之和.解:M 文件:实验五 函数文件4. 设2411()(2)0.1(3)0.01f x x x =+-+-+,编写一个MATLAB 函数文件fx.m ,使得调用f(x)时,x 可用矩阵代入,得出的f(x)为同阶矩阵.解:运算结果:5. 已知(40)(30)(20)fyf f=+(1) 当f(n)=n+10ln(n2+5)时,求y的值.(2) 当f(n)=1×2+2×3+3×4+...+n×(n+1)时,求y的值.解:(1)(2).实验八数据处理与多项式计较2. 将100个学生5门作业的成绩存入矩阵P中,进行如下处理:(1) 辨别求每门课的最高分、最低分及相应学生序号.(2) 辨别求每门课的平均分和尺度方差.(3) 5门课总分的最高分、最低分及相应学生序号.(4) 将5门课总分按从大到小顺序存入zcj中,相应学生序号存入xsxh.提示:上机调试时,为避免输入学生成绩的麻烦,可用取值规模在[45,95]之间的随机矩阵来暗示学生成绩.解:M文件:运行结果:3. 某气象不雅测得某日6:00~18:00之间每隔2h的室内外温度(0C)如实验表1所示.实验表1 室内外温度不雅测结果(0C)时间h 6 8 10 12 14 16 18试用三次样条插值辨别求出该日室内外6:30~18:30之间每隔2h各点的近似温度(0C).解:M文件:运行结果:4. 已知lgx在[1,101]区间10个整数采样点的函数值如实验表2所示.实验表2 lgx在10个采样点的函数值x 1 11 21 31 41 51 61 71 81 91 101试求lgx的5次拟合多项式p(x),并绘制出lgx和p(x)在[1,101]区间的函数曲线.解:M文件:5. 有3个多项式P1(x)=x4+2x3+4x2+5,P2(x)=x+2,P3(x)=x2+2x+3,试进行下列操纵:(1) 求P(x)=P1(x)+P2(x)P3(x).(2) 求P(x)的根.(3) 当x取矩阵A的每一元素时,求P(x)的值.其中:(4) 当以矩阵A为自变量时,求P(x)的值.其中A的值与第(3)题相同.解:M文件:实验九 数值微积分与方程数值求解1. 求函数在指定点的数值导数.实验六 高层画图操纵3. 已知在-5≤x ≤5区间绘制函数曲线.解:M 文件:2. 用数值办法求定积分.(1)210I π=⎰的近似值. (2) 2220ln(1)1x I dt x π+=+⎰ 解:M 文件:运行结果:3. 辨别用3种不合的数值办法解线性方程组.解:M文件:运行结果:4. 求非齐次线性方程组的通解.解:M文件:.5. 求代数方程的数值解.(1) 3x+sin x-e x=0在x0=1.5邻近的根.(2) 在给定的初值x0=1,y0=1,z0=1下,求方程组的数值解.解:M文件:(2). M文件:运行结果:6. 求函数在指定区间的极值. (1)3cos log ()x x x x x f x e ++=在(0,1)内的最小值. (2)33212112122(,)2410f x x x x x x x x =+-+在[0,0]邻近的最小值点和最小值.解:M 文件:8. 求微分方程组的数值解,并绘制解的曲线. 解: 令y1=x,y2=y,y3=z; 这样方程变成: '''0.51(0)0,(0)1,(0)1x yz y xz z xyx y z =⎧⎪=-⎪⎨=-⎪⎪===⎩,自变量是tM 文件:实验十 符号计较根本与符号微积分 一、1. 已知x=6,y=5,利用符号表达式求提示:定义符号常数x=sym(‘6’),y=sym(‘5’).解:M文件:运行结果:2. 分化因式.(1) x4-y4(2) 5135解:M文件:运行结果:5. 用符号办法求下列极限或导数.解:M文件:运行结果:6. 用符号办法求下列积分.解:M文件:运行结果:。
实验一 MATLAB运算基础之杨若古兰创作1. 先求以下表达式的值,然后显示MATLAB工作空间的使用情况并保管全部变量.(1)0 122sin851ze =+(2)21ln( 2z x=+,其中2120.455i x+⎡⎤=⎢⎥-⎣⎦(3)0.30.330.3sin(0.3)ln, 3.0, 2.9,,2.9,3.0 22a ae e az a a--+=++=--(4)2242011122123t tz t tt t t⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t解:4. 完成以下操纵:(1) 求[100,999]之间能被21整除的数的个数.(2) 建立一个字符串向量,删除其中的大写字母.解:(1) 结果:(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则请求结果是:实验二 MATLAB矩阵分析与处理1. 设有分块矩阵33322322E RAO S⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E、R、O、S分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS AO S+⎡⎤=⎢⎥⎣⎦.解: M文件如下;5. 上面是一个线性方程组:(1) 求方程的解.(2) 将方程右侧向量元素b3改为0.53再求解,并比较b3的变更和解的绝对变更.(3) 计算系数矩阵A的条件数并分析结论.解: M文件如下:实验三选择结构程序设计1. 求分段函数的值.用if语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值.解:M文件如下:2. 输入一个百分制成绩,请求输出成绩等级A、B、C、D、E.其中90分~100分为A,80分~89分为B,79分~79分为C,60分~69分为D,60分以下为E.请求:(1) 分别用if语句和switch语句实现.(2) 输入百分制成绩后要判断该成绩的合理性,对分歧理的成绩应输出出错信息.解:M文件如下3. 硅谷公司员工的工资计算方法如下:(1) 工作时数超出120小时者,超出部分加发15%.(2) 工作时数低于60小时者,扣发700元.(3) 其余按每小时84元计发.试编程按输入的工号和该号员工的工时数,计算应发工资.解:M文件下实验四 轮回结构程序设计1. 根据2222211116123n π=++++,求π的近似值.当n 分别取100、1000、10000时,结果是多少? 请求:分别用轮回结构和向量运算(使用sum 函数)来实现.解:M 文件如下:运转结果如下:2. 根据11113521y n =++++-,求:(1) y<3时的最大n 值.(2) 与(1)的n 值对应的y 值.解:M —文件如下:3. 考虑以下迭代公式:其中a 、b 为正的学数.(1) 编写程序求迭代的结果,迭代的终止条件为|x n+1-x n |≤10-5,迭代初值x 0=1.0,迭代次数不超出500次.(2) 如果迭代过程收敛于r ,那么r 的精确值是2b -,当(a,b)的值取(1,1)、(8,3)、(10,0.1)时,分别对迭代结果和精确值进行比较.解:M 文件如下:运算结果如下;5. 若两个连续天然数的乘积减1是素数,则称这两个边陲天然数是亲密数对,该素数是亲密素数.例如,2×3-1=5,因为5是素数,所以2和3是亲密数,5是亲密素数.求[2,50]区间内:(1) 亲密数对的对数.(2) 与上述亲密数对对应的所有亲密素数之和.解:M 文件:实验五 函数文件4. 设2411()(2)0.1(3)0.01f x x x =+-+-+,编写一个MATLAB 函数文件fx.m ,使得调用f(x)时,x 可用矩阵代入,得出的f(x)为同阶矩阵.解:运算结果:5. 已知(40)(30)(20)fyf f=+(1) 当f(n)=n+10ln(n2+5)时,求y的值.(2) 当f(n)=1×2+2×3+3×4+...+n×(n+1)时,求y的值.解:(1)(2).实验八数据处理与多项式计算2. 将100个先生5门功课的成绩存入矩阵P中,进行如下处理:(1) 分别求每门课的最高分、最低分及响应先生序号.