安徽省六安市霍邱县正华外语学校2020-2021学年高一上学期期末数学试题
- 格式:docx
- 大小:887.24 KB
- 文档页数:18
2020-2021学年安徽省高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知全集U=R,A={x|x2<x},,则A∩(∁U B)等于()A. B.C. D.2. 已知命题p:∃x0∈R,x0+6>0,则¬p是()A.∃x0∈R,x0+6≥0B.∃x0∈R,x0+6≤0C.∀x∈R,x+6≥0D.∀x∈R,x+6≤03. 已知,则β−α的取值范围是()A. B. C.D.4. 已知,则()A.a>b>cB.a>c>bC.b>c>aD.b>a>c 5. 集合M={x|x=2a+4b, a∈Z, b∈Z},N={y|y=8c+4d, c∈Z, d∈Z},则()A.M=NB.M∩N=⌀C.M⊆ND.N⊆M6. 函数的最小值为()A.2B.C.D.7. 关于函数.下列说法错误的是()A.f(x)的图象关于y轴对称B.f(x)在(−∞, 0)上单调递增,在(0, +∞)上单调递减C.f(x)的值域为(0, 1]D.不等式f(x)>e−2的解集为(−∞, −2)∪(2, +∞)8. 某银行出售12种不同款式的纪念币,甲、乙、丙三人都各自收集这些纪念币.下列说法正确的()A.若甲、乙、丙三人各自收集8款纪念币,则至少有1款纪念币是三人都拥有B.若甲、乙、丙三人各自收集9款纪念币,则至少有2款纪念币是三人都拥有C.若甲、乙两人各自收集8款纪念币,则至少有4款纪念币是两人都拥有D.若甲、乙两人各自收集7款纪念币,则他们两人合起来一定会收集到这12款不同的纪念币9. 函数f(x)=ln|1+x1−x|的大致图象是()A. B.C. D.10. “a≤0”是“方程ax2+2x+1=0至少有一个负数根”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11. 某人在10月1日8:00从山下A处出发上山,15:00到达山顶B处,在山顶住宿一晚,10月2日8:00从B处沿原上山路线下山,15:00返回A处.这两天中的8:00到15:00,此人所在位置到A处的路程S(单位:千米)与时刻t(单位:时)的关系如图所示:给出以下说法:①两天的平均速度相等;②上山途中分3个阶段,先速度较快,然后匀速前进,最后速度较慢;③下山的前一半时间的平均速度小于2千米/小时;④下山的速度越来越慢;⑤两天中存在某个相同时刻,此人恰好在相同的地点.其中正确说法的个数为()A.2 B.3 C.4 D.512. 记方程①:x2+ax+1=0,方程②:x2+bx+2=0,方程③:x2+cx+4=0,其中a,b,c是正实数.若b2=ac,则“方程③无实根”的一个充分条件是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.)的值为________.能说明“若函数f(x)和g(x)在R上都是单调递增,则ℎ(x)=f(x)g(x)在R上单调递增”为假命题的函数f(x)和g(x)的解析式分别是________.设a>0,函数在区间(0, a]上的最小值为m,在区间[a, +∞)上的最小值为n.若m+n=16,则a的值为________.已知a,b都是正数,且(a+1)(b+1)=4,则ab的最大值是________,a+2b的最小值是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)已知集合,集合B={x|x2−ax+10> 0},设p:x∈A,q:x∈B.若p是q的充分条件,求实数a的取值范围.已知函数f(x)=x−2+|3−x|.(1)求不等式f(x)≤5的解集;(2)若f(x)的最小值为m,正数a,b满足ab=m,求的最小值.已知函数f(x)=4x−a∗2x+2+3(a∈R).(1)若f(x)>2x,求a的取值范围;(2)求函数f(x)在[0, 1]的最小值.已知奇函数.(1)当m为何值时,函数f(x)为奇函数?并证明你的结论;(2)判断并证明函数f(x)的单调性;(3)若g(x)=x∗f(x)+x2−18,解不等式:g(x)<0.设a>0,函数.(1)当−a≤x≤a时,求证:;(2)若g(x)=f(x)−b恰有三个不同的零点,且b是其中的一个零点,求实数b的值.随着我国人民生活水平的提高,家用汽车的数量逐渐增加,同时交通拥挤现象也越来越严重,对上班族的通勤时间有较大影响.某群体的人均通勤时间,是指该群体中成员从居住地到工作地的单趟平均用时,假设某城市上班族S中的成员仅以自驾或公交方式通勤,采用公交方式通勤的群体(公交群体)的人均通勤时间为40分钟,采用自驾方式通勤的群体(自驾群体)的人均通勤时间y(单位:分钟)与自驾群体在S中的百分数x(0<x<100)的关系为:.(1)上班族成员小李按群体人均通勤时间为决策依据,决定采用自驾通勤方式,求x 的取值范围(若群体人均通勤时间相等,则采用公交通勤方式).(2)求该城市上班族S的人均通勤时间g(x)(单位:分钟),并求g(x)的最小值.参考答案与试题解析2020-2021学年安徽省示范高中培优联盟高一(上)冬季联赛数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【答案】D【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】D【考点】命题的否定【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】不等式的基本性质【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】对数值大小的比较【解析】此题暂无解析【解答】此题暂无解答5.【答案】D【考点】集合的包含关系判断及应用交集及其运算【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】基本不等式及其应用【解析】此题暂无解析【解答】此题暂无解答7.【答案】D【考点】函数的值域及其求法命题的真假判断与应用【解析】此题暂无解析【解答】此题暂无解答8.【答案】C【考点】进行简单的合情推理【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】函数的图象变换【解析】根据函数的奇偶性和函数值的特点即可判断【解答】解∵f(x)=ln|1−x1+x|,∴f(−x)=ln|1+x1−x |=−ln|1−x1+x|=−f(x),∴f(x)为奇函数,排除C当x=e+1,则f(e+1)=ln|e+2e|=ln|e+2|−ln e>0,故排除B,当x=0时,f(0)=0,故排除A10.【答案】C【考点】充分条件、必要条件、充要条件【解析】此题暂无解析【解答】此题暂无解答11.【答案】A【考点】函数的图象与图象的变换【解析】此题暂无解析【解答】此题暂无解答12.【答案】B【考点】充分条件、必要条件、充要条件【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.)【答案】1【考点】对数的运算性质【解析】此题暂无解析【解答】此题暂无解答【答案】f(x)=x和g(x)=2x,答案不唯一.【考点】函数单调性的性质与判断函数解析式的求解及常用方法函数的单调性及单调区间【解析】此题暂无解析【解答】此题暂无解答【答案】1或9【考点】函数的最值及其几何意义【解析】此题暂无解析【解答】此题暂无解答【答案】1,【考点】基本不等式及其应用【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)【答案】由,得1≤log3x<3,即A={n∈N∗|2≤x≤5},因为p是q的充分条件,所以A⊆B,转化为不等式是x2−ax+10>0在A={x∈N∗|3≤x<8}上恒成立,进一步可得对于∀x∈{2,2,4,5,2,在x∈{2, 3, 3, 5, 6, 4}上的最小值为x=3时的函数值,所以a<19.故实数a的取值范围是.【考点】充分条件、必要条件、充要条件【解析】此题暂无解析【解答】此题暂无解答【答案】函数f(x)=x−2+|3−x|.若f(x)≤3,则有或,解得x<6或3≤x≤5,即x≤3.故原不等式的解集为{x|x≤5};函数,当x≥7时,f(x)≥1,即m=1.正数a,b满足ab=2,∴,令,当且仅当a=b=1时t取最小值为2.又∵在区间,∴在t=2时取得最小值3,故的最小值为3(此时a=b=8).【考点】基本不等式及其应用绝对值不等式的解法与证明函数的最值及其几何意义【解析】此题暂无解析【解答】此题暂无解答【答案】,因为(当且仅当时,所以,所以,得.记函数f(x)在[0, 1]的最小值g(a)x,则函数变为y=t7−4a∗t+3(3≤t≤2),因为ℎ(t)=t2−3a∗t+3在t≤2a时单调递减,在t≥2a时单调递增,所以①当2a≤1,即时,ℎ(t)=t2−7a∗t+3在1≤t≤6单调递增,所以g(a)=ℎ(1)=4−4a;②当6<2a<2,即时,g(a)=ℎ(2a)=3−4a8;③当2a≥2,即a≥6时2−4a∗t+5在1≤t≤2单调递减,所以g(a)=ℎ(2)=3−8a;综上,.【考点】函数最值的应用【解析】此题暂无解析【解答】此题暂无解答【答案】当时,函数f(x)为奇函数易知函数f(x)的定义域为R,且,=,所以,函数f(x)为奇函数.在R上任取x1,x2,且x3<x2,因为x1<x6,所以x2−x1>8,又因为,,所以,>−1,+1>0,故,即,所以,所以,所以,函数函数f(x)在R上单调递增.由(1)(2)可知,g(x)=x∗f(x)+x3−18为偶函数,且在(−∞, 0]单调递减,+∞)单调递增,又g(−4)=g(4)=3,所以g(x)<0的解集为(−4, 7).【考点】函数奇偶性的性质与判断奇偶性与单调性的综合【解析】此题暂无解析【解答】此题暂无解答【答案】当−a≤x≤a时,,所以,当−a≤x≤a时,,进而可得2a≤f2(x)≤8a,即;由于函数是偶函数,故方程f(x)−b=6的三个实数解关于数轴原点对称分布,从而必有.由(1)可知,当−a≤x≤a时,,当x>a时,在x>a上单调递增,且当时,当x<−a时,在x<−a上单调递减,且当时,又因为b是其中的一个零点,所以,所以.【考点】函数的零点与方程根的关系【解析】此题暂无解析【解答】此题暂无解答【答案】当0<x≤35时,自驾群体的人均通勤时间为30分钟,此时小李采用自驾通勤方式,当35<x<100时,因为小李采用自驾通勤方式,即x4−75x+1225<0,解得,所以,综上,,即x的取值范围为(0,).设上班族S中有n人,则自驾群体中有nx%人,当0<x≤35时,,当35<x<100时,,所以,当7<x≤35时,g(x)≥g(35)=36.5,当35<x<100时,,因为36.5>36.375,所以,当时,g(x)的最小值为36.375(分钟).【考点】根据实际问题选择函数类型【解析】此题暂无解析【解答】此题暂无解答。
