初一上数学应用题复习题型大全用心收集的
- 格式:docx
- 大小:15.12 KB
- 文档页数:2
新人教版七年级上册数学应用题汇总(只列式不计算)一、“工程问题”1、一项工程甲单独完成要6天,乙单独完成要12天,丙单独完成要15天(1)甲、乙合作几天完成这项工作?(2)甲、乙、丙合作几天完成这项工程?(3)甲、丙合作几天完成这项工作?(4)乙、丙合作几天完成这项工程?3?(5)甲、乙合作几天完成这项工作的43?(6)甲、乙、丙合作几天完成这项工程5(7)甲单独做了2天后,甲乙合作几天完成这项工作?(8)甲单独做了2天后,甲乙丙合作几天完成这项工作?(9)甲、丙合作3天后有其他工作离开,由乙单独完成,一共几天完成这项工作?4,问甲共工作了(10)乙单独做了3天,后甲乙丙合作,完成了该工程的5几天完成这项工程?4,剩下的由丙单独(11)乙单独做了3天,后甲乙合作,完成了该工程的5完成这项工作,问甲、乙、丙各工作了几天?2、某车间接到x件零件加工任务,计划每天加工120件。
(1)6天能完成,问总任务是多少件?(2)实际每天比计划多加工20件,7天能完成,问总任务多少件?2,4天能完成,问总任务多少件?(3)实际每天比计划多加工5(4)实际每天比计划多加工20件,结果比计划提前了2天完成,问总任务多少件?1,结果比计划多用了4天完成,问总任务多少(5)实际每天比计划少加工5件?3、某工程,甲单独完成要45天完成,乙单独做要30天完成,若乙先单独做了22天,剩下的由甲去完成,问甲、乙一共用几天可以完成全部工程?4、一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两对合作。
(1)求甲、乙合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天施工费为2500元,求完成此项工程需付给甲、乙两队共多少钱?5、一件工作甲队单独完成需7.5小时,乙队单独完成要5小时,现乙队单独先做1小时候,剩余工作由甲、乙两队共同完成,问这项工作还需要多长时间完成?二、配套问题1、一个工厂有32工人,要加工一批螺母和螺栓,一个工人每天可生产120个螺母或80个螺栓,已知一个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?2、一个木材加工厂,有28名职工,接到一批方桌生产任务,一个工人每天可制作120条桌腿或40个桌面,1张方桌需要一个桌面和4条桌腿,问,如何安排职工才可使每天完成的桌面和桌腿刚好配套?3、用木料做方桌,每立方米木料可做桌面50个或桌腿300条,一张方桌需要一个桌面和4条桌腿,5立方米的木料敲好可做多少张方桌?4、整理一批档案,由一个人完成需要20天,先计划由一部分人先做2天,3,假设每人的效率都然后再增加2人与他们一起做了8天,完成了这项任务的4一样,具体应先安排多少人工作?5、有一批苹果和一些箱子,如果每个箱子里装6千克,则剩余4千克苹果无箱可装,如果每个箱子装8千克苹果则期中一个箱子再装6千克才装满,还剩1只空箱子无苹果可装,问一共有多少个箱子和多少千克苹果?6、美术课上,老师计划将同学们分成若干小组做手工制作,如果每组5人,则多3人;如果每组6人则少5人,教师计划将同学们分成几组?7、一个工厂有职工660人,要加工一批螺母和螺栓,一个工人每天可生产14个螺母或20个螺栓,已知两个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?8、某校七年级安排170名学生参加义务绿化活动。
七年级上册数学常考题型归纳第一章有理数一、正负数的运用 :1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适; A .18℃~20℃ ; B .20℃~22℃ ; C .18℃~21℃ ; D .18℃~22℃;2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】;A .12月21日;B .12月22日;C .12月23日;D .12月24日 ;二、数轴: (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】; A .-1; B .-2 ; C .-3 ; D .-4; (思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______;5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( );;A .a +b>0 ;B .ab >0;C .110a b -<;D .110a b +>6、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ); A .a <a -<b <b -; B .b -<a <a -<b ; C .a -<b <b -<a ; D .b -<a <b <a -;B 0 2A-1 a 01 b图3ab 07、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( );A .0ab >B .0a b +<C .1a b <D .0a b -<8、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则c b c a +--= ;9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是 .