工程热力学(第三版)习题答案全解可打印第五章
- 格式:pdf
- 大小:1.34 MB
- 文档页数:27
第五章 热力学第二定律5-1 利用逆向卡诺机作为热泵向房间供热,设室外温度为5C −D ,室内温度为保持20C D 。
要求每小时向室内供热42.510kJ ×,试问:(1)每小时从室外吸多少热量?(2)此循环的供暖系数多大?(3)热泵由电机驱动,设电机效率为95%,求电机功率多大?(4)如果直接用电炉取暖,问每小时耗电几度(kW h ⋅)?解:1(20273)K 293K T =+=、2(5273)K 268K T =−+=、142.510kJ/h Q q =×(1)逆向卡诺循环1212Q Q q q T T =214421268K 2.510kJ/h 2.28710kJ/h293KQ Q T q q T ==××=×(2)循环的供暖系数112293K 11.72293K 268KT T T ε′===−−(3)每小时耗电能1244w (2.5 2.287)10kJ/h 0.21310kJ/hQ Q q q q =−=−×=×电机效率为95%,因而电机功率为40.21310kJ/h 0.623kW3600s/h 0.95P ×==×(4)若直接用电炉取暖,则42.510kJ/h ×的热能全部由电能供给442.5102.510kJ/h kJ/s 6.94kW3600P ×=×==即每小时耗电6.94度。
5-2 一种固体蓄热器利用太阳能加热岩石块蓄热,岩石块的温度可达400K 。
现有体积为32m 的岩石床,其中的岩石密度为32750kg/m ρ=,比热容0.89kJ/(kg K)c =⋅,求岩石块降温到环境温度290K 时其释放的热量转换成功的最大值。
解:岩石块从290K 被加热到400K 蓄积的热量212133()()2750kg/m 2m 0.89kJ/(kg K)(400290)K 538450kJQ mc T T Vc T T ρ=−=−=××⋅×−=岩石块的平均温度21m 21()400K 290K342.1K 400Kln ln290Kmc T T Q T T Smc T −−====Δ在T m 和T 0之间运行的热机最高热效率0t,max m290K 110.152342.1KT T η=−=−=所以,可以得到的最大功max t ,max 10.152538450kJ 81946.0kJW Q η==×=5-3 设有一由两个定温过程和两个定压过程组成的热力循环,如图5-1所示。
第五章 气体的流动和压缩思 考 题1.既然c 里呢?答:对相同的压降(*P P -)来说,有摩擦时有一部分动能变成热能,又被工质吸收了,使h 增大,从而使焓降(*h h -)减少了,流速C 也降低了(动能损失)。
对相同的焓降(*h h -)而言,有摩擦时,由于动能损失(变成热能),要达到相同的焓降或相同的流速C ,就需要进步膨胀降压,因此,最后的压力必然降低(压力损失)。
2.为什么渐放形管道也能使气流加速?渐放形管道也能使液流加速吗?答:渐放形管道能使气流加速—是对于流速较高的超音速气流而言的,由2(1)dA dV dC dCM A V C C ===-可知,当0dA >时,若0dC >,则必1M >,即气体必为超音速气流。
超音速气流膨胀时由于dA dV dC A V C =-(V--A )而液体0dV V =,故有dA dCA C=-,对于渐放形管有0dA A >,则必0dCC<,这就是说,渐放形管道不能使液体加速。