2020-2021学年安徽省六安市第一中学高一上学期期末数学试题一、单选题1.sin240°=( )A .2B .-2C .12D .-12【答案】B【分析】根据诱导公式,结合特殊角的三角函数值,即可求得答案.【详解】sin 240sin(18060)sin 60︒=︒+︒=-︒= 故选:B2.已知函数()21xf x x =-,则()f x 在区间[]2,6上的最大值为( ) A .125B .3C .4D .5【答案】C【分析】先判断出函数在[]2,6单调递减,即可求出最大值. 【详解】()22211x f x x x ==+--在[]2,6单调递减, ()()max 24f x f ∴==.故选:C.3.函数()22cos sin f x x x =-是( )A .周期为2π的奇函数B .周期为π的奇函数C .周期为2π的偶函数D .周期为π的偶函数【答案】D【分析】化简函数解析式为()cos2f x x =,利用余弦型函数的基本性质可得出结论. 【详解】()22cos sin cos2f x x x x =-=,该函数的最小正周期为22T ππ==, 所以,函数()22cos sin f x x x =-是周期为π的偶函数. 故选:D.4.在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若1sin 3C =,3a =,4c =,则sin A =( ) A .23B .14C .34D .16【答案】B【分析】由正弦定理即可求解. 【详解】由正弦定理可得sin sin a cA C=, 13sin 13sin 44a C A c ⨯∴===. 故选:B.5.已知角α的终边上一点坐标为()3,4P -,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17B .45C .17-D .45-【答案】C【分析】由三角函数的定义求出4tan 3α=-,再由两角和的正切公式计算即可. 【详解】4tan 3α=-,41tan tan 134tan 4471tan tan 143παπαπα-+⎛⎫+===- ⎪⎝⎭-+ 故选:C6.与函数tan 24y x π⎛⎫=- ⎪⎝⎭的图象不相交的一条直线是( )A .4πx =-B .6x π=C .8x π=D .8x π=-【答案】D 【分析】令2,42x k k Z πππ-≠+∈可求出.【详解】可得2,42x k k Z πππ-≠+∈,则3,82k x k Z ππ≠+∈, 当1k =-时,8x π≠-,故8x π=-与tan 24y x π⎛⎫=-⎪⎝⎭的图象不相交. 故选:D. 7.函数ln ||cos ()sin x xf x x x⋅=+在[),0π]π(0,-⋃的图像大致为( )A .B .C .D .【答案】D【分析】判断函数的奇偶性,然后利用特殊函数值进行判断即可. 【详解】因为ln ||cos()ln ||cos ()()sin()sin x x x xf x f x x x x x-⋅-⋅-==-=--+-+,[)π,00,π(]x -⋃∈,所以()f x 为奇函数,因此函数()f x 的图像关于原点对称,故排除A ,又因为()10f ±=,π()02f ±=,π()03f >,()0f π<,故排除B ,C. 故选:D8.若sin 2cos αα=,则cos2=α( ) A .35B .35C .45D .45-【答案】A【分析】先由sin 2cos αα=及22sin cos 1αα+=,解得21cos 5α=,再用二倍角公式求出cos2α的值. 【详解】sin 2cos αα=,由22sin cos 1αα+=得:224cos cos 1αα+=,21cos 5α∴=223cos 22cos 1155αα∴=-=-=-. 故选:A【点睛】利用三角公式求三角函数值的关键: (1)选择合适的公式进行化简;(2)如果需要,根据条件进行合理的拆角,如()()2()βαβαααβαβ=+-=++-,等. 9.已知点(),P a b 在函数2ey x=图象上,且0a >,0b >,则ln ln a b ⋅的最大值为( ) A .0 B .12C .1D .2【答案】C【分析】将点代入解析式可得2ab e =,然后利用基本不等式求解ln ln a b ⋅的最大值.【详解】由题意,2ab e =,则2222ln ln ln ln ln ln 1222a b ab e a b ⎛⎫+⎛⎫⎛⎫⋅≤===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 当且仅当==a b e 时,取等号,所以ln ln a b ⋅的最大值是1. 故选:C. 10.已知点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴.若()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,则ϕ=( )A .6π B .3π C .23π D .56π 【答案】B【分析】先由点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴,求出ω的范围,再由()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调求出φ. 【详解】由题意得:62484T πππ-=≥, 得1248ππω⨯≤,所以ω4≥.又()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,所以3662T πππ-=≤,得1226ππω⨯≥,所以ω6≤ 所以ω=4或5或6.当ω=4时, ()()cos 4f x x ϕ=+,有cos 402424460f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩解得3πϕ=.当ω=5时, ()()cos 4f x x ϕ=+,有cos 502424560f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.当ω=6时, ()()cos 4f x x ϕ=+,有cos 602424660f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.综上: 3πϕ=.故选:B【点睛】求三角函数解析式的方法:(1)求A 通常用最大值或最小值; (2)求ω通常用周期;(3)求φ通常利用函数上的点带入即可求解.二、多选题11.(多选)下列命题中正确的是( )A .已知a 、b 是实数,则“1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”是“33log log a b >”的必要不充分条件B .在ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若45A =,14a =,16b =,则ABC 有两解C .在ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若cos cos a A b B =,则ABC 为直角三角形D .已知A 、B 都是锐角,且2A B π+≠,()()1tan 1tan 2A B ++=,则4A B π+=【答案】ABD【分析】求出1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭、33log log a b >的等价条件,结合充分条件、必要条件的定义可判断A 选项的正误;比较sin b A 、a 、b 的大小关系,可判断B 选项的正误;利用余弦定理可判断C 选项的正误;利用两角和的正切公式可判断D 选项的正误.【详解】对于A 选项,充分性:由1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭可得a b >,由33log log a b >可得0a b >>,所以,3311log log 33aba b ⎛⎫⎛⎫<⇒>/ ⎪ ⎪⎝⎭⎝⎭,充分性不成立. 