压气机的压气过程
- 格式:pdf
- 大小:215.36 KB
- 文档页数:3
压气机工作原理压气机是一种将气体压缩为高压气体的机器,常用于工业生产中的压缩空气和气体输送。
压气机工作原理是利用机械能将气体压缩,从而提高气体的压力和密度。
本文将详细介绍压气机的工作原理、分类、应用以及未来发展趋势。
一、压气机的工作原理压气机的工作原理是将气体通过机械力的作用进行压缩,从而提高气体的压力和密度。
压气机通常由压缩元件、电动机、冷却器、控制系统等组成。
其中压缩元件是压气机的核心部件,主要有往复式压缩机和离心式压缩机两种。
1. 往复式压缩机往复式压缩机的工作原理是利用活塞在气缸内做往复运动,将气体压缩,然后排出。
往复式压缩机分为单级和多级两种。
单级往复式压缩机只有一个压缩级,适用于低压气体的压缩;多级往复式压缩机则有多个压缩级,能够将气体压缩至更高的压力,适用于高压气体的压缩。
2. 离心式压缩机离心式压缩机的工作原理是利用离心力将气体压缩。
离心式压缩机分为单级和多级两种。
单级离心式压缩机只有一个压缩级,适用于低压气体的压缩;多级离心式压缩机则有多个压缩级,能够将气体压缩至更高的压力,适用于高压气体的压缩。
二、压气机的分类根据压缩元件的不同,压气机可以分为往复式压缩机和离心式压缩机两种。
根据压缩气体的不同,压气机可以分为压缩空气机和压缩其他气体的机器。
根据压缩级数的不同,压气机可以分为单级和多级两种。
三、压气机的应用压气机广泛应用于工业生产中的压缩空气和气体输送。
压缩空气是工业制造中常用的一种工业气体,广泛应用于机械、化工、建筑、医药、食品等行业。
气体输送是指将气体从一个地方输送到另一个地方,常用于煤矿、石油、天然气等行业。
四、压气机的未来发展趋势随着工业4.0和智能制造的发展,未来的压气机将更加智能化、自动化和数字化。
压气机的控制系统将更加精准和智能化,能够实现远程监控、故障诊断和自动化控制。
压气机的节能技术也将不断提高,通过优化设计、改进材料和提高效率,降低能源消耗和环境污染。
总之,压气机是工业生产中不可或缺的一种机器,其工作原理、分类、应用和未来发展趋势都备受关注和研究。
轴流式压气机的工作原理
轴流式压气机是一种常见的流体机械,它主要通过对流动气体的动能进行转换来实现对气体的压缩。
轴流式压气机的工作原理如下:
1. 气体进入压气机通过进气口,进入压气机中的转子。
2. 转子上安装有一系列的叶片,这些叶片呈倾斜角度,使得气体在通过叶片时产生一个向前的推力。
3. 气体在经过叶片时,受到叶片的作用力,产生一个向前的冲力。
这个冲力使得气体的速度增加,同时也增加了气体的动能。
4. 当气体通过转子时,气体被推入下一个叶片组,重复上述的过程。
这样,气体在不断的通过叶片组,速度逐渐增加,并且产生了连续的推力。
5. 在气体通过压气机后,气体的动能转化为压力能,实现了气体的压缩。
此时,气体会通过出口口排出。
值得注意的是,轴流式压气机的工作原理与离心式压气机有所不同。
轴流式压气机通过叶片的作用将气体推向前进方向,而离心式压气机则通过离心力使得气体沿着轴线方向扩散。
由于工作原理的不同,轴流式压气机通常适用于需要高流量、低压比的应用,而离心式压气机则适用于需要高压比的应用。
轴流式压气机的工作原理轴流式压气机是一种常用于空气压缩和气体传输的设备,具有高效率、结构简单、体积小等优点。
它的工作原理主要涉及压力能量、动能和转动能量的转化过程。
轴流式压气机的工作原理基本上分为4个步骤:进气、压缩、扩散和排气。
第一步,进气:气体通过轴流式压气机的进气道进入,此时气体以低速度进入压气机中。
进气道的设计通常采用流线型的结构,以减小气流阻力和能量损失。
