自动驾驶汽车控制的核心技术线控技术解析
- 格式:doc
- 大小:22.51 KB
- 文档页数:6
◆文/江苏 高惠民线控转向系统技术综述与实车应用(一)一、概述汽车线控技术(X-by-wire)起源于飞机的电传操纵系统,飞行员不再通过传统的机械回路或液压回路来控制飞机的飞行姿态,而是通过安装在操纵杆处的传感器检测飞行员施加在其上的力和位移,并将其转换为电信号,在电控单元中将信号进行处理,然后传递到执行机构,从而实现对飞机的控制。
随着线控技术的发展,这一技术逐渐应用到汽车。
图1所示为集成线控系统线控转向(Steer by Wire,简称 SBW)系统、线控制动(Brake by Wire,简称BBW)系统示意图。
汽车线控技术就是将驾驶员的操纵动作经过传感器转变为电信号,通过电缆直接传输到执行机构的一种系统。
目前,汽车的线控技术主要有线控转向(Steer by Wire,简称 SBW)系统、线控制动(Brake by Wire,简称BBW)系统、线控驱动(Drive by Wire,简称DBW)系统、线控悬架(Suspension by Wire)系统、线控换挡(Shift by Wire)系统。
通过分布在汽车各处的传感器实时获取驾驶员的操作意图和汽车行驶过程中的各种参数信息,传递给电控单元,电控单元将这些信息进行分析和处理,得到合适的控制参数传递给各个执行机构,进行对汽车的控制,极大的提高车辆的动力性、制动性、操纵稳定性和平顺性。
其中,SBW作为线控底盘系统的关键组成部分,一直是国内外汽车厂商及学术界研究的热点。
根据我国《智能网联汽车技术路线图》规划,将在2025年实现智能线控底盘系统产业化推广应用。
SBW就是通过线控化、智能化实现个性驾驶、辅助驾驶、自动驾驶等目标,是智能网联汽车落地的关键技术。
二、SBW系统的结构及工作原理汽车转向系统大致经历了机械转向系统、液压助力转向系统(Hydraulic Power Steering,HPS)、电控液压助力转向系统 (Electro Hydraulic Power Steering,EH PS)、电动助力转向系统 (El ectr ic Power Steering,EPS)的一个发展过程。
智能电动汽车线控制动关键技术与研究进展在科技的海洋中,智能电动汽车犹如一艘扬帆远航的巨轮,而线控制动技术则是这艘巨轮上不可或缺的舵手。
它以电子信号为媒介,通过传感器、控制器和执行器等组件,实现对车辆制动系统的精确控制。
这种技术不仅提高了汽车的安全性和可靠性,还为自动驾驶技术的发展铺平了道路。
首先,让我们来探讨线控制动技术的工作原理。
当驾驶员踩下制动踏板时,传感器会捕捉到这一动作并将其转化为电信号。
随后,这些信号被传输至控制器,控制器根据车辆当前的行驶状态和外部环境信息,计算出合适的制动力矩。
最后,执行器接收到控制器的指令并驱动制动器工作,从而实现对车辆的精确制动。
然而,线控制动技术的发展并非一帆风顺。
其中最大的挑战之一就是如何确保系统的稳定性和可靠性。
由于线控制动系统完全依赖于电子信号进行控制,任何信号传输的延迟或干扰都可能导致制动失效或误操作。
因此,研究人员们一直在努力寻找解决方案。
他们通过优化算法、改进硬件设备以及加强系统测试等手段,不断提高线控制动系统的性能和稳定性。
除了稳定性和可靠性外,安全性也是线控制动技术发展的重要考量因素。
毕竟,在任何情况下,保障乘客的安全都是汽车设计的首要任务。
为此,研究人员们在线控制动系统中加入了多重安全机制。
例如,当主控制系统出现故障时,备用系统会立即接管控制任务;同时,系统还会实时监测各个组件的工作状态,一旦发现异常情况就会立即发出警报并采取相应措施。
当然,随着智能电动汽车技术的不断发展,线控制动技术也在不断进步。
近年来,研究人员们在提高线控制动系统的响应速度、降低能耗以及增强环境适应性等方面取得了显著成果。