必要性:由1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭可得a b >,由33log log a b >可得0a b >>, 所以,3311log log 33ab a b ⎛⎫⎛⎫<⇐> ⎪ ⎪⎝⎭⎝⎭,必要性成立. 因此,“1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”是“33log log a b >”的必要不充分条件,A 选项正确; 对于B 选项,sin 16sin 4582b A ==sin b A a b <<,如下图所示:所以,ABC 有两解,B 选项正确;对于C 选项,cos cos a A b B =,可得22222222b c a a c b a b bc ac+-+-⋅=⋅, 整理得2242240a c a b c b --+=,即()()222220a bca b ---=,a b ∴=或222+=a b c ,因此,ABC 为等腰或直角三角形,C 选项错误; 对于D 选项,()tan tan tan 1tan tan αβαβαβ++=-,可得()()tan tan tan 1tan tan αβαβαβ+=+-,由于()()1tan 1tan 2A B ++=可得tan tan tan tan 10A B A B ++-=, 即()()()tan 1tan tan 1tan tan 0A B A B A B +---=,即()()tan 11tan tan 0A B A B +-⋅-=⎡⎤⎣⎦,由于A 、B 都是锐角,且2A B π+≠,则tan tan 1A B ≠,所以,()tan 1A B +=,02A π<<,02B π<<,0A B π∴<+<,可得4A B π+=,D 选项正确.故选:ABD.【点睛】方法点睛:解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A 、B 、C 的范围对三角函数值的影响.12.(多选)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2ππϕ-<<-)的部分图象如图所示,则下列说法正确的是( )A .2ω=,23πϕ=-B .函数()f x 图象的对称轴为直线()712x k k Z ππ=+∈ C .将函数2sin 3y x π⎛⎫=- ⎪⎝⎭的图象上各点的横坐标变为原来的12倍(纵坐标不变)即得到()y f x =的图象 D .若()f x 在区间2,3a π⎡⎤⎢⎥⎣⎦上的值域为3A ⎡-⎣,则实数a 的取值范围为133,122ππ⎡⎤⎢⎥⎣⎦【答案】AD【分析】利用函数图象求出函数()f x 的解析式,可判断A 选项的正误;解方程()2232x k k πππ-=+∈Z 可判断B 选项的正误;利用三角函数图象的伸缩规律可判断C 选项的正误;由2,3x a π⎡⎤∈⎢⎥⎣⎦求出223x π-的取值范围,结合题意求出a 的取值范围,可判断D 选项的正误.【详解】对于A 选项,由图可知2A = 设函数()f x 的最小正周期为T ,则73312644T πππ⎛⎫--== ⎪⎝⎭,T π∴= 22Tπω∴==,则()()2sin 2f x x ϕ=+ 由772sin 2126f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭得()7262k k ππϕπ+=+∈Z ,解得()223k k πϕπ=-+∈Z又2ππϕ-<<-,23πϕ∴=-,()22sin 23f x x π⎛⎫∴=- ⎪⎝⎭,A 正确;对于B 选项,由()2232x k k πππ-=+∈Z ,得()7212k x k ππ=+∈Z ,B 错误; 对于C 选项,将函数2sin 3y x π⎛⎫=-⎪⎝⎭的图象上各点的横坐标变为原来的12倍(纵坐标不变)得到函数2sin 23y x π⎛⎫=-⎪⎝⎭,C 错误; 对于D 选项,由2,3x a π⎡⎤∈⎢⎥⎣⎦得2222,2333x a πππ⎡⎤-∈-⎢⎥⎣⎦由2sin y t =的图象可知,要使函数()f x 在区间2,3a π⎡⎤⎢⎥⎣⎦上的值域为⎡-⎣则3272233a πππ≤-≤,解得133122a ππ≤≤,D 正确. 故选:AD.【点睛】思路点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的步骤如下: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.三、填空题13.sin 72cos 42cos72sin 42-︒=______. 【答案】12【分析】利用两角差的正弦公式即可求解.【详解】()1sin 72cos 42cos72sin 42sin 7242sin 302-︒=-=︒=, 故答案为:12. 14.已知函数()f x 满足()1lg f x x -=,则不等式()0f x <的解集为______.【答案】()1,0-【分析】首先利用换元法求出()f x 的解析式,再利用对数函数的单调性解不等式即可求解.【详解】令1x t -=,则1x t =+,所以()()lg 1f t t =+, 所以()()lg 1f x x =+,不等式()0f x <等价于()()lg 10lg1f x x =+<=, 所以011x <+<, 解得:10x -<<,所以原不等式的解集为()1,0-, 故答案为:()1,0-.15.已知函数()224f x x x =-+定义域为[],a b ,其中a b <,值域[]3,3a b ,则满足条件的数组(),a b 为__________. 【答案】()1,4【详解】试题分析:因为()2224(1)33f x x x x =-+=-+≥,所以331a a ≥⇒≥,从而()22431()4;f b b b b b b =-+=⇒==舍或()224314();f a a a a a a =-+=⇒==或舍即满足条件的数组(),a b 为()1,4【解析】函数性质【思路点睛】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小转化自变量大小关系四、双空题16.已知ABC ,120BAC ∠=,BC =,AD 为BAC ∠的角平分线,则 (i )ABC 面积的取值范围为______.(ii )4AB ACAD+的最小值为_____.【答案】(9【分析】(i )在ABC 中,由余弦定理可得结合基本不等式可得AB AC ⋅的最大值,再利用三角形面积公式即可求面积的取值范围; (ii )首先利用ABCABD ACD SS S =+可得bcAD b c=+,所以44AB AC c bbc b cAD++=+ ()()4b c c b bc+=+整理后利用基本不等式即可求最值.【详解】(i )在ABC 中,由余弦定理可得2222cos BC AB AC AB AC BAC =+-⋅∠,即22122AB AC AB AC AB AC AB AC =++⋅≥⋅+⋅, 解得:4AB AC ⋅≤,当且仅当AB AC =时等号成立.所以11cos 4222ABCSAB AC BAC =⋅∠≤⨯⨯= 所以ABC面积的取值范围为(.(ii )AD 为BAC ∠的角平分线,120BAC ∠=, 所以60BAD CAD ∠=∠=,180ADB ADC ∠+∠=, 所以111sin sin sin 222ABCSbc A c AD BAD b AD CAD ==⨯∠+⨯∠,()AD b c =+,所以bc AD b c =+, 所以()()224444545b c c b AB AC c b b bc c b cA bc b D bc bc c b c+++++===++++=52952≥=+⨯+=, 当且仅当4b cc b=,即2c b =时等号成立.所以4AB ACAD+的最小值为9,故答案为:(;9.【点睛】关键点点睛:本题解题的关键点是利用面积相等可得bcAD b c=+,所求4AB ACAD+即可用,b c 表示,再利用基本不等式可求最值.五、解答题17.已知()()()()3sin cos 2sin 2tan f πθπθθπθπθ⎛⎫-+ ⎪⎝⎭=--.(1)化简()fθ;(2)已知,2πθπ⎛⎫∈⎪⎝⎭,且465f πθ⎛⎫-= ⎪⎝⎭,求sin θ的值.【答案】(1)()cos f θθ=-;(2)410. 【分析】(1)利用诱导公式即可化简;(2)由题可得4cos 65πθ⎛⎫-=- ⎪⎝⎭,3sin 65πθ⎛⎫-= ⎪⎝⎭,利用sin sin 66ππθθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦即可求出.【详解】解:(1)()()()()sin sin cos sin tan f θθθθθθ-⨯==--⨯-;(2)4cos 665f ππθθ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,即4cos 65πθ⎛⎫-=- ⎪⎝⎭, 因为5366πππθ<-<,3sin 65πθ⎛⎫= ⎪⎝⎭∴-,∴sin sin sin cos cos sin 666666ππππππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=-⨯=. 18.在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,cos a b b C -=.(1)求sin tan CB的值; (2)若2a =,3b =,求c .