(2) 分别求每门课的平均分和尺度方差.(3) 5门课总分的最高分、最低分及响应先生序号.(4) 将5门课总分按从大到小顺序存入zcj中,响应先生序号存入xsxh.提示:上机调试时,为防止输入先生成绩的麻烦,可用取值范围在[45,95]之间的随机矩阵来暗示先生成绩.解:M文件:运转结果:3. 某气象观测得某日6:00~18:00之间每隔2h的室内外温度(0C)如实验表1所示.实验表1 室内外温度观测结果(0C)时间h 6 8 10 12 14 16 18试用三次样条插值分别求出该日室内外6:30~18:30之间每隔2h各点的近似温度(0C).解:M文件:运转结果:4. 已知lgx在[1,101]区间10个整数采样点的函数值如实验表2所示.实验表2 lgx在10个采样点的函数值x 1 11 21 31 41 51 61 71 81 91 101试求lgx的5次拟合多项式p(x),并绘制出lgx和p(x)在[1,101]区间的函数曲线.解:M文件:5. 有3个多项式P1(x)=x4+2x3+4x2+5,P2(x)=x+2,P3(x)=x2+2x+3,试进行以下操纵:(1) 求P(x)=P1(x)+P2(x)P3(x).(2) 求P(x)的根.(3) 当x取矩阵A的每一元素时,求P(x)的值.其中:(4) 当以矩阵A为自变量时,求P(x)的值.其中A的值与第(3)题不异.解:M文件:实验九 数值微积分与方程数值求解1. 求函数在指定点的数值导数.实验六 高层绘图操纵3. 已知在-5≤x ≤5区间绘制函数曲线.解:M 文件:2. 用数值方法求定积分.(1)210I π=⎰的近似值. (2) 2220ln(1)1x I dt x π+=+⎰ 解:M 文件:运转结果:3. 分别用3种分歧的数值方法解线性方程组.解:M文件:运转结果:4. 求非齐次线性方程组的通解.解:M文件:.5. 求代数方程的数值解.(1) 3x+sin x-e x=0在x0=1.5附近的根.(2) 在给定的初值x0=1,y0=1,z0=1下,求方程组的数值解.解:M文件:(2). M文件:运转结果:6. 求函数在指定区间的极值.(1)3cos log ()x x x x x f x e ++=在(0,1)内的最小值. (2)33212112122(,)2410f x x x x x x x x =+-+在[0,0]附近的最小值点和最小值.解:M 文件:8. 求微分方程组的数值解,并绘制解的曲线. 解: 令y1=x,y2=y,y3=z; 如许方程变成:'''0.51(0)0,(0)1,(0)1x yz y xz z xyx y z =⎧⎪=-⎪⎨=-⎪⎪===⎩,自变量是tM 文件:实验十 符号计算基础与符号微积分一、1. 已知x=6,y=5,利用符号表达式求提示:定义符号常数x=sym(‘6’),y=sym(‘5’).解:M文件:运转结果:2. 分解因式.(1) x4-y4(2) 5135解:M文件:运转结果:5. 用符号方法求以下极限或导数.解:M文件:运转结果:6. 用符号方法求以下积分.解:M文件:运转结果:。
1 + e2 (2) z = 1 ln( x + 1 + x 2 ) ,其中 x = ⎡⎢ 2⎣-0.45 ⎦2 2 ⎪t 2 - 2t + 1 2 ≤ t <3 ⎨实验一MATLAB 运算基础1. 先求下列表达式的值,然后显示 MATLAB 工作空间的使用情况并保存全部变量。
(1) z = 2sin 8501221 + 2i ⎤5 ⎥(3) z = e 0.3a - e -0.3asin(a + 0.3) + ln 0.3 + a ,a = -3.0, - 2.9, L , 2.9, 3.03⎧t 2 0 ≤ t < 1 (4) z = ⎪t 2 - 11 ≤ t <2 ,其中 t=0:0.5:2.5 4⎩解:M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5];z2=1/2*log(x+sqrt(1+x^2))a=-3.0:0.1:3.0;3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4.完成下列操作:(1)求[100,999]之间能被21整除的数的个数。
(2)建立一个字符串向量,删除其中的大写字母。
解:(1)结果:m=100:999;n=find(mod(m,21)==0);length(n)ans=43(2).建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch=⎣O2⨯3⎥,其中E、R、O、S分别为单位矩阵、随机矩阵、零矩S⎦阵和对角阵,试通过数值计算验证A=⎢⎥。
实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MA TLAB 工作空间的使用情况并保存全部变量。
(1) 0122sin 851z e=+(2) 21ln(2z x =+,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦(3) 0.30.330.3sin(0.3)ln,3.0, 2.9,,2.9,3.022aaee a z a a --+=++=--(4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.52. 已知:1234413134787,2033657327A B --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求下列表达式的值:(1) A+6*B 和A-B+I (其中I 为单位矩阵) (2) A*B 和A.*B(3) A^3和A.^3(4) A/B及B\A(5) [A,B]和[A([1,3],:);B^2]3. 设有矩阵A 和B1234530166789101769,111213141502341617181920970212223242541311A B ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1) 求它们的乘积C 。
(2) 将矩阵C 的右下角3×2子矩阵赋给D 。
(3) 查看MA TLAB 工作空间的使用情况。
4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
(2). 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R R S A OS +⎡⎤=⎢⎥⎣⎦。
matlab实验指导答案详解(⾮常详细正确)实验⼀ MATLAB ⼯作环境熟悉及简单命令的执⾏⼀、实验⽬的:熟悉MATLAB 的⼯作环境,学会使⽤MATLAB 进⾏⼀些简单的运算。
⼆、实验内容:MATLAB 的启动和退出,熟悉MATLAB 的桌⾯(Desktop ),包括菜单(Menu )、⼯具条(Toolbar )、命令窗⼝(Command Window)、历史命令窗⼝、⼯作空间(Workspace)等;完成⼀些基本的矩阵操作;学习使⽤在线帮助系统。
三、实验步骤:1、启动MATLAB ,熟悉MATLAB 的桌⾯。
2、在命令窗⼝执⾏命令完成以下运算,观察workspace 的变化,记录运算结果。
(1)(365-52?2-70)÷3 >>(365-52*2-70)/3 ans = 63.6667(2)>>area=pi*2.5^2 area = 19.6350(3)已知x=3,y=4,在MATLAB 中求z :()232y x y x z -= >>x=3 >>y=4>>z = x ^2 * y ^3 / (x - y) ^2 z = 576(4)将下⾯的矩阵赋值给变量m1,在workspace 中察看m1在内存中占⽤的字节数。