三、相反数 :(相反的两数相加等于0,相反数与数轴的联系)10、下列各组数中,互为相反数的是( );A .)1(--与1 ;B .(-1)2与1;C .1-与1;D .-12与1;四、倒数 :(互为倒数的两数的积为1)11、-3的倒数是________;五、绝对值 (|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a=±b )12、2-等于( );A .-2 ;B .12- ; C .2 ; D .12; 13、若ab ≠0,则等式a b a b+=+成立的条件是______________;14、若有理数a, b 满足(a-1)2+|b+3|=0, 则a-b= ;15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是_____________;六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别; (-1)奇与(-1)偶的区别]ao cb 图316、下列计算中正确的是( );A .532a a a =+ ; B .22a a -=- ; C .33)(a a =- ; D .22)(a a --;七、科学计数法 (表示形式a ×10n )17、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【 】;A .精确到十分位 ;B .精确到个位;C .精确到百位;D .精确到千位; 19、下面说法中错误的是( ); A .368万精确到万位 ;B .2.58精确到百分位;C .0.0450有精确到千分位;D .10000精确到万位表示为“1万”或“1×104”;九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)20、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12] (3))23(24)32(412)3(22---×++÷÷ (4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2] . (6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用:21、已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有();A.1 ; B.2; C.3 ; D.4;22、下列说,其中正确的个数为();①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a-一定在原点的左边。
一元一次方程应用题题型汇总一、列一元一次方程解应用题完整步骤∶审∶找出等量关系设:直接设元和间接设元列:根据等量关系,列方程解∶解方程验:方程的解要符合实际情况答: 作答一、常见列方程解应用题的几种类型(一)和差倍分问题基本数量关系(抓住关键性词语)和差倍分的关键词有和、差、多、少、几分之几、几倍多几、几倍少几等.【例1】已知小明的课时费是每小时100元,底薪是20000元,余半仙的课时费是每小时2000元,底薪是50000元.若小明和余半仙在某个月上课时间长度相同,而收入情况为小明是余半仙的 .问这个月小明上了多少小时的课?(单小时课时费*小时数+底薪=总收入) 解:设这个月小明上了x小时的课,根据题意,可列方程100x + 20000 = 1/10 (2000x + 50000)解得:x = 150.答:这个月小明上了150小时的课.【例2】小明没有什么经济头脑,其日常开销主要由小红管理.一天小红看了看小明的钱包,说:“我如果给你400元,我剩下的钱是你的11倍;我如果给你500元,我剩下的钱是你的9倍.”问小明实际有多少钱?解:设小明实际有x元,根据题意,可列方程11(x + 400) + 400 = 9 (x + 500) + 500解得:x = 100答:小明实际有100元.【举一反三】1.某房间里有四条腿的椅子和三条腿的凳子共16个,如果椅子腿数与凳子腿数的和为60条,有几张椅子和几条凳子?2.一个长方形的周长是60cm,且长与宽的比是3∶2,求长方形的宽.3. 足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分. 某队在某次比赛中共踢了14场球,其中负5场,共得19分. 问这个队共胜了多少场.(二)配套问题:1.人员调配问题从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量。