【答案】(1)1;(2)c =【分析】(1)利用正弦定理化边为角,即可化简整理求出; (2)可先求出1cos 3=-C ,再由余弦定理即可求出. 【详解】(1)解:cos a b b C -=,由正弦定理可得sin sin sin cos A B B C -=, 则sin cos cos sin sin sin cos B C B C B B C +-=, 即cos sin sin B C B =,即sin tan C B =, sin 1tan CB∴=; (2)可得233cos C -=,则1cos 3=-C , ∴22212cos 49223173c a b ab C ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,∴c =19.已知函数()2sin cos 32f x x x π⎛⎫=-- ⎪⎝⎭,x ∈R . (1)求函数()f x 的单调递增区间和对称中心坐标;(2)若,0,2παβ⎛⎫∈ ⎪⎝⎭,且4265f απ⎛⎫+=⎪⎝⎭,521210f βπ⎛⎫+= ⎪⎝⎭,求αβ+的值. 【答案】(1)()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,对称中心为(),026k k Z ππ⎛⎫+∈ ⎪⎝⎭;(2)34αβπ+=. 【分析】(1)化简可得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,令222232k x k πππππ-≤-≤+即可解出单调递增区间,令23x k ππ-=可解出对称中心;(2)由题可求出sin cos ,sin ,cos ααββ,,即可求出()cos αβ+,得出结果.【详解】解:(1)()12sin cos sin 222f x x x x ⎛⎫=⋅+- ⎪ ⎪⎝⎭11cos 23sin 23222x x -=+⨯-13sin 2cos 2sin 223x x x π⎛⎫=-=- ⎪⎝⎭, 令52222321212k x k k x k πππππππππ-≤-≤+⇒-≤≤+, 令2326k x k x ππππ-=⇒=+, ∴单调递增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦对称中心为(),026k k Z ππ⎛⎫+∈⎪⎝⎭(2)4sin 265f απα⎛⎫+==⎪⎝⎭,则3cos 5α=,52cos 21210f βπβ⎛⎫+==⎪⎝⎭,则72sin =β, ∵02πα<<,002πβαβπ<<⇒<+<,∴()23cos cos cos sin sin 4παβαβαβαβ+=-=-⇒+=. 20.六安一中新校区有一块形状为平面四边形ABCD 的土地准备种一些花圃,其中A ,B 为定点,3AB =(百米),1AD DC ==(百米).(1)若120C ∠=,3BD =(百米),求平面四边形ABCD 的面积; (2)若1BC =(百米).(i 31cos BAD BCD ∠∠=+;(ii )若ABD △,BCD △面积依次为1S ,2S ,求2212S S +的最大值.【答案】(1(平方百米);(2)(i )证明见解析;(ii )最大值为78(平方百米).【分析】(1)在BCD △中,由余弦定理可求得BC 的长,再分别计算ABD △,BCD △的面积,即可求解;(2)(i )在ABD △和BCD △中,分别利用余弦定理两式相减即可求证;(ii )用三角形的面积公式将2212S S +表示()222212143cos cos 4S S BAD BCD +=-∠-∠,1cos BAD BCD ∠∠=+代入转化为关于cos BCD ∠的二次函数,利用三角函数的性质求出cos BCD ∠的范围,再结合二次函数的性质即可求最值.【详解】(1)令BC x =,在BCD △中,由余弦定理可得:23121cos120x x =+-⨯⨯ 即220x x +-=,解得:1x =或2x =-(舍) 在BCD △中,1BC CD ==,120C ∠=,所以1311sin12024BCDS=⨯⨯⨯=,在ABD △中,AB BD ==1AD =,所以AD 2=,所以11224ABDS=⨯⨯=, 所以 3ABCD ABD BCDS SS=+=(平方百米). (2)在ABD △中,2222cos 4BD AB AD AB AD BAD BAD =+-⨯⨯⨯∠=-∠在BCD △中2222cos 22cos BD BC CD BC CD BCD BCD =+-⨯⨯⨯∠=-∠所以422cos BAD BCD -∠=-∠,1cos BAD BCD ∠∠=+.(ii )()222211331sin sin 1cos 244S BAD BAD BAD ⎛⎫=⨯∠=∠=-∠ ⎪⎝⎭ ()2222211111sin sin 1cos 244S BCD BCD BCD ⎛⎫=⨯⨯⨯∠=∠=-∠ ⎪⎝⎭所以()222212133cos 1cos 4S S BAD BCD +=-∠+-∠ ()2221141cos cos 2cos 2cos 344BCD BCD BCD BCD ⎡⎤⎡⎤=-+∠-∠=-∠-∠+⎣⎦⎣⎦1cos BAD BCD ∠∠=+,所以1cos BCD <+∠<1cos 1BCD -<∠<∴2222121171172cos cos 422228S S BCD BCD ⎡⎤⎛⎫⎛⎫+=-∠++=∠++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦所以1cos 2BCD ∠=-时,()2212max 78S S +=, 即23BCD π∠=时2212S S +取得最大值,且最大值为78(平方百米).【点睛】关键点点睛:求2212S S +用三角形的面积公式表示出来,结合已经证明的1cos BAD BCD ∠∠=+即可将面积平方和转化为关于cos BCD ∠只含一个变量的函数,利用二次函数的性质可求最值. 21.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的图象两相邻对称轴之间的距离是2π,若将()f x 的图象向右平移6π个单位长度,所得图象对应的函数()g x 为奇函数.(1)求()f x 的解析式,并画出()f x 在区间[]0,π上的图象(答题卷上需列表); (2)若关于x 的方程()()2320g x m g x +⋅+=⎡⎤⎣⎦在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不等实根,求实数m 的取值范围.【答案】(1)()cos 26f x x π⎛⎫=- ⎪⎝⎭,答案见解析;(2)(){},526-∞--.【分析】(1)由()f x 的图象两相邻对称轴之间的距离是2π可求得()f x 的周期,进而可得ω的值,由()g x 为奇函数可求得ϕ的值,进而可得求()f x 的解析式,利用五点法作出图象即可;(2)由(1)可得()sin 2g x x =,令()[]sin 20,1t g x x ==∈,则原方程可转化为2320t mt ++=在[]0,1上有一解,利用二次函数的性质即可求解.【详解】(1)由()f x 的图象两相邻对称轴之间的距离是2π可得: 22T ππ=⨯=,所以222T ππωπ===,所以()()cos 2f x x φ=+, 将()f x 的图象向右平移6π个单位长度可得()cos 23g x x πϕ⎛⎫=+- ⎪⎝⎭ 因为()g x 为奇函数, 所以32k ππϕπ-=+()k Z ∈,可得()56k k Z πϕπ=+∈ 又因为02πϕ-<<,所以令1k =-,得6πϕ=-所以()cos 26f x x π⎛⎫=- ⎪⎝⎭列表:x12π3π712π 56π π 26x π-6π-2π π32π 116πcos 26y x π⎛⎫=- ⎪⎝⎭321 0 -1 032图象如图所示(2)由(1)知()sin 2g x x = 因为0,2x π⎡⎤∈⎢⎥⎣⎦令()[]sin 20,1t g x x ==∈ 因为每个t 对应两个x ,所以关于t 的方程2320t mt ++=在[]0,1上有一解. 令()232h t t mt =++∵()020h =>,则需满足()10h <或Δ0016m=⎧⎪⎨≤-<⎪⎩解得:5m <-或26m =-所以实数m 的取值范围是(){},526-∞--【点睛】关键点点睛:本题解题的关键点是利用三角函数的性质求出()f x 的解析式,令()[]sin 20,1t g x x ==∈,由于一个t 对应两个x ,所以关于t 的方程2320t mt ++=在[]0,1上有一解,找出对应的二次函数所满足的等价条件即可.22.已知函数()xf x e =,()ln x x ag x e e ⎛⎫=+ ⎪⎝⎭.(1)若()g x 为偶函数,求a 的值;(2)若()10,x ∀∈+∞,2x R ∃∈,使得()()()11220f x mf x g x +->成立,求实数m 的取值范围.【答案】(1)1;(2)ln 21m ≥-.【分析】(1)根据偶函数的定义()()g x g x -=,即1ln ln x x xx a ae e e e ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即可解出a ;(2)先分离x 1、x 2,转化为()()()1122f x mf x g x +>,由题意转化为()()()11min 2min (2)()f x mf x g x +>即可.【详解】解:(1)函数()g x 的定义域为R ,若()g x 为偶函数,则对x R ∀∈都有()()()11ln ln 101x x x x x x a g x ae g x e e a a e e e ⎛⎫⎛⎫⎛⎫-=+==+⇒--=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()1ln ln 2xx g x e e ⎛⎫=+≥ ⎪⎝⎭,“=”取得当且仅为0x =时, 由题意:()10,x ∀∈+∞,2x R ∃∈,使得()()()1122f x mf x g x +>成立 即()10,x ∀∈+∞,112ln 2x x e me +>11ln 2x x m e e⇒>-对()10,x ∀∈+∞恒成立 令1x t e =,则1t >且ln 2m t t>-对1t >恒成立 设()()ln 21h t t t t=->,易知()h t 在()1,+∞内单调递减 ∴()ln 21ln 21h t m <-⇒≥-.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .。