m1=11514412679810115133216 执⾏以下命令>>m1 =[16 2 3 13 ; 5 11 10 8 ; 9 7 6 12 ; 4 14 15 1 ] >>m1( 2 , 3 ) ans = 10 >>m1( 11 ) ans = 6>>m1( : , 3 ) ans =3 10 6 15>>m1( 2 : 3 , 1 : 3 ) ans =5 11 10 9 7 6>>m1( 1 ,4 ) + m1( 2 ,3 ) + m1( 3 ,2 ) + m1( 4 ,1) ans = 34(5)执⾏命令>>help abs查看函数abs 的⽤法及⽤途,计算abs( 3 + 4i ) (6)执⾏命令>>x=0:0.1:6*pi; >>y=5*sin(x); >>plot(x,y)(6)运⾏MATLAB 的演⽰程序,>>demo ,以便对MATLAB 有⼀个总体了解。
MATLAB教程实验报告实验项目名称实验一 Matlab基本操作学生姓名汪德旺专业班级 09数教(1)班学号 0301090131实验成绩日期一. 实验目的和要求1、了解MATLAB 的开发环境。
2、熟悉Matlab的基本操作。
3、掌握建立矩阵的方法。
4、掌握MATLAB各种表达式的书写规则以及常用函数的使用。
5、填写实验报告,实验报告文件取名为report1.doc。
6、于邮件附件形式将实验报告文件report1.doc 发到邮箱*******************,邮件主题为班级学号姓名,如:09数教1班15号张三。
二、实验内容1、先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
(1)0 122sin851ze =+(2)2212 1ln(0.4552i z x x+⎡⎤==⎢⎥-⎣⎦其中(3)0.30.330.3sin(0.3)ln,22a ae e az a--+=++a=-3.0,-2.9,-2.8,…, 2.8, 2.9,3.0(4)2242,011,12,0:0.5:2.521,23t tz t tt t t⎧≤<⎪=-≤<=⎨⎪-+≤<⎩其中t2.已知:1234413134787,2033657327 A B--⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求下列表达式的值:(1)A+6*B和A-B+I(其中I为单位矩阵) (2)A*B和A.*B(3)A^3和A.^3(4)A/B和B\A(5)[A,B]和[A([1,3],:);B^2]3、设有矩阵A 和B123453016678910A=,B=17-691112131415023-41617181920970212223242541311⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦(1)求它们的乘积C 。
(2)将矩阵C 的右下角3*2子矩阵赋给D 。
(3)查看MATLAB 工作空间的使用情况。
实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
(1) 0122sin851z e =+(2) 221ln(1)2z x x =++,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--(4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 解: M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5]; z2=1/2*log(x+sqrt(1+x^2)) a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2) t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch =实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。
MATLAB全部实验及答案MATLAB全部实验及答案实验一、MATLAB基本操作实验内容及步骤4、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B 与A.*B?A*B就是线代里面的矩阵相乘A.*B是对应位置的元素相乘(3)设a=10,b=20;求i=a/b=0.5与j=a\b=2?(4)设a=[1 -2 3;4 5 -4;5 -6 7]请设计出程序,分别找出小于0的矩阵元素及其位置(单下标、全下标的形式),并将其单下标转换成全下标。
clear,clca=[1 -2 3;4 5 -4;5 -6 7];[x,y]=find(a<0);c=[];for i=1:length(x)c(i,1)=a(x(i),y(i));c(i,2)=x(i);c(i,3)=y(i);c(i,4)=(y(i)-1)*size(a,2)+x(i);endc(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?前面那个是虚数矩阵,后面那个出错(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?a^2= 22 16 1625 26 2326 24 28a.^2=1 4 99 16 425 4 9(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X( : ) 转化为列向量(8)使用三元组方法,创建下列稀疏矩阵2 0 8 00 0 0 10 4 0 06 0 0 0方法一:clear,clcdata=[2 8 1 4 6];ir=[1 1 2 3 4 ];jc=[1 3 4 2 1];s=sparse(ir,jc,data,4,4);full(s)方法二:不用三元组法clear,clca=zeros(4,4);a(1,[1,3])=[2,8];a(2,4)=1;a(3,2)=4;a(4,1)=6;a(9)写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A>> D = A.^B5、已知+?=-334sin 234πt e y t 若需要计算t ∈[-1,1],取间隔为0.01,试计算出相对应的y 值。
实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
(1) 0122sin851z e =+(2) 221ln(1)2z x x =++,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--(4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 解: M 文件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5]; z2=1/2*log(x+sqrt(1+x^2)) a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2) t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch =实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。
实验五 Matlab 编程题求解1、 用while 循环求1~100间整数的和分析:该题是我们很熟悉的一个问题,可使用迭代法来求解该问题,迭代公式为:n s s +=,但是一定要注意确定迭代变量S 和循环变量n 的初始值.clear;n = 1; s = 0; %n,s 必须初始化while n<= 100s = s+n;n = n + 1; %必须修改n 的值以保证循环能够结束 endss =50502、编写y 函数, x (x<1)y= 2x-1 (1<x<10)3x-11 (x>=10)计算出y(-3)、y(5)、y (∞)的值分析:这是一个分段函数的问题,所以可采用多分支或选择嵌套的选择结构来实现。