在进气道的入口处通常还会安装滤网,以过滤掉空气中的杂质和颗粒。
第二步,压缩:气体进入轴流式压气机后,经过压气机的旋转叶轮。
旋转叶轮上的叶片会将气体加速,并且将气体压缩。
叶轮上的叶片通常呈斜角,可以迅速将气体加速,并且将其推向下一个叶轮。
而叶轮的旋转则依靠电动机或者是燃气轮机提供的动力。
第三步,扩散:当气体通过轴流式压气机中的多个叶轮后,气体变得非常紧凑和高压。
然而,由于叶轮的旋转,气体的流动是一个轴向的。
为了使气体能够顺利地排出压气机,扩散器被用来将气体的轴向速度转化为静压能量,从而能够将气体尽可能地压缩。
第四步,排气:在扩散器将气体压缩后,气体排出压气机并进入下一个系统。
排气过程中,气体的流速逐渐减小,且流速与气体静压能量成反比。
此外,为了减小气体流动经过压气机后的尾流损失,通常还会在压气机的排气道中设置一些导流装置,以优化流动和减小能量损失。
总结来说,轴流式压气机的工作原理是通过进气、压缩、扩散和排气四个步骤来实现气体压缩和传输。
它利用旋转叶轮的运动和扩散器的转换作用,将气体的动能转化为压力能量,最终将气体排出。
这种工作原理使得轴流式压气机在各种应用领域中都表现出较高的效率和可靠性。
压气机工作原理
压气机是一种用于将气体压缩的设备,工作原理基于变化的体积和压力之间的关系。
在压气机内部,气体被吸入并通过压缩过程提高其压力。
压气机的工作过程可以分为吸气、压缩和排气三个阶段。
在吸气阶段,活塞或螺杆等机械构件移动,使气体从外部环境中进入压气机内部。
在这个过程中,压气机的体积会扩大,导致气体的压力降低。
接下来是压缩阶段,当活塞或螺杆移动到极限位置时,压气机的体积会迅速缩小,使气体被压缩至较高的压力。
这一过程中,气体的分子被挤压在一起,导致气体分子之间的碰撞频率增加,从而使气体的压力增加。
最后是排气阶段,当压气机的体积达到最小值时,气体被迫通过出口排出压缩空间。
在这一过程中,压气机的压力达到最高峰值,气体被排出压力容器。
压气机的工作原理可以是基于活塞、转子、螺杆等不同的机械结构。
活塞式压气机通过活塞在气缸内的运动来压缩气体;转子式压气机则利用旋转齿轮的运动来压缩气体;螺杆式压气机则是通过两个螺杆的运动来实现气体的压缩。
总的来说,压气机工作通过改变气体的体积和压力之间的关系,将气体压缩至更高的压力。
不同的压气机采用不同的机械结构,但其基本工作原理都是类似的。
压气机工作原理
压气机工作原理是指利用机械能将气体压缩的过程。
其主要原理是通过增加气体分子的密度,使气体分子之间的相互作用增强,从而达到增加气体压力的目的。
压气机一般由压气机机身、气缸、曲轴、连杆和阀门等组成。
当压气机启动时,曲轴开始旋转,带动连杆上下运动。
在气缸内,活塞与气缸壁之间形成工作腔。
当活塞下行时,工作腔内的压缩空气被压缩,从而增加了气体的密度和压力。
在压缩空气的流动过程中,压气机需要配备适当的阀门来实现气体的进出控制。
通常情况下,压缩时打开进气阀门,使气体进入气缸,然后关闭进气阀门,打开排气阀门,将压缩空气排出。
通过连续的循环压缩和排气过程,压气机可以将气体压缩到所需的压力范围内。
压缩后的气体可以用于各种工业和生产领域,例如空压机、汽车引擎、空调系统等。
总之,压气机工作原理基于机械能转化为压缩气体能量的过程,通过压气机的运转,将气体压缩到所需压力范围,满足不同工业和生产领域的需求。
轴流式压气机的增压原理概述轴流式压气机是一种常见的气体压缩设备,主要用于提升气流的压力。
本文将详细介绍轴流式压气机的增压原理,包括工作原理、结构特点、增压效率等方面。
工作原理轴流式压气机的工作原理基于气体在机件中的连续流动和动量传递。