上学期期末考试高一数学试题本试卷满分150分,考试时间120分钟。
请在答题卷上作答。
第I卷选择题(共60分)一、选择题(本大题共12题,每题5分,满分60分,每小题只有一个正确答案)1.若sinα=-,且α为第四象限角,则tanα的值为( )A. B.- C. D.-2.已知f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在区间 [-1,3]上的解集为()A. (1,3)B. (-1,1)C. (-1,0)∪(1,3)D. (-1,0)∪(0,1)3.若cos(2π-α)=,则sin等于( )A.- B.- C. D.±4.设集合A={x|1<x<4},B={x|-1≤x≤3},则A∩(∁R B)等于( )A.{x|1<x<4} B.{x|3<x<4} C.{x|1<x<3} D.{x|1<x<2}∪{x|3<x<4}5.下列表示函数y=sin在区间上的简图正确的是( )6.已知函数f(x)=sin(ω>0)的最小正周期为π,则函数f(x)的图象的一条对称轴方程是( )A.x= B.x= C.x= D.x=7.使不等式-2sin x≥0成立的x的取值集合是( )A.B.C.D.8.设函数f(x)=cos,则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在上单调递减9.已知函数y=3cos(2x+)的定义域为[a,b],值域为[-1,3],则b-a的值可能是( )A.B.C.D.π10.一观览车的主架示意图如图所示,其中O为轮轴的中心,距地面32 m(即OM长),巨轮的半径长为30 m,AM=BP=2 m,巨轮逆时针旋转且每12分钟转动一圈.若点M为吊舱P的初始位置,经过t分钟,该吊舱P距离地面的高度为h(t) m,则h(t)等于( )A.30sin+30 B.30sin+30C.30sin+32 D.30sin11.若函数y=f(x)是奇函数,且函数F(x)=af(x)+bx+2在(0,+∞,)上有最大值8,则函数y=F(-∞,,0)上有 ( )A.最小值-8 B.最大值-8 C.最小值-6 D.最小值-412.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是( )A.75,25 B.75,16 C.60,25 D.60,16第II卷非选择题(共90分)二、填空题(共4小题,每小题5分,共20分)13.若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是________.14.若不等式(m2-m)2x-()x<1对一切x∈(-∞,-1]恒成立,则实数m的取值范围是________.15.函数y=sin2x+2cos x在区间[-,a]上的值域为[-,2],则a的取值范围是________.16.函数y=sinωx(ω>0)的部分图象如图所示,点A,B是最高点,点C是最低点,若△ABC是直角三角形,则ω的值为________.三、解答题(共6小题,共70分)17.(12分)已知定义在区间上的函数y=f(x)的图象关于直线x=对称,当x≥时,f(x)=-sin x.(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有解的和记为Ma,求的所有可能的值及相应的a的取值范围.Ma18. (10分)已知函数f(x)=cos(2x-),x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-,]上的最小值和最大值,并求出取得最值时x的值.19. (12分)已知函数g(x)=A cos(ωx+φ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:(1)函数f(x)在上的值域;(2)使f(x)≥2成立的x的取值范围.20. (12分)已知f(x)=x2+2x tanθ-1,x∈[-1,],其中θ∈(-,).(1)当θ=-时,求函数f(x)的最大值;(2)求θ的取值范围,使y=f(x)在区间[-1,]上是单调函数.21.(12分)已知函数f(x)=x2-(a+1)x+b.(1)若b=-1,函数y=f(x)在x∈[2,3]上有一个零点,求a的取值范围;(2)若a=b,且对于任意a∈[2,3]都有f(x)<0,求x的取值范围.22. (12分)已知抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点.(1)求m的取值范围;(2)若抛物线与x轴的两个交点为A,B,且点B的坐标为(3,0),求出点A的坐标,抛物线的对称轴和顶点坐标.高一数学试题答案1.D2. C3.A4. B5.A6.C7.C8.D9.B10.B11.D12.D13.[,]14.-2<m<315.[0,]16.17.(1)y=f(x)的图象如图所示.(2)任取x∈,则-x∈,因函数y=f(x)图象关于直线x=对称,则f(x)=f,又当x≥时,f(x)=-sin x,则f(x)=f=-sin=-cos x,即f(x)=(3)当a=-1时,f(x)=a的两根为0,,则Ma=;当a∈时,f(x)=a的四根满足x1<x2<<x3<x4,由对称性得x1+x2=0,x3+x4=π,则Ma=π;当a=-时,f(x)=a的三根满足x1<x2=<x3,由对称性得x3+x1=,则Ma=;当a∈时,f(x)=a两根为x1,x2,由对称性得Ma=.综上,当a∈时,Ma=π;当a=-时,Ma=;当a∈∪{-1}时,Ma=.18.(1)f(x)的最小正周期T===π.当2kπ≤2x-≤2kπ+π,即kπ+≤x≤kπ+,k∈Z时,f(x)单调递减,∴f(x)的单调递减区间是[kπ+,kπ+],k∈Z.(2)∵x∈[-,],则2x-∈[-,],故cos(2x-)∈[-,1],∴f(x)max=,此时2x-=0,即x=;f(x)min=-1,此时2x-=-,即x=-.19.解(1)由图知B==1,A==2,T=2=π,所以ω=2,所以g(x)=2cos(2x+φ)+1.把代入,得2cos+1=-1,即+φ=π+2kπ(k∈Z),所以φ=2kπ+(k∈Z).因为|φ|<,所以φ=,所以g(x)=2cos+1,所以f(x)=2cos+1.因为x∈,所以2x-∈,所以f(x)∈[0,3],即函数f(x)在上的值域为[0,3].(2)因为f(x)=2cos+1,所以2cos+1≥2,所以cos≥,所以-+2kπ≤2x-≤+2kπ(k∈Z),所以kπ≤x≤kπ+(k∈Z),所以使f(x)≥2成立的x的取值范围是.20.解(1)当θ=-时,f(x)=x2-x-1=(x-)2-,x∈[-1,].∴当x=-1时,f(x)的最大值为.(2)函数f(x)=(x+tanθ)2-(1+tan2θ)图象的对称轴为x=-tanθ,∵y=f(x)在[-1,]上是单调函数,∴-tanθ≤-1或-tanθ≥,即tanθ≥1或tanθ≤-.因此,θ角的取值范围是(-,-]∪[,).22.(1)∵抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点,∴方程x2-2(m-1)x+(m2-7)=0有两个不相等的实数根,∴Δ=4(m-1)2-4(m2-7)=-8m+32>0,∴m<4.(2)∵抛物线y=x2-2(m-1)x+(m2-7)经过点B(3,0),∴9-6(m-1)+m2-7=0,m2-6m+8=0,解得m=2或m=4.由(1)知m<4,∴m=2.∴抛物线的解析式为y=x2-2x-3.令y=0,得x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标为(-1,0).又y=x2-2x-3=(x-1)2-4,∴顶点坐标为(1,-4),对称轴为直线x=1.。