建立M 函数文件如下图所示。
注意该函数文件必须放在当前路径或搜索路径下。
cleary(-3) ans =-3 y(5)ans =9y(inf)ans =Infy(1)x=1未定义3、某商场对顾客所购买的商品实行打折销售,标准如下(商品价格用price来表示):price<200 没有折扣200≤price<500 3%折扣500≤price<1000 5%折扣1000≤price<2500 8%折扣2500≤price<5000 10%折扣5000≤price 14%折扣输入所售商品的价格,求其实际销售价格。
分析:考查知识点——选择结构这是一个多分支的问题,所以可采用多分支选择结构来实现。
clear; price = input('price = ');if price <200x = priceelseif price>=200&price<500x = price*0.97elseif price>=500&price<1000x = price*0.95elseif price>=1000&price<2500x = price*0.92elseif price>=2500&price<5000x = price*0.9else price>=5000x = price*0.86end注意:因为用了input函数,数据的输入必须在命令窗口输入price =4、给定一矩阵A,按其元素值不同,我们要印出不同信息。
数学实验MATLAB参考答案(重要部分)P20,ex1(5) 等于[exp(1),exp(2);exp(3),exp(4)](7) 3=1*3, 8=2*4(8) a为各列最小值,b为最小值所在的行号(10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture(11) 答案表明:编址第2元素满足不等式(30>=20)和编址第4元素满足不等式(40>=10)(12) 答案表明:编址第2行第1列元素满足不等式(30>=20)和编址第2行第2列元素满足不等式(40>=10)P20, ex2(1)a, b, c的值尽管都是1,但数据类型分别为数值,字符,逻辑,注意a 与c相等,但他们不等于b(2)double(fun)输出的分别是字符a,b,s,(,x,)的ASCII码P20,ex3>> r=2;p=0.5;n=12;>> T=log(r)/n/log(1+0.01*p)T =11.5813P20,ex4>> x=-2:0.05:2;f=x.^4-2.^x;>> [fmin,min_index]=min(f)fmin =-1.3907 %最小值min_index =54 %最小值点编址>> x(min_index)ans =0.6500 %最小值点>> [f1,x1_index]=min(abs(f)) %求近似根--绝对值最小的点f1 =0.0328x1_index =24>> x(x1_index)ans =-0.8500>> x(x1_index)=[];f=x.^4-2.^x; %删去绝对值最小的点以求函数绝对值次小的点>> [f2,x2_index]=min(abs(f)) %求另一近似根--函数绝对值次小的点f2 =0.0630x2_index =65>> x(x2_index)ans =1.2500P20,ex5>> z=magic(10)z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3417 24 76 83 90 42 49 26 33 6579 6 13 95 97 29 31 38 45 7210 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59>> sum(z)ans =505 505 505 505 505 505 505 505 505 505 >> sum(diag(z))ans =505>> z(:,2)/sqrt(3)ans =57.157746.188046.765450.229553.693613.85642.88683.46416.928210.3923>> z(8,:)=z(8,:)+z(3,:)z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3423 5 82 89 91 48 30 32 39 6683 87 101 115 119 83 87 101 115 11910 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59P 40 ex1先在编辑器窗口写下列M函数,保存为eg2_1.m function [xbar,s]=ex2_1(x)n=length(x);xbar=sum(x)/n;s=sqrt((sum(x.^2)-n*xbar^2)/(n-1));例如>>x=[81 70 65 51 76 66 90 87 61 77];>>[xbar,s]=ex2_1(x)xbar =72.4000s =12.1124P 40 ex2s=log(1);n=0;while s<=100n=n+1;s=s+log(1+n);endm=n计算结果m=37clear;F(1)=1;F(2)=1;k=2;x=0;e=1e-8; a=(1+sqrt(5))/2;while abs(x-a)>ek=k+1;F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1); enda,x,k计算至k=21可满足精度P 40 ex4clear;tic;s=0;for i=1:1000000s=s+sqrt(3)/2^i;ends,toctic;s=0;i=1;while i<=1000000s=s+sqrt(3)/2^i;i=i+1;ends,toctic;s=0;i=1:1000000;s=sqrt(3)*sum(1./2.^i);s,tocP 40 ex5c=[15 14 14 14 14 15 16 18 20 22 23 25 28 ...31 32 31 29 27 25 24 22 20 18 17 16];plot(t,c)P 40 ex6(1)clear;fplot('x^2*sin(x^2-x-2)',[-2,2])x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);plot(x,y)y=inline('x^2*sin(x^2-x-2)');fplot(y,[-2 2])(2)参数方法t=linspace(0,2*pi,100);x=2*cos(t);y=3*sin(t); plot(x,y)(3)x=-3:0.1:3;y=x;[x,y]=meshgrid(x,y);z=x.^2+y.^2;surf(x,y,z)(4)x=-3:0.1:3;y=-3:0.1:13;[x,y]=meshgrid(x,y);z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6;surf(x,y,z)(5)t=0:0.01:2*pi;x=sin(t);y=cos(t);z=cos(2*t);plot3(x,y,z)(6)theta=linspace(0,2*pi,50);fai=linspace(0,pi/2,20);[theta,fai]=meshgrid(theta,fai); x=2*sin(fai).*cos(theta);y=2*sin(fai).*sin(theta);z=2*cos(fai);surf(x,y,z)(7)x=linspace(0,pi,100);y1=sin(x);y2=sin(x).*sin(10*x);y3=-sin(x);plot(x,y1,x,y2,x,y3)page41, ex7x=-1.5:0.05:1.5;y=1.1*(x>1.1)+x.*(x<=1.1).