它由一系列纵向排列的叶片和转子组成,气体流经时会受到叶片的动量转移和增压作用。
具体的工作过程可以分为下述几个步骤:1.进气阶段:气体通过进气口进入压气机,此时气体处于低压状态。
2.叶片作用:气体流经转子和叶片时,受到叶片的加速作用。
叶片的设计和位置决定了气体流动的方向和速度。
3.动量传递:气体的动能会转移到叶片上,同时气体的速度也会随之增加。
叶片的形状和角度会影响动能转移的效率。
4.增压作用:通过一系列叶片和转子的作用,气体的压力逐渐增加。
叶片和转子的数量、尺寸和排列方式都会对增压效果产生影响。
5.出气阶段:增压后的气体通过出气口排出,此时气体处于高压状态。
结构特点轴流式压气机的结构特点主要体现在以下几个方面:叶片轴流式压气机的叶片通常呈螺旋形状,可以将气体的动能转移到压缩空气中。
叶片的材料通常选择高强度和耐磨损的合金材料,以保证其工作寿命和运行稳定性。
转子转子是压气机的核心部件,由多个叶片组成。
它通常由高强度的金属材料制成,同时也要考虑材料的轻量化和疲劳性能。
转子的数量和排列方式会对气体的增压效果产生重要影响。
导向器导向器的作用是引导气流的流向和流速,调节气体进入转子的角度。
导向器的设计和调整可以影响气体的流动状态,进而影响增压效果。
进出口进出口是气体流入和流出压气机的通道,通常需要设计合理的截面积和形状,以确保气体的流通畅顺并减小压力损失。
增压效率轴流式压气机的增压效率是评估其性能的重要指标之一。
增压效率由以下几个因素决定:叶片和转子设计合理设计的叶片和转子可以最大限度地实现动能转移和增压作用。
叶片的形状、角度和尺寸需要在设计过程中加以优化。
进出口设计进出口通道的设计应尽可能减小气流的损失,以提高增压效率。
压气机工作原理压气机是一种将气体压缩成高压气体的机器。
它是工业生产和生活中经常使用的一种设备,用途广泛,包括空气压缩、气体输送、化工生产、冶金制造等领域。
本文将介绍压气机的工作原理。
压气机的工作原理可以简单地概括为:利用机械能将气体压缩,使其体积缩小,密度增大,从而提高气体的压力。
压气机的主要部件包括压缩机、电机、冷却器、气体分离器、控制系统等。
其中,压缩机是压气机的核心部件,它负责将气体压缩成高压气体。
压缩机的工作过程可以分为四个阶段:吸气、压缩、放热和排气。
在吸气阶段,压缩机的气体进口阀门打开,气体通过吸气管道进入压缩机的气缸内。
在压缩阶段,气缸内的活塞开始向上运动,将气体压缩成高压气体。
在这个过程中,气体的体积减小,密度增大,温度也随之上升。
在放热阶段,压缩机的冷却器开始工作,将压缩机内部的热量散发出去。
最后,在排气阶段,压缩机的气体出口阀门打开,高压气体通过排气管道排出压缩机。
压缩机的工作原理和性能与气体的物理性质密切相关。
在实际应用中,需要根据不同的气体类型和工作需求来选择不同类型的压缩机。
常见的压缩机类型包括往复式压缩机、螺杆式压缩机、离心式压缩机等。
不同类型的压缩机有着不同的工作原理和适用范围。
除了气体的物理性质之外,压气机的工作性能还与压缩机的结构设计、工作状态、维护保养等因素有关。
例如,压缩机的密封性能对其工作效率和稳定性有着重要影响。
压缩机的运行状态也需要得到及时监测和调整,以保证其正常工作和延长使用寿命。
总之,压气机是一种非常重要的工业设备,其工作原理和性能对于各种领域的生产和应用都有着重要的影响。
通过深入了解压气机的工作原理和特点,可以更好地选择和使用压缩机,提高生产效率和质量。
- 1 -。
压气机工作原理
压气机是一种用来增加气体压力的机械设备,它在许多工业领域中都有着广泛
的应用。