调配问题中,若从一处调到另一处,则一处减,另一处加,且量相同;若另外从其他地方调入,则两处都加,且两处加的总数等于调入总数。
七年级上册数学应用题及答案大全一、有理数运算1. 某人的银行卡上存有 200 元钱,他取了 120 元钱,还了一笔帐,付了 67 元钱,最后他的银行卡上还剩下多少钱?答:银行卡上还剩下 13 元钱。
2. 某家饭店有 5 桌客人,每桌消费 78 元钱,另外还有一桌消费了 120 元钱。
饭店的总收入是多少?答:饭店的总收入是 510 元钱。
3. 汽车每小时行驶 56 公里,从 A 市到 B 市要行驶 448 公里,需要多长时间?答:汽车需要行驶 8 小时。
二、比例与比例应用1. 一朵花每天太阳下山后的 6 小时内会开放 9 朵花瓣,如果这朵花一天中太阳落山的时间为 18:30,那么它最晚开放多少朵花瓣?答:这朵花最晚开放 45 朵花瓣。
2. 一家糖果店有 4 种不同重量的糖果,它们的价格比分别是 1:2:3:4,如果第一种糖果每克 0.4 元,那么第四种糖果每克多少钱?答:第四种糖果每克 1.2 元。
3. 好视力党员比例是 3:7,全国共有 8000 万好视力人群,那么党员中好视力人群的人数是多少?答:好视力的党员人数是 3600 万。
三、平均数1. 某班有 50 个学生,他们的总成绩为 2500 分,平均分是多少?答:平均分是 50 分。
2. 一家餐厅一天供应 300 份饭菜,若中午饭时间供应的饭菜量是晚饭的 1.5 倍,中午共供应多少份饭菜?答:中午共供应 150 份饭菜。
3. 用一张面积为 20 $\mathrm{dm}^{2}$ 的长方形纸板剪出 5 个形状相同的小正方形,每个小正方形的面积是多少平方厘米?答:每个小正方形的面积是 20 平方厘米。
四、百分数1. 一桶汽油原价是 280 元,打了 8 折之后的价格是多少?答:打折后的价格是 224 元。
2. 某商场清仓促销,商品原价标价 60 元,打了 2 折的折扣,折后价格是多少?答:折后价格是 12 元。
3. 某自行车厂每条自行车生产 100 元的成本,标价 300 元,最终实际售价是标价的 80%,每条自行车的利润是多少?答:每条自行车的利润是 40 元。
应用题精选1、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?2、一个梯形的下底比上底多2cm,高是5cm,面积是40平方厘米,求上底?3、用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?4、某校七年级1班共有学生48人,其中女生人数比男生人数的多3人,这个班有男生多少人?5、把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?6、今年上半年某镇居民人均可支配收入为5109元,比去年同期增长了8.3%,去年同期这项收入为多少元?7、一辆汽车已经行驶了12000km,计划每月再行驶800km,几个月后这辆汽车将行驶20800km?8、七年级一班全体学生为地震灾区共捐款428元,七年级二班每个学生捐款10元,七年级一班所捐款数比七年级二班少22元,两班学生人数相同,求每班有多少名学生?9、一个两位数个位上的数字是1,十位上的数字是x,把1与x 对调,新两位数比原两位数小18,求x?10、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?11、有一列数,按一定规律排列成1,-3,9,-27,81,-243,……,其中某三个相邻数的和是-1701,这三个数各是多少?12、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?13、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?14、某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t,如用新工艺,则废水排量比环保限制的最大量少100t,新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?15、王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg,采摘结束后王芳从她采摘的樱桃中取出0.25千克给了李丽,这时两人的樱桃一样多,她们采摘用了多少时间?16、用方程解答下列问题:(1)x的5倍与2 的和等于x的3倍与4的差,求x?(2)y与-5的积等于y与5的和,求y?17、小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄?18、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型,Ⅲ型三种洗衣机的数量比为1:2:14,计划生产这三种洗衣机各多少台?19、用一根长60m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?20、随着农业技术的现代化,节水型灌溉得到逐步推广,喷灌和滴灌是比漫灌节水的灌溉方式,灌溉三块同样大的试验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式,后两种方式用水量分别是漫灌的25%和15%.