*(x>=-1.1)-1.1*(x<-1.1);plot(x,y)page41,ex8分别使用which trapz, type trapz, dir C:\MATLAB7\toolbox\matlab\datafun\ page41,ex9clear;close;x=-2:0.1:2;y=x;[x,y]=meshgrid(x,y);a=0.5457;b=0.7575;p=a*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1);p=p+b*exp(-y.^2-6*x.^2).*(x+y>-1).*(x+y<=1);p=p+a*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x+y<=-1);mesh(x,y,p)page41, ex10lookfor lyapunovhelp lyap>> A=[1 2 3;4 5 6;7 8 0];C=[2 -5 -22;-5 -24 -56;-22 -56 -16];>> X=lyap(A,C)X =1.0000 -1.0000 -0.0000 -1.00002.0000 1.0000 -0.0000 1.0000 7.0000Chapter 3%Exercise 1>> a=[1,2,3];b=[2,4,3];a./b,a.\b,a/b,a\bans =0.5000 0.5000 1.0000ans =2 2 1ans =0.6552 %一元方程组x[2,4,3]=[1,2,3]的近似解ans =0 0 00 0 00.6667 1.3333 1.0000%矩阵方程[1,2,3][x11,x12,x13;x21,x22,x23;x31,x32,x33]=[2,4,3]的特解Exercise 2(1)>> A=[4 1 -1;3 2 -6;1 -5 3];b=[9;-2;1];>> rank(A), rank([A,b]) %[A,b]为增广矩阵ans =3ans =3 %可见方程组唯一解>> x=A\bx =2.38301.48942.0213Exercise 2(2)>> A=[4 -3 3;3 2 -6;1 -5 3];b=[-1;-2;1];>> rank(A), rank([A,b]) ans =3ans =3 %可见方程组唯一解>> x=A\bx =-0.4706-0.2941Exercise 2(3)>> A=[4 1;3 2;1 -5];b=[1;1;1];>> rank(A), rank([A,b])ans =2ans =3 %可见方程组无解>> x=A\bx =0.3311-0.1219 %最小二乘近似解Exercise 2(4)>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1 2 3]';%注意b的写法>> rank(a),rank([a,b])ans =3ans =3 %rank(a)==rank([a,b])<4说明有无穷多解>> a\bans =110 %一个特解Exercise 3>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1,2,3]';>> x=null(a),x0=a\bx =-0.62550.6255-0.20850.4170x0 =11%通解kx+x0 Exercise 4>> x0=[0.2 0.8]';a=[0.99 0.05;0.01 0.95];>> x1=a*x, x2=a^2*x, x10=a^10*x>> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> x0=[0.8 0.2]';>> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> [v,e]=eig(a)v =0.9806 -0.70710.1961 0.7071e =1.0000 00 0.9400>> v(:,1)./xans =1.17671.1767 %成比例,说明x是最大特征值对应的特征向量Exercise 5%用到公式(3.11)(3.12)>> B=[6,2,1;2.25,1,0.2;3,0.2,1.8];x=[25 5 20]'; >> C=B/diag(x)C =0.2400 0.4000 0.05000.0900 0.2000 0.0100 0.1200 0.0400 0.0900 >> A=eye(3,3)-CA =0.7600 -0.4000 -0.0500 -0.0900 0.8000 -0.0100 -0.1200 -0.0400 0.9100 >> D=[17 17 17]';x=A\D x =37.569625.786224.7690%Exercise 6(1)>> a=[4 1 -1;3 2 -6;1 -5 3];det(a),inv(a),[v,d]=eig(a) ans =-94ans =0.2553 -0.0213 0.04260.1596 -0.1383 -0.22340.1809 -0.2234 -0.0532v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766%Exercise 6(2)>> a=[1 1 -1;0 2 -1;-1 2 0];det(a),inv(a),[v,d]=eig(a) ans =1ans =2.0000 -2.0000 1.00001.0000 -1.0000 1.00002.0000 -3.0000 2.0000v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i%Exercise 6(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> det(A),inv(A), [v,d]=eig(A)ans =1ans =68.0000 -41.0000 -17.0000 10.0000-41.0000 25.0000 10.0000 -6.0000-17.0000 10.0000 5.0000 -3.000010.0000 -6.0000 -3.0000 2.0000v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887%Exercise 6(4)、(以n=5为例)%关键是矩阵的定义%方法一(三个for)n=5;for i=1:n, a(i,i)=5;endfor i=1:(n-1),a(i,i+1)=6;endfor i=1:(n-1),a(i+1,i)=1;enda%方法二(一个for)n=5;a=zeros(n,n);a(1,1:2)=[5 6];for i=2:(n-1),a(i,[i-1,i,i+1])=[1 5 6];enda(n,[n-1 n])=[1 5];a%方法三(不用for)n=5;a=diag(5*ones(n,1));b=diag(6*ones(n-1,1));c=diag(ones(n-1,1));a=a+[zeros(n-1,1),b;zeros(1,n)]+[zeros(1,n);c,zeros(n-1,1)] %下列计算>> det(a)ans =665>> inv(a)ans =0.3173 -0.5865 1.0286 -1.6241 1.9489-0.0977 0.4887 -0.8571 1.3534 -1.62410.0286 -0.1429 0.5429 -0.8571 1.0286-0.0075 0.0376 -0.1429 0.4887 -0.5865 0.0015 -0.0075 0.0286 -0.0977 0.3173 >> [v,d]=eig(a)v =-0.7843 -0.7843 -0.9237 0.9860 -0.9237 0.5546 -0.5546 -0.3771 -0.0000 0.3771-0.2614 -0.2614 