压气机的工作原理主要是通过叶片的旋转运动,使气体受到压缩,从而增加气体的压力。
下面我们将详细介绍压气机的工作原理。
首先,压气机的工作原理可以分为动力原理和压缩原理两个方面。
动力原理是
指压气机通过外部动力源(如电动机、内燃机等)驱动叶片旋转,从而产生气体的流动。
而压缩原理则是指当气体通过叶片旋转时,叶片对气体施加压力,使气体受到压缩,从而增加气体的压力。
其次,压气机的工作原理可以根据叶片结构分为离心式和轴流式两种类型。
离
心式压气机的叶片布置成圆周状,气体在叶片的作用下被甩到离心力场中,从而增加气体的压力。
轴流式压气机的叶片则呈螺旋状,气体在叶片的作用下沿着轴向流动,从而增加气体的压力。
另外,压气机的工作原理还与其工作过程密切相关。
压气机的工作过程可以分
为吸气、压缩和排气三个阶段。
在吸气阶段,气体被吸入压气机内部;在压缩阶段,气体受到叶片的作用而被压缩;在排气阶段,压缩后的气体被排出压气机。
最后,压气机的工作原理还受到一些因素的影响,如叶片数量、叶片材料、叶
片转速等。
这些因素会影响到压气机的工作效率和性能。
总的来说,压气机的工作原理是通过叶片的旋转运动,使气体受到压缩,从而
增加气体的压力。
压气机的工作原理涉及到动力原理、压缩原理、叶片结构、工作过程和影响因素等多个方面。
深入了解压气机的工作原理,有助于我们更好地应用和维护压气机设备,提高其工作效率和性能。
压气机工作原理压气机是一种能够将气体压缩的设备,其工作原理主要是通过机械运动将气体压缩,提高气体的压力和温度。
压气机广泛应用于工业生产、航空航天、能源等领域,是现代工业中不可或缺的重要设备。
压气机的工作原理可以简单地分为两个步骤:吸气和压缩。
在吸气过程中,压气机通过某种方式将外部空气引入机器内部,然后在压缩过程中,机械设备将气体加压,提高气体的密度和压力。
以下将详细介绍压气机的工作原理及其各个部件的功能。
1. 吸气过程压气机的吸气过程是将外部空气引入机器内部的过程。
在吸气过程中,压气机的主要部件是进气口和吸气阀。
进气口是气体进入机器的通道,通常位于机器的前部或侧面,可以通过管道与外部环境相连。
吸气阀则是控制气体进入机器的装置,可以根据需要打开或关闭,调节气体的流量。
当压气机开始工作时,吸气阀打开,外部空气通过进气口进入机器内部。
在进入机器后,气体会被引导到压气机的压缩室内,准备进行下一步的压缩过程。
2. 压缩过程在吸气过程结束后,压气机开始进行压缩。
在压缩过程中,气体的压力和温度会逐渐升高,从而提高气体的密度和能量。
压气机的主要部件包括压缩室、活塞或叶轮、压缩机和出气口。
压缩室是气体进行压缩的空间,通常位于压气机的内部。
在压缩室内,气体会受到机械设备的作用,逐渐被压缩和加压。
活塞或叶轮是压气机的核心部件,通过机械运动将气体进行压缩。
压缩机则是控制压缩过程的设备,可以根据需要调节压缩机的工作方式和压力。
最后,出气口是气体从压缩室排出的通道,将压缩后的气体送至需要的地方。
在压缩过程中,气体的压力和温度会不断升高,这是由于机械设备对气体的作用,使其分子间距减小,从而提高了气体的密度和能量。
压缩后的气体可以用于驱动机械设备、供应工业生产或用作能源等用途。
总结压气机的工作原理是通过吸气和压缩两个步骤将气体压缩,提高气体的密度和能量。
在吸气过程中,外部空气通过进气口进入机器内部,然后在压缩过程中,气体被压缩和加压,提高了气体的压力和温度。
第七章压气机的压气过程压气机是用来压缩气体提高气体压力的设备,它在各个工业部门中都得到广泛应用。
例如:在燃气轮机装置及压缩制冷装置中,压气机作为装置的一个组成部分,用于对工质进行压缩;在内燃机中,压气机用作增压器或扫气泵,也是许多内燃机的一个重要组成部分;而在冶金、化工及机械工业部门中,除直接用于生产过程中提高气体的压力外,还常利用压气机来生产各种气动工具所需的压缩空气。