(1)设第一块试验田用水x t,则另两块试验田的用水量各如何表示?(2)如果三块试验田共用水420t,每块试验田各用水多少吨?21、某造纸厂为节约木材,大力扩大再生纸的生产,它去年10月生产再生纸2050t,这比它前年10月再生纸产量的2倍还多150t,它前年10月生产再生纸多少吨?22、把一根长100cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5cm,应该在木棍的哪个位置锯开?23、几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人中12棵,则缺6棵树苗。
初一的应用题经典题型包括但不限于以下几种:
1. 追及问题:两个物体在同一时刻开始运动,一个在另一个前面,求后者追上前者的时间或者距离。
2. 相遇问题:两个物体从两个相对的点同时开始运动,最终在某一点相遇。
要求相遇的时间或者距离。
3. 比例问题:涉及到两个或多个数量之间的比例关系,如工程问题中的工作量与工作时间之间的比例。
4. 百分数问题:涉及到百分数的应用,例如增长率、折扣、利息等。
5. 平均数问题:求一组数的平均数,或者比较两组数的平均数。
6. 代数问题:涉及到代数方程的解,不等式的求解,函数的图象等。
7. 几何问题:涉及到几何图形的性质,如周长、面积、体积等。
8. 逻辑推理问题:通过已知信息进行逻辑推理,得出结论。
9. 最大/最小值问题:求某个量在给定条件下的最大值或最小值。
10. 方案选择问题:给定一组条件,要求选择最优的方案。
以上只是初一应用题的一些经典题型,实际上应用题的题型非常广泛,可以涉及各个学科的知识。
七年级数学上册必考题有理数应用题1.某个体儿童服装店老板以每件32元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示:问服装店老板在售完这30件连衣裙后,赚了多少钱?解:由题意可得:6×2+4×1+5×0+4×(-1)+5×(-2)+6×(-1)+(47-32)×30 =-4+450=446(元),答:服装店老板在售完这30件连衣裙后,赚了446元。
2.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,如表是某周的生产情况(超产为正,减产为负):(1)根据记录可知前三天共生产()辆;(2)产量最多的一天比产量最少的一天多生产()辆;(3)该厂实行计件工资制,每辆车60元,每天超额生产一辆奖15元,少生产一辆扣5元,那么该厂工人这周的工资总额是多少?解:(1)∵5-2-4+600=599(辆),故答案为599;(2)∵13-(-10)=23(辆),故答案为23;(3)5-2-4+13-10+6-9=-1(1400-1)×60+5×15-2×5-4×5+13×15-10×5+6×15-9×5 =84000-60+75-10-20+195-50+90-45 =84175答:该厂工人这一周的工资总额是84175元,3.某水果店新进某种水果12箱,以每箱15千克为标准(不含纸箱重量),超过或不足的千克数分别用正、负数来表示,见下表:(1)12箱水果中,最重的一箱比最轻的一箱多()千克;(2)求这12箱水果总的重量;(3)若购进这批水果成本共900元,该店以8元/千克的价格出售,在销售过程中有10%的水果损耗,求该水果店售完这批水果获利多少元?解:(1)2-(-1)=2+1=3(千克),即12箱水果中,最重的一箱比最轻的一箱多3千克,故答案为:3;(2)-1×1+1×2+0×4+1×4+2×1+12×15=-1+2+0+4+2+180=187(千克)答:这12箱水果总的重量为187千克;(3)8×187×(1-10%)-900=1346.4-900=446.4(元)答:该水果店售完这批水果获利446.4元。
七上一元一次方程应用题专题
1. 一个数的三倍加上5等于20,这个数是多少?
2. 现在小华的年龄是小明的两倍,5年后小华的年龄将是小明的1.5倍,求他们现在各自的年龄。
3. 甲组人数是乙组人数的2/5,如果甲组再增加10人,乙组人数减少10人,两组人数相等,求原来各组的人数。
4. 一块矩形花坛的长是宽的2倍,如果宽增加5米,长增加10米,长和宽分别是多少米?
5. 一条长方形围墙的长是宽的3倍,如果长增加5米,宽减少2米,围墙的长度和宽度分别是多少?
6. 小杨和小张合伙做苹果生意,小杨出资800元,小张出资600元,小杨得到的利润是小张的2倍,求他们两人分别得到的利润是多少?
7. 小明身上有某数的1/4和另外某数的1/3,共39元,求这两个数分别是多少?
8. 两个数相加得13,其中一个数是另一个数的3倍,求这两个数分别是多少?