例如,他们开发出了新型的传感器和执行器材料,使得系统更加轻便且耐用;同时,他们还改进了控制算法,使得系统能够更好地适应复杂多变的道路环境。
展望未来,线控制动技术在智能电动汽车领域的应用前景广阔。
随着自动驾驶技术的不断成熟和完善,线控制动系统将发挥越来越重要的作用。
自动驾驶汽车的线控转向控制系统发布时间:2021-03-02T04:48:07.699Z 来源:《中国科技人才》2021年第3期作者:刘琦[导读] 基于传统汽车电动助力转向系统的基本结构,文中设计转向角度控制器模块和扭矩控制器模块,实现线控转向控制系统,以用于自动驾驶汽车的自动转向控制。
东风小康汽车有限公司摘要:基于传统汽车电动助力转向系统的基本结构,文中设计转向角度控制器模块和扭矩控制器模块,实现线控转向控制系统,以用于自动驾驶汽车的自动转向控制。
其中转向角度控制器硬件使用STM32F4系列单片机,主要用于实时计算出转向扭矩值,实现转向角度的闭环控制;扭矩控制器模块主要由STM32单片机和扭矩信号生成电路构成,用于检测扭矩传感器输入及模拟扭矩传感器输出。
分别设计转向角度控制器软件和扭矩控制器软件,最后在某轿车上部署测试,车辆的转向角度控制快速精准,实现了自动驾驶车辆平台的转向控制功能。
关键词:自动驾驶汽车;线控转向系统;角度控制器;扭矩控制器引言:自从谷歌于2009年布局自动驾驶,自动驾驶技术引发了新一轮的产业热潮,且自动驾驶车辆在军事、工业、农业等各领域都有应用需求。
对于自动驾驶汽车,线控转向系统是无人驾驶汽车的重要执行机构,将驾驶意图中的转向信号通过电信号形形式发送到转向电机,由转向电机驱动转向轮。
传统驾驶汽车的转向控制是通过电动助力转向系统(ElectricPowerSteering,EPS)实现转向控制。
而电动助力转向系统是建立在传统机械转向系统的基础之上,由转向操纵机构、扭矩传感器、动力转向电动机转向传动机构转向角度传感器等系列机械和电子控制装置构成。
本设计根据目前的的。
而电动助力转向系统是建立在传统机械转向系统的基础之上,由转向操纵机构、扭矩传感器、动力转向电动机转向传动机构转向角度传感器等系列机械和电子控制装置构成。
本设计根据目前的电动助力转向系统的结构原理,设计线控转向控制系统,使汽车能根据实时的转向输入信息实现转向自动控制。
自动驾驶的线控底盘技术在实现自动驾驶汽车的控制过程中,涉及到许多问题。
例如,控制车辆的转向,是通过输入方向盘转角位置还是输入扭矩来实现的?在进行加减速行驶时,是根据力度改变油门开度吗?在进行刹车制动时,如何精确控制制动百分比数值?要了解自动驾驶控制器与底盘组件之间信息交互关系,就需要先了解车辆的底盘控制组件的原理。
自动驾驶的实现首先依赖于感知传感器对道路周边环境信息进行采集,包括摄像头、激光雷达、毫米波雷达和超声波等。
采集的数据传输到中央计算单元进行计算,用来识别车辆周边障碍物和可行驶区域,进行路线规划和控制,最后制定方向盘转角和速度等信息,传输到底盘执行机构,按照指令进行精确执行。
在整个控制过程中,底盘执行机构的功能要完善,系统响应和精度要高。
底盘执行机构就像人的手和脚,用来做控制执行,是自动驾驶控制技术的核心部件,对整个底盘系统的要求非常高。
线控底盘是自动驾驶的必要条件。
在自动换道时,常常出现回退过度甚至偏出本车道导致不安全,继而系统又通过较大的回调力矩将车辆拉回车道中央。
在自动驾驶对中或驾驶员控制换道过程中,驾驶员缓慢施加力矩进行方向盘控制时,容易出现系统抢夺方向盘。
这些问题严重影响自动驾驶控制精度,延长落地的时间。
因此,需要结合实际存在的问题给出相应的解决方案,不断协调线控底盘和控制器之间的交互问题,改进线控底盘技术,这无疑会促进线控底盘的技术。
智能化、大数据网联化给线控底盘发展带来新的契机。
智能汽车需要大量的、精确的底盘系统信号。
而种类繁多的底盘传感器,信号模式和处理方法各异,且大量传感器信号汇入控制器对信号实时处理提出更高要求,因此亟需研究新型底盘域控制器,对多源传感器信号实时处理、校验与解算理论。