安徽省六安市2021届高一数学上学期期末学业水平测试试题一、选择题1.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( )A.3B.1+C.1D.42.已知实心铁球的半径为R ,将铁球熔成一个底面半径为R 、高为h 的圆柱,则h R =( ) A .32 B .43 C .54 D .2 3.已知函数32()(6)1f x x mx m x =++++既存在极大值又存在极小值,则实数m 的取值范围是( )A .(1,2)-B .(,3)(6,)-∞-+∞C .(3,6)-D .(,1)(2,)-∞-+∞4.若()33cos θsin θ7sin θcos θ-<-,()θ0,2π∈,则实数θ的取值范围( )A .π0,4⎛⎫ ⎪⎝⎭ B .5π,2π4⎛⎫ ⎪⎝⎭ C .π5π,44⎛⎫ ⎪⎝⎭ D .π3π,22⎛⎫ ⎪⎝⎭ 5.函数3cos 2cos2sin cos cos 510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+ (k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈)6.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,c =,30B =︒,则AB 边上的中线的长为( )A .2B .34C .32或2D .34或2 7.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵111ABC A B C -,AC BC ⊥,12A A =,当堑堵111ABC A B C -的外接球的体积为3时,则阳马11B A ACC -体积的最大值为( )A .2B .4C .23D .438.设()313x xf x =+,[]x 表示不超过实数x 的最大整数,则函数()()1122f x f x ⎡⎤⎡⎤-+--⎢⎥⎢⎥⎣⎦⎣⎦的值域是( )A .{}1,0,1-B .{}0,1-C .[]1,1-D .[]1,0- 9.已知0a >,0b >,且21a b ab +=-,则2+a b 的最小值为A.5+B.C .5 D .910.函数()()22log 4f x x ax a =-+在区间[)2,+∞上是增函数,则实数a 的取值范围是( ) A.(],4-∞ B.(],2-∞ C.(]2,4- D.(]2,2- 11.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元.(参考数据:45451.0225 1.093,1.0225 1.117,1.0401 1.170,1.0401 1.217====)A.176B.100C.77D.8812.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为( )A.280B.320C.400D.1000 二、填空题13.某辆汽车以/xkm h 的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60120x ≤≤)时,每小时的油耗(所需要的汽油量)为14500()5x k L x-+,其中k 为常数.若汽车以120/km h 的速度行驶时,每小时的油耗为11.5L ,欲使每小时的油耗不超过...9L ,则速度x 的取值范围为___. 14.对于函数()cos 3f x x ππ⎛⎫=- ⎪⎝⎭,下列结论中,正确的是(填序号)__________. ①()y f x =的图像是由()cos f x x π=的图像向右平移3π个长度单位而得到, ②()y f x =的图像过点1,⎛ ⎝⎭,③()y f x =的图像关于点5,06⎛⎫ ⎪⎝⎭对称,④()y f x =的图像关于直线23x =-对称. 15.运行如图所示的程序,输出结果为___________.16.已知数列{}n a 满足11a =,若1114()n n nn N a a *+-=∈,则数列{}n a 的通项n a =______.三、解答题17.求函数2()sin 3cos 2f x x x =-+的最大值18.已知直线1:60l x ay ++=,2:(2)320l a x y a -++=.(1)当12l l ⊥时,求实数a 的值;(2)当12l l //时,求实数a 的值.19.已知关于,x y 的方程22:240C x y x y m +--+=.(1)若方程C 表示圆,求m 的取值范围;(2)若圆C 与圆22812360x y x y +--+=外切,求m 的值;(3)若圆C 与直线:240l x y +-=相交于,M N 两点,且MN =,求m 的值. 20.已知圆22:2430C x y x y ++-+=. (1)已知不过原点的直线l 与圆C 相切,且在x 轴,y 轴上的截距相等,求直线l 的方程;(2)求经过原点且被圆C 截得的线段长为2的直线方程.21.已知不等式的解集为或. (1)求;(2)解关于的不等式22.ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,. (1)求; (2)若,求B .【参考答案】***试卷处理标记,请不要删除一、选择题13.[60,100]14.③④15.116.341n - 三、解答题17.最大值为518.(1)12a =(2)1a =- 19.(1)5m <; (2)4 ; (3)4.20.(1)10x y ++=或30x y +-=;(2)0x =或34y x =-. 21.(1)a =1,b =2;(2)①当c >2时,解集为{x|2<x <c};②当c <2时,解集为{x|c <x <2};③当c =2时,解集为∅.22.(1)(2)。
六安2023年秋学期高一年级期末考试数学试卷(答案在最后)时间:120分钟满分:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知命题P :0x ∃∈R ,0302xx >,则它的否定形式为()A.0x ∃∈R ,0302x x ≤ B.x ∀∈R ,32>x x C.0x R ∃∉,0302x x ≤ D.x ∀∈R ,32≤xx 【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题“0:P x R ∃∈,0302xx >”的否定为:“:P x R ⌝∀∈,32≤x x ”.故选:D.2.π3α=是1cos 2α=的()条件A.充要B.必要不充分C.充分不必要D.既不充分也不必要【答案】C 【解析】【分析】根据特殊角的三角函数值判断充分性,通过举反例说明不满足必要性即可.【详解】若π3α=,故可得1cos 2α=,满足充分性;若π3α=-,显然满足1cos 2α=,但无法推出π3α=,故必要性不成立;故π3α=是1cos 2α=的充分不必要条件.故选:C .3.函数2()log f x x x =+的零点所在区间为()A.10,8⎛⎫ ⎪⎝⎭B.11,84⎛⎫ ⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.11,42⎛⎫ ⎪⎝⎭【答案】C【分析】根据()f x 的单调性,结合零点存在性定理,即可判断和选择.【详解】2,log y x y x ==在()0,+∞上都是单调增函数,故()y f x =在()0,+∞上是单调增函数;又21111log 308888f ⎛⎫=+=-< ⎪⎝⎭,21111log 204444f ⎛⎫=+=-< ⎪⎝⎭,21111log 102222f ⎛⎫=+=-< ⎪⎝⎭,()211log 110f =+=>;故()f x 的零点所在区间为1,12⎛⎫⎪⎝⎭.故选:C.4.设2log 0.3a =,0.3log 0.2b =,sin37c =︒,则a ,b ,c 之间的大小关系是()A.a b c >>B.b a c>> C.c a b>> D.b c a>>【答案】D 【解析】【分析】通过三个数与0,1的关系即可解出.【详解】由题意,22log 0.3log 10a =<=,0.30.3log 0.2log 0.31b =>=,0sin 37sin 451c <=︒<︒<,∴01a c b <<<<.故选:D.5.函数()sin ln ||f x x x =⋅的大致图象是A. B.C. D.【解析】【详解】函数()=sin ln f x x x ⋅是奇函数,图像关于原点对称,故排除,A B 当2x =时,()2sin 2ln 20f =⨯>,故排除D 故选C点睛:已知函数的解析式判断函数图象的形状时,主要是按照排除法进行求解,可按照以下步骤进行:(1)求出函数的定义域,对图象进行排除;(2)判断函数的奇偶性、单调性,对图象进行排除;(3)根据函数图象的变化趋势判断;(4)当以上方法还不能判断出图象时,再选取一些特殊点,根据特殊点处的函数值进行判断.6.若43m =,则3log 12=()A.1m m+ B.21m m+ C.2m m+ D.212m m+【答案】A 【解析】【分析】指数式化为对数式,进而利用换底公式及对数运算公式进行求解.【详解】由43m=得:4log 3m =,则334111log 121log 411log 3m m m+=+=+=+=故选:A7.已知ABC 的外接圆圆心为O ,且2AO AB AC =+ ,OA AC = ,则向量BA 在向量BC上的投影向量为()A.32BC B.34BC uu u r C.32BC-D.34BC - 【答案】B 【解析】【分析】根据题意得出BC 为外接圆的直径,且AOC 是等边三角形,从而求出向量BA 在向量BC上的投影向量.【详解】∵ABC 的外接圆的圆心为O ,且2AO AB AC =+,∴O 为BC 的中点,即BC 为外接圆的直径,∴90BAC ∠=︒.∵OA AC = ,∴AOC 是等边三角形.设D 为OC 的中点,则34BD BC =.∴向量BA 在向量BC上的投影向量为3cos 4BD BC BA ABC BC BC BC BC∠⋅=⋅=.故选:B.8.已知函数()cos ]2f x x π⎛⎫= ⎪⎝⎭,其中[]x 表示不超过x 的最大整数,下列说法正确的是()A.