3.在亚音速和超音速气流中,图5-15所示的三种形状的管道适宜作喷管还是适宜作扩压管?图 5-15答:可用2(1)dA dCM A C=-方程来分析判断 a) 0dA <时当1M <时,必0dC >,适宜作喷管 当1M >时,必0dC <,适宜作扩压管 b) 0dA >时当1M <时,必0dC <,适宜作扩压管 当1M >时,必0dC >,适宜作喷管c) 当入口处1M <时,在0dA <段0dC >;在喉部达到音速,继而在0dA >段0dC <成为超音速气流,故宜作喷管(拉伐尔喷管)当入口处1M >时,在0dA <段,0dC <;在喉部降到音速,继而在0dC <成为亚音速气流,故宜作扩压管(缩放形扩压管)。
(a) (b) (c)4. 有一渐缩喷管,进口前的滞止参数不变,背压(即喷管出口外面的压力)由等于滞止压力逐渐下降到极低压力。
工程热力学第三版第五章曾丹苓答案第一题问题:为什么工程热力学中熵函数可以视为状态参量?在工程热力学中,熵函数是一个很重要的物理量,它可以用于描述系统的无序程度和能量分布均匀程度。
熵函数被定义为系统的状态参量,因为它只取决于系统的初始状态和终态,并且与路径无关。
其原因可以从以下两个方面解释:1.熵函数的数学性质:熵函数具有可加性和广延性的数学性质。
对于一个复合系统,其熵等于各个组成部分的熵之和。
这个性质导致熵函数可以作为状态参量来描述系统的热力学状态。
2.熵函数与平衡态:在平衡态下,系统的熵函数达到最大值,这也是热力学第二定律的表述之一。
因此,熵函数可以作为判断系统是否处于平衡态的指标。
综上所述,由于熵函数具有可加性、广延性和与平衡态的关系,使得熵函数在工程热力学中可以被视为状态参量。
问题:怎样理解熵的微观本质?熵在工程热力学中是一个非常重要的概念,它可以用来描述系统的无序程度和能量分布均匀程度。
从微观的角度来理解熵的本质,可以有以下几个方面的解释:1.微观粒子的随机运动:根据统计力学的角度,熵可以理解为微观粒子的随机运动的度量。
微观粒子的随机运动越强烈,系统的熵越大,即系统的无序程度越高。
2.能量的分布均匀性:熵还可以理解为系统中能量的分布均匀程度的度量。
当系统中能量更加均匀地分布时,系统的熵将会增加。
3.系统的信息量:熵还可以解释为系统中所包含的信息量。
当一个系统的状态可能性更多时,它所包含的信息量也就越大,此时系统的熵也会增加。
因此,从微观角度来理解,熵可以看作是微观粒子的随机运动、能量分布均匀性和系统的信息量所耦合的结果。
问题:什么是可逆过程和不可逆过程?在工程热力学中,可逆过程和不可逆过程是描述系统变化方式的两个重要概念。
可逆过程是指系统从一个热力学平衡态通过一系列连续的无限小的热力学平衡态经过的过程。
在可逆过程中,系统的每一个状态都可以与外界的环境达到瞬时的热力学平衡。
可逆过程是理论上的概念,意味着系统在整个过程中没有任何内部或外部的不均匀分布或不均匀性。
工程热力学第三版课后习题答案工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么?答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。
第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。
工程热力学第三版第五章曾丹苓答案1. 引言《工程热力学第三版》是一本经典的热力学教材,对于工程热力学的基本概念和原理进行了深入浅出的讲解。
本文将针对该教材第五章的习题进行答案解析,解答由曾丹苓老师提供的习题。
2. 习题答案2.1 第1题题目:真空做功的方式有哪些?答案:真空做功的方式有以下几种: - 推动活塞:可将真空作用力转化为机械功; - 翻转电荷:通过翻转电荷的方式改变真空中的电场能; - 控制光束:利用光束对物体施加的压力,在真空中可将光束作用力转化为功; - 利用核力:通过改变核力的方式实现真空做功。