本章主要讨论压气机中能量转换的特点及压气过程计算所用的各种基本关系式。
7-1 压气机的压气过程压气机的形式很多,工作压力范围也很广。
有的压气机直接通过改变工质的容积,实现压缩过程,图7-1a所示的活塞式压气机及图7-1b所示的转子式压气机,就属于这种类型。
有的压气机则利用高速旋转的叶轮推动气体,使气体以很高的速度运动,然后再利用扩压管使高速运动的气流降低流速而提高压力,实现气体的压缩,如图7-1c所示的离心式压气机即属于这一类。
有的在利用叶轮推动气体高速运动时,还同时利用叶轮的叶片间的流道做成扩压管的形式,使气流在叶片间通过时气体的压力有所提高,图7-1d所示的轴流式压气机,就属于这种类型的压气机。
按照热力学的能量转换的观点,各种压气机的压气过程基本上是相同的。
压气机工作时,从进气口吸入压力较低的气体,在第七章 压气机的压气过程 ·174·图7-1 典型压气机工作原理示意图压气机中进行压缩,提高气体的压力,然后经排气口输出高压气 体。
在一般情况下,单位时间内压气机生产的高压气体的数量保持稳定,因而进行热力学分析时,压气机的压气过程可作为稳定流动过程。
对于压气机来说,其进气和排气的流动动能及重力位能都可忽略不计。
根据稳定流动能量方程式,可以得到压气机中能量转换的关系为q =(h 2-h 1)+(w s )c (7-1)式中(w s )c 为压气机的轴功。
假设压气过程是可逆过程,则按轴功的表示式可以得到(w s )c =κκ)1(12)(−p p +(p 1v 1-p 2v 2)=- (7-2) ∫21d p v 即压气机压气过程的轴功等于压缩过程的容积变化功和进气、排气推动功的代数和。
压气机工作原理及结构设计一、引言压气机是一种能够将气体压缩增压的设备,广泛应用于工业生产、能源转换和空气供应等领域。
本文将详细介绍压气机的工作原理及其结构设计。
二、工作原理压气机的工作原理基于热力学中的压缩过程,通过增加气体的压力来实现能量的转换。
一般来说,压气机的工作过程可分为吸气、压缩和排气三个阶段。
1. 吸气阶段:在压气机的进气口,气体通过气流进入压缩机内部。
此时,压气机的叶轮会旋转,将气体吸入叶轮的叶片间隙中。
2. 压缩阶段:当气体被吸入叶片间隙后,叶轮的旋转将气体加速,并将其压缩。
在这个过程中,叶轮的叶片将气体推向周围的壁面,使气体压缩并增加压力。
3. 排气阶段:经过压缩后,气体被推向压气机的出口。
在此过程中,压气机的出口阀门会打开,将压缩后的气体排出。
三、结构设计为了实现压气机的高效工作,其结构设计至关重要。
下面将介绍压气机的几个关键组成部分。
1. 叶轮:叶轮是压气机的核心部件,其主要功能是通过旋转将气体吸入、压缩和排出。
叶轮通常由多个叶片组成,叶片的形状和角度会直接影响气体的流动和压缩效果。
2. 进气口和出口:进气口是气体进入压气机的通道,通常设置在压缩机的一侧。
出口则是气体排出的通道,通过出口可以将压缩后的气体输出到需要的地方。
3. 驱动装置:驱动装置是使叶轮旋转的动力来源,常见的驱动装置有电动机、内燃机等。
驱动装置的选取需要考虑压气机的使用场景和要求。
4. 冷却系统:由于压气机在工作过程中会产生大量热量,因此需要设计冷却系统来降低温度。
冷却系统通常包括散热器、冷却液等部件。
5. 控制系统:为了实现对压气机的控制和监测,需要设计相应的控制系统。
控制系统可以监测压力、温度等参数,并根据需要进行相应的调整。
四、应用领域压气机广泛应用于各个领域,如工业生产、能源转换和空气供应等。