9. 两个差为3的数的倒数的和是7/12,求这两个数。
10. 小李一共有40元,他用部分钱购买了一本书,剩下的钱还剩下购买书的三倍,求书的价格是多少?。
七年级上册数学解方程应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 解析:- 设甲出发t秒与乙相遇。
- 甲先走12米后,两人共同走的路程为(285 - 12)米。
- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度和×时间,可列方程(8 + 6)t=285 - 12。
- 化简得14t = 273,解得t=(273)/(14)=19.5秒。
2. 一辆汽车从A地到B地,若每小时行45千米,就要比原计划晚0.5小时到达;若每小时行50千米,就可比原计划提前0.5小时到达。
求A、B两地的距离。
- 解析:- 设原计划用x小时到达。
- 根据路程相等,可列方程45(x + 0.5)=50(x - 0.5)。
- 展开括号得45x+22.5 = 50x - 25。
- 移项得50x - 45x=22.5 + 25。
- 合并同类项得5x = 47.5,解得x = 9.5小时。
- 那么A、B两地的距离为50×(9.5 - 0.5)=450千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 解析:- 设还需要x天完成。
- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
- 两人合作4天的工作量为((1)/(10)+(1)/(15))×4,乙单独做x天的工作量为(1)/(15)x,可列方程((1)/(10)+(1)/(15))×4+(1)/(15)x = 1。
- 先计算((1)/(10)+(1)/(15))×4=((3 + 2)/(30))×4=(2)/(3)。
- 方程变为(2)/(3)+(1)/(15)x=1,移项得(1)/(15)x = 1-(2)/(3),(1)/(15)x=(1)/(3),解得x = 5天。
七年级经典应用题可以分为以下十六类:
1.和差倍分问题:利用和差、和倍、差倍或分数关系,求解未知量的问题。
2.行程问题:涉及速度、时间和距离的关系,如相遇、追及等问题。
3.工程问题:通过工作效率、工作时间和工作总量之间的关系,求解工程完成的时间
或效率等问题。
4.利润和折扣问题:涉及商品的进价、售价、利润率和折扣等概念,求解相关的问题。
5.浓度问题:通过溶质、溶剂和溶液之间的关系,求解浓度或质量分数等问题。
6.配套问题:涉及按比例分配或组合的问题,如零件配套、服装配套等。
7.分配问题:通过比例关系或平均分配原则,求解分配量或分配比例等问题。
8.增长率问题:涉及增长率、增长量、原量和现量等概念,求解相关的问题。
9.方程问题:通过列方程或方程组,求解未知量的问题。
10.不等式问题:通过列不等式或不等式组,求解未知量的取值范围或最值等问题。
11.函数问题:通过函数的性质、图像和解析式等,求解与函数相关的问题。
12.三角形问题:涉及三角形的边、角、面积和相似性等概念,求解相关的问题。
13.平行四边形和梯形问题:通过平行四边形的性质、判定和面积公式等,求解相关的
问题;通过梯形的性质、判定和面积公式等,求解相关的问题。
14.圆的问题:涉及圆的性质、判定和面积公式等,求解相关的问题。
15.统计与概率问题:通过数据的收集与整理、概率初步知识与事件的概率等,求解相
关的问题。
16.综合应用问题:将多个知识点融合在一起,求解复杂的应用题。
以上十六类应用题是七年级数学中常见的经典题型,需要学生掌握相应的解题方法和技巧。
初一上数学应用题复习题型
精心选一选:
1.绝对值是的数减去所得的差是()
A.B.-1C.或-1D.或1
2.较小的数减去较大的数所得的差一定是()
A.正数B.负数C.零D.不能确定
3.比3的相反数小5的数是()
A.2B.-8C.2或-8D.2或+8
4.根据加法的交换律,由式子可得()
A.B.C.D.
5.在数轴上,所表示的点在所表示的点的右边,且,则的值为()
A.-3B.-9C.-3或-9D.3或9
6.若时,,中,最大的是()
A.B.C.D.
耐心填一填:
7.计算:=___;=____.
8.2004年12月21日的天气预报,北京市的最低气温为-3℃,武汉市的最低气温为5℃,这一天北京市的最低气温比武汉市的最低气温低____℃.
9.一场足球比赛中,A队进球1个,被对方攻进3个,则A队的净胜球为___个.10.若,则与的关系是___.
11.改写省略加号的代数和的形式:=___________.
综合运用
用心想一想
12.计算:
(1)(2)
(3) (4)
13.有理数的代数和比这三个数的相反数的绝对值的和小多少?
14.下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数).。