0.0000 -0.1643 0.0000 0.0924 -0.0924 0.0628 -0.0000 -0.0628-0.0218 -0.0218 0.0257 0.0274 0.0257d =0.7574 0 0 0 00 9.2426 0 0 00 0 7.4495 0 00 0 0 5.0000 00 0 0 0 2.5505%Exercise 7(1)>> a=[4 1 -1;3 2 -6;1 -5 3];[v,d]=eig(a) v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766>> det(v)ans =-0.9255 %v行列式正常, 特征向量线性相关,可对角化>> inv(v)*a*v %验算ans =-3.0527 0.0000 -0.00000.0000 3.6760 -0.0000-0.0000 -0.0000 8.3766>> [v2,d2]=jordan(a) %也可用jordanv2 =0.0798 0.0076 0.91270.1886 -0.3141 0.1256-0.1605 -0.2607 0.4213 %特征向量不同d2 =8.3766 0 00 -3.0527 - 0.0000i 00 0 3.6760 + 0.0000i>> v2\a*v2ans =8.3766 0 0.00000.0000 -3.0527 0.00000.0000 0.0000 3.6760>> v(:,1)./v2(:,2) %对应相同特征值的特征向量成比例ans =2.44912.44912.4491%Exercise 7(2)>> a=[1 1 -1;0 2 -1;-1 2 0];[v,d]=eig(a)v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i>> det(v)ans =-5.0566e-028 -5.1918e-017i %v的行列式接近0, 特征向量线性相关,不可对角化>> [v,d]=jordan(a)v =1 0 11 -1 0d =1 1 00 1 10 0 1 %jordan标准形不是对角的,所以不可对角化%Exercise 7(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> [v,d]=eig(A)0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887>> inv(v)*A*vans =0.0102 0.0000 -0.0000 0.00000.0000 0.8431 -0.0000 -0.0000-0.0000 0.0000 3.8581 -0.0000-0.0000 -0.0000 0 30.2887%本题用jordan不行, 原因未知%Exercise 7(4)参考6(4)和7(1), 略%Exercise 8 只有(3)对称, 且特征值全部大于零, 所以是正定矩阵. %Exercise 9(1)>> a=[4 -3 1 3;2 -1 3 5;1 -1 -1 -1;3 -2 3 4;7 -6 -7 0]>> rank(a)ans =3>> rank(a(1:3,:))ans =2>> rank(a([1 2 4],:)) %1,2,4行为最大无关组3>> b=a([1 2 4],:)';c=a([3 5],:)'; >> b\c %线性表示的系数ans =0.5000 5.0000-0.5000 1.00000 -5.0000%Exercise 10>> a=[1 -2 2;-2 -2 4;2 4 -2]>> [v,d]=eig(a)0.3333 0.9339 -0.12930.6667 -0.3304 -0.6681-0.6667 0.1365 -0.7327d =-7.0000 0 00 2.0000 00 0 2.0000>> v'*vans =1.0000 0.0000 0.00000.0000 1.0000 00.0000 0 1.0000 %v确实是正交矩阵%Exercise 11%设经过6个电阻的电流分别为i1, ..., i6. 列方程组如下%20-2i1=a; 5-3i2=c; a-3i3=c; a-4i4=b; c-5i5=b; b-3i6=0; %i1=i3+i4;i5=i2+i3;i6=i4+i5;%计算如下>> A=[1 0 0 2 0 0 0 0 0;0 0 1 0 3 0 0 0 0;1 0 -1 0 0 -3 0 0 0;1 -1 0 0 0 0 -4 0 0;0 -1 1 0 0 0 0 -5 0;0 1 0 0 0 0 0 0 -3;0 0 0 1 0 -1 -1 0 0;0 0 0 0 -1 -1 0 1 0;0 0 0 0 0 0 -1 -1 1];>>b=[20 5 0 0 0 0 0 0 0]'; A\bans =13.34536.44018.54203.3274-1.18071.60111.72630.42042.1467%Exercise 12>> A=[1 2 3;4 5 6;7 8 0];>> left=sum(eig(A)), right=sum(trace(A))left =6.0000right =6>> left=prod(eig(A)), right=det(A) %原题有错, (-1)^n应删去left =27.0000right =27>> fA=(A-p(1)*eye(3,3))*(A-p(2)*eye(3,3))*(A-p(3)*eye(3,3))fA =1.0e-012 *0.0853 0.1421 0.02840.1421 0.1421 0-0.0568 -0.1137 0.1705>> norm(fA) %f(A)范数接近0ans =2.9536e-013%Exercise 1(1)roots([1 1 1])%Exercise 1(2)roots([3 0 -4 0 2 -1])%Exercise 1(3)p=zeros(1,24);p([1 17 18 22])=[5 -6 8 -5];roots(p)%Exercise 1(4)p1=[2 3];p2=conv(p1, p1);p3=conv(p1, p2);p3(end)=p3(end)-4; %原p3最后一个分量-4roots(p3)%Exercise 2fun=inline('x*log(sqrt(x^2-1)+x)-sqrt(x^2-1)-0.5*x'); fzero(fun,2)】%Exercise 3fun=inline('x^4-2^x');fplot(fun,[-2 2]);grid on;fzero(fun,-1),fzero(fun,1),fminbnd(fun,0.5,1.5)%Exercise 4fun=inline('x*sin(1/x)','x');fplot(fun, [-0.1 0.1]);x=zeros(1,10);for i=1:10, x(i)=fzero(fun,(i-0.5)*0.01);end;x=[x,-x]%Exercise 5fun=inline('[9*x(1)^2+36*x(2)^2+4*x(3)^2-36;x(1)^2-2*x(2)^2-20*x(3);16*x(1)-x(1)^3-2*x(2)^2-16*x(3)^2]','x');[a,b,c]=fsolve(fun,[0 0 0])%Exercise 6fun=@(x)[x(1)-0.7*sin(x(1))-0.2*cos(x(2)),x(2)-0.7*cos(x(1))+0.2*sin(x(2))];[a,b,c]=fsolve(fun,[0.5 0.5])%Exercise 7clear; close; t=0:pi/100:2*pi; x1=2+sqrt(5)*cos(t); y1=3-2*x1+sqrt(5)*sin(t);x2=3+sqrt(2)*cos(t); y2=6*sin(t);plot(x1,y1,x2,y2); grid on; %作图发现4个解的大致位置,然后分别求解y1=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[1.5,2])y2=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[1.8,-2])y3=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[3.5,-5])y4=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[4,-4])%Exercise 8(1)clear;fun=inline('x.