智能汽车直接前馈预瞄控制需要精确的车辆模型,逼近真实车辆动力学状态。
而底盘车辆及轮胎动力学呈现复杂非线性特性,因此亟需深入研究车辆复杂动力学模型精确解算机制,促进智能汽车的动力学应用发展。
自动驾驶汽车硬件系统概述自动驾驶汽车的硬件架构、传感器、线控等硬件系统如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。
从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。
自动驾驶汽车硬件系统概述从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解:一、自动驾驶系统的硬件架构二、自动驾驶的传感器三、自动驾驶传感器的产品定义四、自动驾驶的大脑五、自动驾驶汽车的线控系统自动驾驶事故分析根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。
于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。
从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。
Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。
自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。
目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。
图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。
自动驾驶研发仿真测试流程所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。
为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。
软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。
能智造与信息技术智能汽车自动驾驶的控制方法分析王相哲(电子科技大学四川成都611730)摘要:自动驾驶汽车科技属于一类运用人工智能、视觉技术、雷达监控等科技完成无人驾驶的智能汽车把控科技,可以依照道路状况,自动对车辆开展运作,进一步打造高效合理的控制方式。
但是在当前,受到传感设备及把控体系等要素的制约,当前所运用的汽车自动驾驶科技还存在一定的缺陷。
例如,出现自动驾驶汽车故障而导致事故出现的案例,便是把控体系对危险认知不清的缘故造成的。
因此,对智能汽车自动驾驶的控制方法进行分析,具有重要的实践意义。
基于此,本文对智能汽车自动驾驶的控制方法进行研究,以供参考。
关键词:智能汽车自动驾驶现状分析控制方法中图分类号:U463.9文献标识码:A文章编号:1674-098X(2022)02(b)-0136-03随着我国社会经济快速发展,国民的生活水平显著提升,对汽车的需求逐年激增。
现如今,各大车企对于中国市场的竞争愈加激烈,呈现了电动化、网联化、智能化、共享化的“新四化”发展趋势,“互联网+汽车”模式逐渐兴起,智能汽车受到广泛关注。
可以预见,未来的一段时间内,智能化将是汽车行业发展的着力点和风向标[1]。
本文就智能汽车中如何实现自动驾驶控制方法进行分析,旨在提高公众对自动驾驶技术的了解。
1汽车自动驾驶的相关概述1.1研究背景近年来,自动驾驶科技从观念策划之间向现实运用层次稳步过渡,也有很多公司及员工加入到自动驾驶科技的探究进程中来。
自动驾驶概念出现已久,但是自动驾驶行业却鲜为人知。