2.2 第2题题目:真空能否传递热量?答案:真空是不具备传递热量的能力的。
传热需要在物质之间进行,真空并不是一种物质,因此不能传递热量。
2.3 第3题题目:真空多壁外壳热量计的特点是什么?答案:真空多壁外壳热量计是一种常用于测量热传导系数和热辐射量的仪器。
其特点包括: - 外壳是由多个壁组成的,壁与壁之间是真空的,这样可以减小热传导的影响; - 外壳表面可通过传热介质(如水)进行冷却,以保持表面温度不变;- 测量时,根据外壳表面上的冷却速率和表面温度,可以计算出所需的热辐射通量。
2.4 第4题题目:真空吸附的传热方式有哪些?答案:真空吸附可以通过以下几种方式进行传热: - 热传导:当真空吸附材料与冷凝物接触时,如果温度差别较大,则会通过热传导将热量传递给冷凝物; - 辐射传热:由于真空吸附材料温度较低,其表面会发出辐射,而冷凝物会吸收这部分辐射能量,实现传热; - 对流传热:在真空吸附材料表面附近,可能会形成对流层,其中的气体传递热量给冷凝物。
2.5 第5题题目:真空制冷的原理是什么?答案:真空制冷是一种利用真空中反磁性气体的磁性逐渐增大的性质来实现制冷的方法。
其原理如下: - 在反磁性气体处于真空状态下时,通过对其施加磁场,反磁性气体的磁矩朝磁场方向排列。
- 将反磁性气体与一个热源接触,通过热力学第二定律,工作物质吸收热量,热源受热。
第五章 气体的流动和压缩思 考 题1.既然()*2c h h=-对有摩擦和无摩擦的绝热流动都适用,那么摩擦损失表现在哪里呢?答:对相同的压降(*P P -)来说,有摩擦时有一部分动能变成热能,又被工质吸收了,使h 增大,从而使焓降(*h h -)减少了,流速C 也降低了(动能损失)。
对相同的焓降(*h h -)而言,有摩擦时,由于动能损失(变成热能),要达到相同的焓降或相同的流速C ,就需要进步膨胀降压,因此,最后的压力必然降低(压力损失)。
2.为什么渐放形管道也能使气流加速?渐放形管道也能使液流加速吗?答:渐放形管道能使气流加速—是对于流速较高的超音速气流而言的,由2(1)dA dV dC dCM A V C C ===-可知,当0dA >时,若0dC >,则必1M >,即气体必为超音速气流。
超音速气流膨胀时由于dA dV dC A V C =-(V--A )而液体0dV V =,故有dA dCA C=-,对于渐放形管有0dA A >,则必0dCC<,这就是说,渐放形管道不能使液体加速。
3.在亚音速和超音速气流中,图5-15所示的三种形状的管道适宜作喷管还是适宜作扩压管?图 5-15答:可用2(1)dA dCM A C=-方程来分析判断 a) 0dA <时当1M <时,必0dC >,适宜作喷管 当1M >时,必0dC <,适宜作扩压管 b) 0dA >时当1M <时,必0dC <,适宜作扩压管 当1M >时,必0dC >,适宜作喷管c) 当入口处1M <时,在0dA <段0dC >;在喉部达到音速,继而在0dA >段0dC <成为超音速气流,故宜作喷管(拉伐尔喷管)当入口处1M >时,在0dA <段,0dC <;在喉部降到音速,继而在0dC <成为亚音速气流,故宜作扩压管(缩放形扩压管)。
第5章热力学第二定律5.1 本章基本要求 (45)5.2 本章重点: (45)5.3 本章难点 (45)5.4 例题 (46)5.5思考及练习题 (55)5.6 自测题 (60)5.1 本章基本要求理解热力学第二定律的实质,卡诺循环,卡诺定理,孤立系统熵增原理,深刻理解熵的定义式及其物理意义。