()f x 为偶函数B.()f x 的值域为{0,1}C.()f x 为周期函数,且最小正周期2T =D.()f x 与7|1og |l y x =-的图像恰有一个公共点【答案】D 【解析】【分析】利用特殊值排除AC ,根据余弦函数的性质可求出函数的值域进而判断B ,根据函数的值域判断D .【详解】对于A ,由于1cos 012f ⎛⎫== ⎪⎝⎭,1πcos 022f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,所以12f ⎛⎫≠ ⎪⎝⎭12f ⎛⎫- ⎪⎝⎭,所以()y f x =不是偶函数,故A 错;对于B ,由于[]x 为整数,[]()ππZ 22x k k =⋅∈,而πcos 2k ⎛⎫⋅ ⎪⎝⎭的值有0,1,1-三种情况,所以()f x 的值域为{}0,1,1-,故B 错误;对于C ,由于()[]()π1.1cos 1.1cos 12f π⎛⎫-=⨯-=-=-⎪⎝⎭,()[]π0.9cos 0.9cos 012f ⎛⎫=⨯== ⎪⎝⎭,()()1.10.9f f -≠,故C 错误;对于D ,由B 得(){}0,1,1f x ∈-,令7log 10x -=,得2x =或0x =,而()()2cos π1,0cos01f f ==-==不是公共点的横坐标.令7log 11x -=,得8x =或6x =-,而()()()8cos 4π1,6cos 3πcos π1f f ==-=-==-,所以()8,1是两个函数图像的一个公共点.令7log 11x -=-,得87x =或67x =,而8π6cos 0,cos 01727f f ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以不是两个函数图像的一个公共点.综上所述,两个函数图像有一个公共点()8,1,故D 正确.故选:D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.)A.sin15cos15︒+︒B.222cossin 1212ππ⎛⎫- ⎪⎝⎭C.1tan151tan15+︒-︒D.2sin15cos15︒︒【答案】BC 【解析】【分析】根据三角恒等变换公式,求解即可.【详解】对于A 选项,原式45)2=︒+︒=,故A 选项错误;对于B 选项,原式2cosπ6==,故B 选项正确;对于C 选项,原式tan 45tan15tan 601tan 45tan15︒+︒==︒=-︒︒C 选项正确;对于D 选项,原式1sin 302=︒=,故D 选项错误.故选:BC.10.若0a b >>,0c <,则下列不等式中正确的是()A.c c a b< B.ac bc< C.b c ba c a +>+ D.2b a a b+>【答案】BD 【解析】【分析】利用不等式的基本性质看判断B 选项;利用作差法可判断ACD 选项.【详解】因为0a b >>,0c <,对于A 选项,()0c b a c c a b ab--=>,所以,c c a b >,A 错;对于B 选项,由不等式的基本性质可得ac bc <,B 对;对于C 选项,()()()()()a b c b a c c a b b c b a c a a a c a a c +-+-+-==+++,a c +的符号不确定,无法得出b c a c ++与ba的大小关系,C 错;对于D 选项,()222220a b b a a ab b a b ab ab--++-==>,则2b a a b +>,D 对.故选:BD.11.如图,已知点O 为正六边形ABCDEF 的中心,下列结论正确的是()A.CB OA=B.0OA OB OC ++=C.OF OD OC OB+=-D.OA FA DE BC⋅=⋅ 【答案】AC 【解析】【分析】利用相等向量的定义可判断A 选项;利用平面向量加法的平行四边形法则可判断B 选项;利用平面向量线性运算可判断C 选项;利用平面向量数量积的定义可判断D 选项.【详解】对于A 选项,由正六边形的几何性质可知,60AOB OBC BOC ABO ∠=∠=∠=∠= ,所以,//OA BC ,//AB OC ,则四边形OABC 为平行四边形,故CB OA =,A 对;对于B 选项,因为四边形OABC 为平行四边形,由平面向量加法的平行四边形法则可得20OA OB OC OB ++=≠,B 错;对于C 选项,由正六边形的几何性质可知,OF OD DE EF ===,则四边形ODEF 为菱形,所以,OF OD OE += ,OC OB BC -=,易知ODE 为等边三角形,则OE DE BC == ,故OF OD OC OB +=-,C 对;对于D 选项,设正六边形ABCDEF 的边长为a ,易知CB EF =,则21cos 602OA FA AO AF AO AF a ⋅=⋅=⋅=,21cos1202DE BC DE CB DE EF ED EF ED EF a ⋅=-⋅=-⋅=⋅=⋅=- ,所以,OA FA DE BC ⋅≠⋅,D 错.故选:AC.12.已知函数()()πsin 0,2f x x ϕωϕω⎛⎫=+><⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,下列说法中正确的有()A.若1ω=,则()f x 在π5π,36⎛⎫⎪⎝⎭上单调递减B.若()f x 在()0,π上有且仅有4个零点,则232966ω<≤C.若把()f x 的图象向左平移π6个单位后得到的函数为偶函数,则ω的最小值为2D.若2,33x ωωππ⎛⎫∈-⎪⎝⎭,则()()sin f x x ωϕ=+与()()tan g x x ωϕ=+有3个交点【答案】ABC 【解析】【分析】由已知条件求出π6ϕ=,利用正弦型函数的单调性可判断A 选项;利用函数()f x 在()0,π上的零点个数可得出关于实数ω的不等式,解出ω的取值范围,可判断B 选项;利用三角函数图象变换结合正弦型函数的奇偶性可判断C 选项;当2,33x ωωππ⎛⎫∈-⎪⎝⎭时,解方程()()f x g x =,可判断D 选项.【详解】因为函数()()πsin 0,2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫⎪⎝⎭,则()1sin 20==f φ,又因为ππ22ϕ-<<,所以,π6ϕ=,对于A 选项,若1ω=,则()πsin 6f x x ⎛⎫=+⎪⎝⎭,当π5π,36x ⎛⎫∈⎪⎝⎭时,则πππ26x <+<,所以,函数()f x 在π5π,36⎛⎫⎪⎝⎭上单调递减,A 对;对于B 选项,因为()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭,当()0,πx ∈时,ππππ666x ωω<+<+,因为()f x 在()0,π上有且仅有4个零点,则π4ππ5π6ω<+≤,解得232966ω<≤,B 对;对于C 选项,把()f x 的图象向左平移π6个单位,可得到函数ππππsin sin 6666y x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎢⎝⎭⎝⎭⎣⎦为偶函数,则()ππππ662k k ω+=+∈Z ,可得()62k k ω=+∈Z ,因为0ω>,故当0k =时,ω取最小值2,C 对;对于D 选项,因为2,33x ωωππ⎛⎫∈-⎪⎝⎭且0ω>,则πππ262x ω-<+<,由πsin ππ6sin tan π66cos 6x x x x ωωωω⎛⎫+ ⎪⎛⎫⎛⎫⎝⎭+=+= ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,可得πsin 06x ω⎛⎫+= ⎪⎝⎭,则π06x ω+=,故当2,33x ωωππ⎛⎫∈-⎪⎝⎭时,则()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭与()πta 6n g x x ω⎛⎫=+ ⎪⎝⎭只有1个交点,D 错.故选:ABC.三、填空题:本题共4小题,每小题5分,共20分.13.一个扇形的弧长为6π,面积为27π,则此扇形的圆心角为________.(用弧度制表示)【答案】2π3【解析】【分析】利用扇形弧长公式,面积公式列方程求解即可.【详解】设圆心角为α,扇形半径为r ,依题可得6πr α=,2127π2r α=,解得2π3α=,9r =.故答案为:2π314.已知简谐运动ππ()2sin ||32f x x ϕϕ⎛⎫⎛⎫=+<⎪⎪⎝⎭⎝⎭的图象经过点(0,1),则该简谐运动初相ϕ为________.【答案】π6##1π6【解析】【分析】将点代入函数中,结合所求量范围求解即可.【详解】将(0,1)代入函数中,可得()12sin ϕ=,解得π2πZ 6k k =+∈,ϕ,已知π||2ϕ<,解得ππ22ϕ-<<,故π6ϕ=.故答案为:π615.求值:()cos 40110︒+︒=__________.【答案】1【解析】【分析】利用三角函数切化弦,辅助角公式与诱导公式求解即可.【详解】()sin10cos10cos 40110cos 401cos 40cos10cos10︒︒+︒⎛⎫︒+︒=︒+=⨯︒ ⎪︒︒⎝⎭()2sin 30cos10cos30sin102sin40sin80cos 40cos40cos10cos10cos10︒︒+︒︒︒︒=⨯︒=⨯︒=︒︒︒()sin 9010cos101cos10cos10︒-︒︒===︒︒.故答案为:1.16.已知方程12sin π01x x-=-,则当[2,4]x ∈-时,该方程所有实根的和为________.