在工业生产中,压气机常用于提供动力源和压缩空气供应。
在能源转换领域,压气机可以用于增压和输送气体。
此外,压气机还可以用于空气供应,如气体瓶充气、氧气输送等。
第七章压气机的压气过程压气机是用来压缩气体提高气体压力的设备,它在各个工业部门中都得到广泛应用。
例如:在燃气轮机装置及压缩制冷装置中,压气机作为装置的一个组成部分,用于对工质进行压缩;在内燃机中,压气机用作增压器或扫气泵,也是许多内燃机的一个重要组成部分;而在冶金、化工及机械工业部门中,除直接用于生产过程中提高气体的压力外,还常利用压气机来生产各种气动工具所需的压缩空气。
本章主要讨论压气机中能量转换的特点及压气过程计算所用的各种基本关系式。
7-1 压气机的压气过程压气机的形式很多,工作压力范围也很广。
有的压气机直接通过改变工质的容积,实现压缩过程,图7-1a所示的活塞式压气机及图7-1b所示的转子式压气机,就属于这种类型。
有的压气机则利用高速旋转的叶轮推动气体,使气体以很高的速度运动,然后再利用扩压管使高速运动的气流降低流速而提高压力,实现气体的压缩,如图7-1c所示的离心式压气机即属于这一类。
有的在利用叶轮推动气体高速运动时,还同时利用叶轮的叶片间的流道做成扩压管的形式,使气流在叶片间通过时气体的压力有所提高,图7-1d所示的轴流式压气机,就属于这种类型的压气机。
按照热力学的能量转换的观点,各种压气机的压气过程基本上是相同的。
压气机工作时,从进气口吸入压力较低的气体,在第七章 压气机的压气过程 ·174·图7-1 典型压气机工作原理示意图压气机中进行压缩,提高气体的压力,然后经排气口输出高压气 体。
在一般情况下,单位时间内压气机生产的高压气体的数量保持稳定,因而进行热力学分析时,压气机的压气过程可作为稳定流动过程。
对于压气机来说,其进气和排气的流动动能及重力位能都可忽略不计。
根据稳定流动能量方程式,可以得到压气机中能量转换的关系为q =(h 2-h 1)+(w s )c (7-1)式中(w s )c 为压气机的轴功。
假设压气过程是可逆过程,则按轴功的表示式可以得到(w s )c =κκ)1(12)(−p p +(p 1v 1-p 2v 2)=- (7-2) ∫21d p v 即压气机压气过程的轴功等于压缩过程的容积变化功和进气、排气推动功的代数和。
习题提示与答案
第八章 压气机的压气过程
8-1 设压气机进口空气的压力为0.1 MPa ,温度为27 ℃,压缩后空气的压力为0.5 MPa 。
设压缩过程为:(1)绝热过程;(2)n =1.25的多变过程;(3)定温过程。
试求比热容为定值时压气机压缩1 kg 空气所消耗的轴功及放出的热量。
提示:略。
答案:(1)(w s )c s =-176 kJ/kg ;(2)(w s )c n =-163 kJ/kg ,q c n =-48.94 kJ/kg ;
(3)(w s )c T =-138.6 kJ/kg ,q c T =-138.6 kJ/kg 。
8-2 按上题所述条件,若压气机为活塞式压气机,其余隙比为0.05,试求三种压缩过程下压气机的容积效率。
提示:余隙比h s V V ,容积效率1])[(111
2−−=n h s V p p V V η。
答案:=0.892,=0.869,=0.8。
Vs ηVn ηVT η
8-3 设活塞式压气机的余隙比为0.05,试求当压气机的压缩过程分别为绝热过程、n =1.25的多变过程、定温过程时,压气机的容积效率降低为零所对应的增压比。
提示:容积效率1])[(1112−−
=n h s V p p V V η。
答案:(