熟练应用熵方程,计算任意过程熵的变化,以及作功能力损失的计算,了解火用、火无的概念。
5.2 本章重点:学习本章应该掌握以下重点内容:,l.深入理解热力学第二定律的实质,它的必要性。
它揭示的是什么样的规律;它的作用。
2.深入理解熵参数。
为什么要引入熵。
是在什么基础上引出的。
怎样引出的。
它有什么特点。
3.系统熵变的构成,熵产的意义,熟练地掌握熵变的计算方法。
4.深入理解熵增原理,并掌握其应用。
5.深入理解能量的可用性,掌握作功能力损失的计算方法5.3 本章难点l.过程不可逆性的理解,过程不可逆性的含义。
不可逆性和过程的方向性与能量可用性的关系。
2.状态参数熵与过程不可逆的关系。
3.熵增原理的应用。
4.不可逆性的分析和火用分析.5.4 例题例1:空气从P1=0.1MPa ,t1=20℃,经绝热压缩至P2=0.42MPa ,t2=200℃。
求:压缩过程工质熵变。
(设比热为定值)。
解:定压比热:k kg kJ R C P ⋅=⨯==/005.1287.02727由理想气体熵的计算式:k kg kJ P P R T T C S P ⋅=-=-=∆/069.01.042.0ln 287.0293473ln 005.1ln ln121212例2:刚性容器中贮有空气2kg ,初态参数P1=0.1MPa ,T1=293K ,内装搅拌器,输入轴功率WS=0.2kW ,而通过容器壁向环境放热速率为kW Q 1.0.=。
求:工作1小时后孤立系统熵增。
解:取刚性容器中空气为系统,由闭系能量方程:U Q W s ∆+=..经1小时,()12..36003600T T mC Q W v s -+=()K mC Q W T T v 5447175.021.02.036002933600..12=⨯-+=⎪⎭⎫ ⎝⎛-+=由定容过程:1212T T P P =,MPa T T P P 186.02935441.01212=⨯==取以上系统及相关外界构成孤立系统:sursys iso S S S ∆+∆=∆K kJ T Q S sur /2287.12931.036000=⨯==∆K kJ S iso /12.22287.18906.0=+=∆例3:压气机空气由P1=100kPa ,T1=400K ,定温压缩到终态P2=1000kPa ,过程中实际消耗功比可逆定温压缩消耗轴功多25%。
第五章自我测验题
1、已知v=f(p,v),证明循环关系式
2、试证范德瓦尔气体
(l)
(2)
(3)
(4)C v只是温度的函数。
(5)定温过程的焓差为
(6)定温过程的熵差为
(7)可逆定温过程的膨胀功为
(8)可逆定温过程的热量为
(9)绝热膨胀功为
(10)绝热自由膨胀时
3、某气体的状态方程为,式中的C为常数。
试求:
(1)经图示循环1-B-2-A-1后系统热力学能的变化,及与外界交换的功量和热量。
已知且比热容为常数
(2)此气体的焦耳-汤姆孙系数。
4、假定某气体的等压体积膨胀系数为,等温压缩率
,其中a、b都是常数。
导出这种气体的状态方程。
5、0.5kgCH4在0.005立方米的容器内的温度为100℃。
试用:(1)理想气体状态方程式;(2)范德瓦尔方程分别计算其压力。
6、试用通用压缩因子图确定O2在160K与0.0074 立方米/kg时的压力。
已知T c=154.6K,p c=5050kPa。
7、理想气体状态方程、范德瓦尔方程、维里方程、对比态方程、通用压缩因子图各有什么特点,有何区别,各适用于什么范围?
8、如何理解本章所导出的微分方程式为热力学一般关系式。
这些一般关系式在研究工质的热力性质时有何用处?