^2.*sin(x.^2-x-2)');fplot(fun,[-2 2]);grid on; %作图观察x(1)=-2;x(3)=fminbnd(fun,-1,-0.5);x(5)=fminbnd(fun,1,2);fun2=inline('-x.^2.*sin(x.^2-x-2)');x(2)=fminbnd(fun2,-2,-1);x(4)=fminbnd(fun2,-0.5,0.5);x(6)=2feval(fun,x)%答案: 以上x(1)(3)(5)是局部极小,x(2)(4)(6)是局部极大,从最后一句知道x(1)全局最小, x(2)最大。
实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--L (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。
解: M 文件如下;5. 下面是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程的解。
(2) 将方程右边向量元素b 3改为0.53再求解,并比较b 3的变化和解的相对变化。
(3) 计算系数矩阵A 的条件数并分析结论。
解: M 文件如下: 123d4e56g9实验三 选择结构程序设计1. 求分段函数的值。
2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。
实验一 MATLAB 运算基础之阿布丰王创作1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保管全部变量.(1)0122sin851z e =+ (2)21ln(2z x =+,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3)0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=-- (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5解:4. 完成下列把持:(1) 求[100,999]之间能被21整除的数的个数.(2) 建立一个字符串向量,删除其中的年夜写字母.解:(1) 结果:(2). 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处置1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单元矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦. 解: M 文件如下;5. 下面是一个线性方程组:(1) 求方程的解.(2) 将方程右边向量元素b 3改为0.53再求解,并比力b 3的变动和解的相对变动.(3) 计算系数矩阵A的条件数并分析结论.解: M文件如下:实验三选择结构法式设计1. 求分段函数的值.用if语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y值.解:M文件如下:2. 输入一个百分制成果,要求输出成果品级A、B、C、D、E.其中90分~100分为A,80分~89分为B,79分~79分为C,60分~69分为D,60分以下为E.要求:(1) 分别用if语句和switch语句实现.(2) 输入百分制成果后要判断该成果的合理性,对分歧理的成果应输出犯错信息.解:M文件如下3. 硅谷公司员工的工资计算方法如下:(1) 工作时数超越120小时者,超越部份加发15%.(2) 工作时数低于60小时者,扣发700元.(3) 其余按每小时84元计发.试编程按输入的工号和该号员工的工时数,计算应发工资.解:M文件下实验四循环结构法式设计1. 根据2222211116123nπ=++++,求π的近似值.当n分别取100、1000、10000时,结果是几多?要求:分别用循环结构和向量运算(使用sum函数)来实现.解:M文件如下:运行结果如下:2. 根据11113521yn=++++-,求:(1) y<3时的最年夜n值.(2) 与(1)的n值对应的y值.解:M—文件如下:3. 考虑以下迭代公式:其中a、b为正的学数.(1) 编写法式求迭代的结果,迭代的终止条件为|x n+1-x n|≤10-5,迭代初值x0=1.0,迭代次数不超越500次.(2) 如果迭代过程收敛于r,那么r的准确值是,当(a,b)的值取(1,1)、(8,3)、(10,0.1)时,分别对迭代结果和准确值进行比力.解:M 文件如下:运算结果如下;5. 若两个连续自然数的乘积减1是素数,则称这两个边境自然数是亲密数对,该素数是亲密素数.例如,2×3-1=5,由于5是素数,所以2和3是亲密数,5是亲密素数.求[2,50]区间内:(1) 亲密数对的对数.(2) 与上述亲密数对对应的所有亲密素数之和.解:M 文件:实验五 函数文件4. 设2411()(2)0.1(3)0.01f x x x =+-+-+,编写一个MATLAB 函数文件fx.m,使得调用f(x)时,x 可用矩阵代入,得出的f(x)为同阶矩阵.解:运算结果:5. 已知(40)(30)(20)f y f f =+(1) 当f(n)=n+10ln(n2+5)时,求y的值.(2) 当f(n)=1×2+2×3+3×4+...+n×(n+1)时,求y的值.解:(1)(2).实验八数据处置与多项式计算2. 将100个学生5门功课的成果存入矩阵P中,进行如下处置:(1) 分别求每门课的最高分、最低分及相应学生序号.(2) 分别求每门课的平均分和标准方差.(3) 5门课总分的最高分、最低分及相应学生序号.(4) 将5门课总分按从年夜到小顺序存入zcj中,相应学生序号存入xsxh.提示:上机调试时,为防止输入学生成果的麻烦,可用取值范围在[45,95]之间的随机矩阵来暗示学生成果.解:M文件:运行结果:3. 某气象观测得某日6:00~18:00之间每隔2h的室内外温度(0C)如实验表1所示.实验表1 室内外温度观测结果(0C)时间h 6 8 10 12 14 16 18室内温度t1 18.0 20.0 22.0 25.0 30.0 28.0 24.0室外温度t2 15.0 19.0 24.0 28.0 34.0 32.0 30.0试用三次样条插值分别求出该日室内外6:30~18:30之间每隔2h各点的近似温度(0C).解:M文件:运行结果:4. 已知lgx在[1,101]区间10个整数采样点的函数值如实验表2所示.实验表2 lgx在10个采样点的函数值x 1 11 21 31 41 51 61 71 81 91 101lgx 0 1.0414 1.3222 1.4914 1.6128 1.7076 1.7853 1.8513 1.9085 1.9510 2.0043 试求lgx的5次拟合多项式p(x),并绘制出lgx和p(x)在[1,101]区间的函数曲线.解:M文件:5. 有3个多项式P1(x)=x4+2x3+4x2+5,P2(x)=x+2,P3(x)=x2+2x+3,试进行下列把持:(1) 求P(x)=P1(x)+P2(x)P3(x).(2) 求P(x)的根.(3) 当x取矩阵A的每一元素时,求P(x)的值.