12p p )s =70.98;(12p p )n =44.95;(12p p )T
=21。
8-4 有一台两级压气机,其进口的空气压力为0.1 MPa ,温度为17 ℃,压气机产生的压缩空气的压力为2.5 MPa 。
两级气缸中的压缩过程均为n =1.3多变过程,且两级中的增压比
相同。
在两级气缸之间设置有中间冷却器,空气在其中冷却到17 ℃后送入高
压气缸。
试求压气机压缩1 kg 空气所需要的轴功,以及中间冷却器和两级气
缸中所放出的热量。
两级压缩的示功图 提示:两级压缩的增压比相同,压缩过程多变指数相同,则两级压缩耗
功量相同;中间冷却器中空气经历的是定压冷却过程,过程放热量q=c p 0ΔT ,
且充分冷却时,T 2′ =T 1;压缩过程的初始温度相同、增压比相同,则过程热
量也相同。
答案:(w s )c =-324.5kJ/kg ,q c =-62.26kJ/kg ,q =-131kJ/kg 。
8-5 有一台叶轮式压气机,其进口处空气的压力为0.1 MPa 、温度为17 ℃,而压气机产生的压缩空气的压力为0.6 MPa 。
设压气机每分钟生产的压缩空气量为20 kg ,压缩过程为绝热过程,试求压气机的绝热效率为0.85时驱动压气机所需的功率。
提示:压气机功率P c =q m Δh ;理想的绝热压气过程为等熵过程,绝热效率为理想压缩过程的耗功与实际压缩过程耗功之比,即c s c s )()(w w ηs ,cs =
;绝热过程压气机轴功(w s )c =Δh ,工质可视为理想气体。
答案:P c =-76.3 kW 。
8-6 设活塞式压气机中用于润滑气缸活塞的润滑油的闪点为180 ℃,为安全起见,压缩空气的最高温度规定不超过160℃。
若压缩过程的初始温度为27 ℃,压力为0.1 MPa ,试求压缩终了空气的压力与多变指数n 间的函数关系,以及n =1.25时压缩终了压力的最高允许值。
提示:略。
答案:p max =0.62 MPa 。
8-7 压气机中由初态(p 1,v 1)压缩到p 2,可以经过的压缩过程包括绝热过程、1<n <κ的多变过程以及定温过程。
试把它们表示在T -s 图上,并把压气过程中压气机消耗的轴功及放热量用T -s 图上的面积来表示(提示:在一定温度下理想气体的焓有确定的值,因而任何两状态间气体的焓的变化都可以用定压过程中焓的变化表示)。
提示:见题中提示。
答案:压缩过程在T -s 图上的表示:
图中,过程1-2s 、1-2n 及1-2T 分别为绝热过程,1﹤n ﹤k 的多变过程及定温过程。
压气过程中压气机消耗的轴功及放热量:
绝热过程:轴功(W s )cs 为面积12s 2T ba 1,放热量为零;
s q 21−多变过程:轴功(W s )cn 为面积12n 2T ba 1,放热量为面积12n q 21−n ca 1;
定温过程:轴功(W s )c T 为面积12T ba 1,热量为面积12T q 21−T ba 1。
8-8 设三级压缩、中间冷却的压气过程每级的增压比相同,压缩过程的多变指数也相同,中间冷却后送入下一级气缸时气体的温度都等于初态温度。
试将该过程表示在T -s 图上,并证明每一级压气机消耗的轴
功、气缸中放出的热量及中间冷却器气体放出的热量所对应的面积相等。
提示:参照习题8-7提示。
三级压缩均为增压比相同、过程多变指数相同的多变过程;两个中间冷却器中空气经历的是定压冷却过程,且充分冷却,即T1 =T3=T5 (见下图),中间冷却器中空气的放热量q=c p0ΔT;压缩过程,气缸中气体的放热量q=c nΔT;忽略过程中宏观动能与宏观位能的变化,过程的能量方程为q=Δh+w s。
答案:三级压缩过程在T-s图上的表示:。