20世纪80年代,无人车Naclab-1首次完成无人驾驶实验,之后,该型号车辆被运用在厢式货车上开展探究,无人车道路试验的相关法律如雨后春笋般出现。
之后,针对自动驾驶的探究渐渐走入大众视野。
2009年,自动驾驶汽车的照片广为流传,自动驾驶开始受到注重。
结合计算机工作的稳固性质及高科学性,能够与自动驾驶科技开展一定的结合,并进一步缩减由于驾驶因素引起的事故数量,与之相结合的车辆和基本设备互联科技也会经过车云交互,进一步缩减交通堵塞的状况出现。
汽车自动驾驶专题报告1、自动驾驶三大系统:感知、决策、执行驾驶技术的发展是将人类驾车替换为机器驾车的过程,因此可以拿人类驾车作类比,自动驾驶技术分为感知决策和执行三大核心环节。
感知指对于环境的场景理解能力。
例如障碍物的类型、道路标志及标线、行车车辆的检测、交通信息等数据的分类。
目前存在两种主流技术路线,一种是以特斯拉为代表的以摄像头为主导的纯视觉方案;另外一种是以谷歌、百度为代表的多传感器融合方案。
根据融合阶段不同分为前融合和后融合。
前融合指的是把所有传感器的数据作为整体进行识别,后融合指的是将不同传感器识别后的结果进行整合。
决策是依据驾驶场景、驾驶需求进行任务决策,规划出车辆的路径和对应的车身控制信号。
分为任务决策、轨迹规划、跟踪控制和执行控制四个阶段。
在决策的过程中需要综合考虑安全性、舒适性和到达速度。
执行指的是将控制信号发送给执行器,执行器执行的过程。
执行器有转向、油门、刹车、灯光档位等。
由于电动汽车执行器执行较线性,便于控制,因此比燃油车更适合作为自动驾驶汽车使用。
为了实现更精确的执行能力,线控转向、线控刹车、线控油门等技术不断发展。
2、自动驾驶分级2.1L1-L2为驾驶辅助,L3-L5为自动驾驶国家标准GB/40429-2021和SAEJ3016明确定义了汽车自动驾驶分级,将驾驶自动化分为0级至5级。
其中定义等级的原则是1)自动化驾驶系统能够执行动态驾驶任务的程度。
2)驾驶员的角色分配。
3)有无允许规范限制。
国标规定L1和L2级自动化系统命名为“驾驶辅助系统”、L3-L5命名为“自动驾驶系统”。
具体来看:L0驾驶自动化—应急辅助(EmergencyAssistance):该级别的辅助驾驶系统,可以感知环境、并提供信息或者短暂介入车辆运动控制,但是不能持续执行车辆控制。
L1驾驶自动化—部分驾驶辅助(Partialdriverassistance):该级别的辅助驾驶系统可以持续提供横向或纵向运动控制。
自动驾驶汽车控制的核心技术线控技术解析
对于自动驾驶汽车的控制有很多疑问。
比如转向,具体跟车辆的交互,是传入转向角度还是力度?刹车制动是由IPC 告诉硬件多少力度呢,还是智能到具体的制动百分比就可以?
要实现这些控制指令,首先与参考车辆的底盘组组件有很大的关系,要了解与车辆底盘的各个组件交互,就要先了解这些控制组件。
线控执行
简单地说,线控执行主要包括线控制动、转向和油门。
某些高级车上,悬架也是可以线控的。
线控执行中制动是最难的部分。
1线控油门
线控油门相当简单,且已经大量应用,也就是电子油门,凡具备定速巡航的车辆都配备有电子油门。
电子油门通过用线束(导线)来代替拉索或者拉杆,在节气门那边装一只微型电动机,用电动机来驱动节气门开度。
电子油门控制系统主要由油门踏板、踏板位移传感器、ECU(电控单元)、数据总线、伺服电动机和节气门执行机构组成。
位移传感器安装在油门踏板内部,随时监测油门踏板的位置。
当监测到油门踏板高度位置有变化,会瞬间将此信息送往ECU,ECU 对该信息和其它系统传来的数据信息进行运算处理,计算出一个控制信号,通过线路送到伺服电动机继电器,伺服电动机驱动节气门执行机构,数据总线则是负责系统ECU 与其它ECU 之间的通讯。
在自适应巡航中,则由ESP(ESC)中的ECU 来控制电机,进而控制进气门开合幅度,最终控制车速。
2线控转向
日产旗下的英菲尼迪Q50 是。