其中:(4) 当以矩阵A为自变量时,求P(x)的值.其中A的值与第(3)题相同.解:M文件:实验九 数值微积分与方程数值求解1. 求函数在指定点的数值导数.实验六 高层绘图把持3. 已知在-5≤x ≤5区间绘制函数曲线.解:M 文件:2. 用数值方法求定积分.(1)210I π=⎰的近似值. (2) 2220ln(1)1x I dt x π+=+⎰ 解:M 文件:运行结果:3. 分别用3种分歧的数值方法解线性方程组.解:M文件:运行结果:4. 求非齐次线性方程组的通解.解:M文件:.5. 求代数方程的数值解.(1) 3x+sin x-e x=0在x0=1.5附近的根.(2) 在给定的初值x0=1,y0=1,z0=1下,求方程组的数值解.解:M文件:(2). M文件:运行结果:6. 求函数在指定区间的极值. (1)3cos log ()x x x x x f x e ++=在(0,1)内的最小值. (2)33212112122(,)2410f x x x x x x x x =+-+在[0,0]附近的最小值点和最小值.解:M 文件:8. 求微分方程组的数值解,并绘制解的曲线. 解: 令y1=x,y2=y,y3=z; 这样方程酿成:'''0.51(0)0,(0)1,(0)1x yz y xz z xyx y z =⎧⎪=-⎪⎨=-⎪⎪===⎩,自变量是tM 文件:实验十 符号计算基础与符号微积分一、1. 已知x=6,y=5,利用符号表达式求提示:界说符号常数x=sym(‘6’),y=sym(‘5’).解:M文件:运行结果:2. 分解因式.(1) x4-y4(2) 5135解:M文件:运行结果:5. 用符号方法求下列极限或导数.解:M文件:运行结果:6. 用符号方法求下列积分.解:M文件:运行结果:。
matlab习题五答案Matlab习题五答案Matlab是一款强大的数学软件,被广泛应用于科学计算、数据分析和工程设计等领域。
在学习Matlab的过程中,习题是不可或缺的一部分,通过解答习题可以帮助我们巩固所学的知识。
本文将给出一些常见的Matlab习题的答案,希望能对大家的学习有所帮助。
1. 矩阵运算在Matlab中,矩阵运算是一项基本的操作。
假设有两个矩阵A和B,分别为3行2列和2行3列的矩阵,我们可以使用以下代码进行矩阵相乘和相加的运算:```matlabA = [1 2; 3 4; 5 6];B = [7 8 9; 10 11 12];C = A * B; % 矩阵相乘D = A + B; % 矩阵相加```2. 绘制函数图像Matlab提供了丰富的绘图函数,可以用来绘制各种类型的图像。
例如,我们可以使用`plot`函数来绘制一个函数的图像。
假设要绘制函数y = sin(x)在区间[0,2π]上的图像,可以使用以下代码:```matlabx = linspace(0, 2*pi, 100); % 生成一个包含100个点的等差数列y = sin(x);xlabel('x');ylabel('y');title('y = sin(x)');```3. 数据拟合在实际应用中,我们常常需要通过已知的数据点来拟合一个函数。
Matlab提供了`polyfit`函数可以用来进行多项式拟合。
假设有一组数据点(x, y),我们要拟合一个二次多项式,可以使用以下代码:```matlabx = [1 2 3 4 5];y = [2 3 5 7 9];p = polyfit(x, y, 2); % 二次多项式拟合```4. 图像处理Matlab还提供了丰富的图像处理函数,可以用来对图像进行各种操作。
例如,我们可以使用`imread`函数读取一张图像,然后使用`imrotate`函数对图像进行旋转。
实验五
1、编写程序,该程序在同一窗口中绘制函数在
[]0,2π之间的正弦曲线和余弦曲线,步长
为200/π,线宽为2个象素,正弦曲线设置为蓝色实线,余弦曲线颜色设置为红色虚线,两条曲线交点处,用红色星号标记并标注sin(x)=cos(x);通过函数方式在生成的图形中添加注释,至少应包括:标题,文本注释,图例和坐标轴标注。
%x=linspace(0,2*pi,1000);x=[0:pi/200:2*pi]sinx =sin(x);cosx =cos(x);
k=find(abs(sinx-cosx)<1e-2);x1=x(k);
plot(x,sinx,'LineWidth',2)
hold on ,plot(x,cosx,'r:','LineWidth',2)hold on ,plot(x1,sin(x1),'r*')xlabel('x:(0-2\pi)');
ylabel('y:sin(x)/cos(x)');
title('正弦-余弦曲线');
text(x1+0.1,sin(x1),'sin(x)=cos(x)');legend('sin(x)','cos(x)');
1
2
34
5
6
7
x:(0-2π)
y :s i n (x )/c o s (x )
正弦-余弦曲线
2、绘制图像:双曲抛物面:22
x y z =-
,1616x -<<,44y -<<,并对绘制的双曲抛物面尝试进行视点控制。
[X,Y]=meshgrid(-16:0.4:16,-4:0.1:4);Z =X.^2/16-Y.^2/4;
subplot(1,3,1),plot3(X,Y,Z),view(0,180),title('azimuth =0,elevation =180');
subplot(1,3,2),plot3(X,Y,Z),view(-37.5,-30),title('azimuth =
-37.5,elevation =-30');
subplot(1,3,3),plot3(X,Y,Z),view([3,3,2]),title('viewpoint=[3,3,1]');
3、表中列出了4个观测点的6次测量数据,将数据绘制成为分组形式和堆叠形式的条形图。
>>y=[3696;6774;7323;4252;2487;8744];
>>bar(y)
>>bar(y,’stack’)
第1次
第2次第3次第4次第5次第6次观测点1367428观测点2673247观测点3972584观测点4
6
4
3
2
7
4
4、某次考试优秀、良好、中等、及格和不及格的人数分别为7、17、23、19和5,,绘制饼图进行成绩统计分析并将优秀成绩分离出来。
x=[71723195];L=[10000];colormap(hot);
pie(x,L),title('学生成绩统计饼图');legend('优秀','良好','中等','及格','不及
格');
24%
32%
27%
7%
学生成绩统计饼图 优秀良好中等及格不及格
5、2
2
y x
xe
z --=,当x 和y 的取值范围均为-2到2时,用建立子窗口的方法在同一个图形窗
口中绘制出三维线图、网格图、表面图和带渲染效果的表面图。
>>[x,y]=meshgrid([-2:.2:2]);>>z=x.*exp(-x.^2-y.^2);>>mesh(x,y,z)>>subplot(2,2,1),plot3(x,y,z)>>title('plot3(x,y,z)')>>subplot(2,2,2),mesh(x,y,z)>>title('mesh (x,y,z)')>>subplot(2,2,3),surf(x,y,z)>>title('surf (x,y,z)')>>subplot(2,2,4),surf(x,y,z),shading interp >>title('surf (x,y,z),shading interp')
6、用sphere函数产生球表面坐标,绘制不通明网格图、透明网格图、表面图和带剪孔的
表面图。
>>[x,y,z]=sphere(30);
>>mesh(x,y,z)
>>mesh(x,y,z),hidden off
>>surf(x,y,z)
>>z(18:30,1:5)=NaN*ones(13,5); >>surf(x,y,z)
axis square
axis off。