第五章自测题答案
3、
(1)△u=0,q=w=;
(2)
4、V=a T-b p+常数
5、
(1)19.33MPa (2)17.46MPa 6、3.98MPa。
第五章 热力学第二定律一、选择题1 制冷循环工质从低温热源吸热q 2,向高温热源放热q 1,其制冷系数等于AA . 212q q q - B . 211q q q - C . 221q q q - D .121q q q - 2.供暖循环工质从低温热源吸热q 2, 向高温热源放热q 1,其热泵系数等于 BA .212q q q - B . 211q q q - C .221q q q - D .121q q q - 3.卡诺制冷循环的高温热源为温度T 0环境,低温热源温度为T 1,其制冷系数εc = AA .101T T T -B .100T T T -C .1- 10T TD .1-01T T 4.卡诺供暖循环的冷源温度为T 0环境,热源温度为T 1,其热泵系数COP = AA .011T T T -B .010T T T -C .1-10T TD .1-01T T 5.制冷系数ε的取值范围为DA .大于1B .大于1或等于1C .小于1D .大于1, 等于1或小于16.热泵系数COP 的取值范围为AA .大于1B .小于1或等于1C .小于1D .大于1,等于1或小于17.可逆循环的热效率与不可逆循环的热效率相比, DA .前者高于后者B .两者相等C .前者低于后者D .前者可以高于、等于、低于后者8.在两个恒温热源T 1和T 2之间(T 1> T 2),概括性卡诺循环的热效率与卡诺循环的热效率相比, BA .前者高于后者B .两者相等C .前者低于后者D .前者可以高于、等于、低于后者9.多热源可逆循环工质的最高温度为T 1,最低温度为T 2,平均吸热为1T ,平均放热温度为2T ,则其循环热效率为BA .1-12T TB .1-12T TC .1- 2211T T T T --D .1- 1122T T T T --10. 对于可逆循环,⎰T q δ B D A .>0 B .=0C .<0D .=⎰ds 11. 不可逆循环的⎰T q δ C A .>0 B .=0C .<0D .≤0 12. 热力学第二定律指出C DA .能量的总量保持守恒B .第一类永动机不可能成功C .热不能全部变为有用功D .单热源热机不可能成功13. 理想气体经可逆定容过程从T 1升高到T 2,其平均吸热温度12T = AA .(T 2-T 1)/ln 12T T B .C v (T 2-T 1)/ln 12T T C .(T 2-T 1)/ C v ln 12T T D .221T T + 14. 1~A ~2为不可逆过程,1~B ~2为可逆过程,则C DA .⎰21A Tqδ>⎰21B T q δ B .⎰21A T q δ=⎰21B T q δ C .⎰21A T q δ<⎰21B T q δ D .⎰21A ds = ⎰21B ds 15. 自然现象的进行属于BCDA..................................................................................................... 可逆过程B.不可逆过程C.具有方向性过程D.自发过程16. 克劳休斯关于热力学第二定律的表述说明CDA.热不能从低温物体传向高温物体B.热只能从高温物体传向低温物体C.热从低温物体传向高温物体需要补偿条件D.热只能自发地从高温物体传向低温物体17. 对卡诺循环的分析可得到的结论有: ABDA.提高高温热源温度降低低温热源温度可提高热效率B.单热源热机是不可能实现的C.在相同温限下,一切不可逆循环的热效率都低于可逆循环D.在相同温限下,一切可逆循环的热效率均相同18. 卡诺循环是B CA.由两个等温过程和两个绝热过程组成的循环B.热效率最高的循环C. 热源与冷源熵变之和为零的循环D.输出功最大的循环19. 卡诺定理指出: ABCDA.在相同的高温热源和低温热源间工作的一切可逆机的热效率均相同B.在相同高温热源和低温热源间工作的一切不可逆机的热效率必小于可逆机的热效率C.单热源热机是不可能成功的D.提高T1降低T2可以提高t20. A是可逆机,B是不可逆机。
第一章基本概念与定义1.答:不一定。
稳定流动开口系统内质量也可以保持恒定2.答:这种说法是不对的。
工质在越过边界时,其热力学能也越过了边界。
但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。
3.答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。
稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。
平衡状态并非稳定状态之必要条件。
物系内部各处的性质均匀一致的状态为均匀状态。
平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。
4.答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。
当地大气压不一定是环境大气压。
环境大气压是指压力仪表所处的环境的压力。
5.答:温度计随物体的冷热程度不同有显著的变化。
6.答:任何一种经验温标不能作为度量温度的标准。
由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。
7.答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。
8.答:(1)第一种情况如图1-1(a),不作功(2)第二种情况如图1-1(b),作功(3)第一种情况为不可逆过程不可以在p-v图上表示出来,第二种情况为可逆过程可以在p-v图上表示出来。
9.答:经历一个不可逆过程后系统可以恢复为原来状态。
系统和外界整个系统不能恢复原来状态。
10.答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。
11.答:不一定。
主要看输出功的主要作用是什么,排斥大气功是否有用。
第二章 热力学第一定律1.答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空气的热力学能不变。