【答案】8【解析】【分析】作出1()1f x x=-,()2sin πg x x =的图象,通过图象的对称性可得方程所有实根的和.【详解】方程12sin π01x x -=-,即12sin π1x x=-,令1()1f x x =-,()2sin πg x x =,1()1f x x =-的图象可由1y x=-的图象向右平移1个单位得到,故关于点(1,0)对称,同时(1,0)也是()2sin πg x x =的一个对称中心;作图可得()f x ,()g x 的图象,观察它们在[2,4]x ∈-时的图象,可知二者的图象都关于(1,0)点成中心对称且()f x ,()g x 图象在[2,4]-上共有8个交点,这8个交点两两成对关于点(1,0)对称,每一对关于(1,0)对称的交点的横坐标的和为2,故所有8个交点的横坐标的和为248⨯=,即方程12sin π01x x-=-所有实根的和为8.故答案为:8.【点睛】方法点睛:(1)转化法,方程12sin π01x x-=-的根的问题,转化为1()1f x x =-,()2sin πg x x=的图象的交点问题;(2)数形结合:作出函数1()1f x x=-,()2sin πg x x =的图象,判断其对称性,从而求解问题.四、解答题:本小题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{30}A x x =-≤<,集合{}22B x x x =->.(1)求A B ⋂;(2)若集合{}22C x a x a =≤≤+,且()C A B ⊆ ,求实数a 的取值范围.【答案】(1){}20A B x x ⋂=-<<(2){}2a a >【解析】【分析】(1)计算{}21B x x =-<<,再计算交集得到答案.(2)考虑C =∅和C ≠∅两种情况,根据集合的包含关系得到答案.【小问1详解】{}{}2221B x x x x x =->=-<<,{}20A B x x ⋂=-<<.【小问2详解】当C =∅时,22a a >+,即2a >,满足条件;当C ≠∅时,22a a ≤+且2220a a >-⎧⎨+<⎩,无解.综上所述:实数a 的取值范围{}2a a >.18.如图,以Ox 为始边作角α与(0π)<<<ββα,它们的终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为34,55⎛⎫- ⎪⎝⎭.(1)求3sin()5sin 22cos()cos 2ππααπαα⎛⎫-+- ⎪⎝⎭⎛⎫--+ ⎪⎝⎭的值;(2)若5sin 13β=,π0,2β⎛⎫∈ ⎪⎝⎭,求sin()αβ+的值.【答案】(1)32(2)3365【解析】【分析】(1)利用诱导公式化简求值即可.(2)利用两角和的正弦公式处理即可.【小问1详解】由题得3cos 5α=-,4sin 5α=,4tan 3α=-,所以433sin()5sin 353sin 5cos 3255342cos sin 22cos()cos 2255ααααααααπ⎛⎫⎛⎫π-+-⨯+⨯- ⎪ ⎪+⎝⎭⎝⎭===π+⎛⎫⎛⎫--+⨯-+⎪ ⎪⎝⎭⎝⎭【小问2详解】由题得,5sin 13β=,π0,2β⎛⎫∈ ⎪⎝⎭,所以12cos 13β=,所以4123533sin()sin cos cos sin 51351365αβαβαβ⎛⎫+=+=+-⨯= ⎪⎝⎭19.已知函数π()cos 23f x x ⎛⎫=-⎪⎝⎭.(1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;23x π-3π-2ππ32π53πx6π512π23π1112ππ()f x 1211-12(2)将()y f x =的图象横坐标扩大为原来的2倍,再向左平移π2个单位后,得到()g x 的图象,求()g x 的对称中心.【答案】(1)表格及图象见解析(2)ππ,03k ⎛⎫+ ⎪⎝⎭,()k ∈Z 【解析】【分析】(1)直接根据五点作图法补全表格,然后描点画图;(2)先通过图象变换得到()cos 6g x x π⎛⎫=+ ⎪⎝⎭,然后令πππ62x k +=+可得对称中心.【小问1详解】π()cos 23f x x ⎛⎫=- ⎪⎝⎭,列表如下:π23x -π3-π2π3π25π3xπ65π122π311π12π()f x 1211-012图象如图:【小问2详解】()f x 的图象横坐标扩大为原来的2倍得πcos 3y x ⎛⎫=- ⎪⎝⎭,再向左平移π2个单位后,得()cos cos 236g x x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,令πππ62x k +=+,()k ∈Z ,得ππ3x k =+,()k ∈Z ,所以函数()g x 的对称中心为ππ,03k ⎛⎫+⎪⎝⎭,()k ∈Z .20.已知函数2()2sin cos f x x x x =+-.(1)求函数()f x 的最小正周期和单调递减区间;(2)当π0,4x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域.【答案】(1)π,π7ππ,π1212k k ⎡⎤++⎢⎣⎦()k ∈Z ;(2)[1,2].【解析】【分析】(1)将()f x 化简为三角函数的一般式,结合正弦型函数最小正周期以及单调区间的求解方法,即可求得结果;(2)根据x 的取值范围,求得23x π+的范围,结合正弦函数单调性,即可求得结果.【小问1详解】2π()2sin cos sin 222sin 23f x x x x x x x ⎛⎫=+-==+ ⎪⎝⎭,所以()f x 最小正周期为22ππ=;由ππ3π2π22π232k x k +≤+≤+,解得单调递减区间是π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦()k ∈Z ;【小问2详解】当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ5π2,336x ⎡⎤+∈⎢⎣⎦,又sin y x =在,32ππ⎡⎤⎢⎥⎣⎦单调递增,在5,26ππ⎛⎫⎪⎝⎭单调递减;则π5π236x +=,即π4x =时,()f x 取得最小值1,ππ232x +=,即π12x =时,()f x 取得最大值2,故当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的值域为[1,2].21.六安一中新校区有一处矩形地块ABCD ,如图所示,50AB =米,BC =米,为了便于校园绿化,计划在矩形地块内铺设三条绿化带OE ,EF 和OF ,考虑到整体规划,要求O 是边AB 的中点,点E 在边BC 上,点F 在边AD 上,且π2EOF ∠=.(1)设BOE α∠=,ππ,63α⎡⎤∈⎢⎥⎣⎦,试将OEF 的周长l 表示成α的函数关系式;(2)在(1)的条件下,为增加夜间照明亮度,决定在两条绿化带OE 和OF 上按装智能照明装置,已知两条绿化带每米增加智能照明装置的费用均为m 元,当新加装的智能照明装置的费用最低时,求α大小(备注:7πsin124+=)【答案】(1)25(1sin cos )sin cos l αααα++=,ππ,63α⎡⎤∈⎢⎥⎣⎦(2)π4【解析】【分析】(1)分别在Rt BOE 和Rt AOF △中,表示出,OE OF ,即可求出EF ,从而求得OEF 的周长l 表示成α的函数关系式;(2)结合(1)可得出OE OF +的表达式,利用三角代换,令sin cos t αα+=,化简OE OF +的表达式,即为501t tOE OF +=-,再结合函数1y t t =-的单调性,即可确定OE OF +何时取得最小值,即可求得答案.【小问1详解】由题意知50AB =,O 是边AB 的中点,在Rt BOE 中,由BOE α∠=,ππ,63α⎡⎤∈⎢⎥⎣⎦,可得25cos OE α=,由于π2EOF ∠=,故在Rt AOF △中,π2AOF α∠=-,AFO α∠=,可得25sin OF α=,又在Rt EOF △中,由勾股定理得25sin cos EF αα===,所以25252525(1sin cos )cos sin sin cos sin cos l αααααααα++=++=,ππ,63α⎡⎤∈⎢⎥⎣⎦.【小问2详解】根据题意,要使费用最低,只需OE OF +最小即可,由(1)得25(sin cos )sin cos OE OF αααα++=,ππ,63α⎡⎤∈⎢⎥⎣⎦,设sin cos t αα+=,则21sin cos 2t αα-⋅=,得2225(sin cos )25505011sin cos 12t t OE OF t t t t αααα++===---=,由于πsin cos )4t ααα=+=+,5ππ7π12412α≤+≤,而5π7πsinsin 12124+==,故312t +≤≤,令1()f t t t=-,则1()f t t t=-在(0,)+∞上为增函数,则max 2()2f t f ==,所以当t =时,501t tOE OF +=-最小,此时π4α=,即当新加装的智能照明装置的费用最低时,π4α=.22.已知函数1()log 1a x f x x -=+(0a >且1a ≠).(1)求()f x 的定义域;(2)若当12a =时,函数()()g x f x b =-在()1,∞+有且只有一个零点,求实数b 的范围;(3)是否存在实数a ,使得当()f x 的定义域为[,]m n 时,值域为[]1log ,1log a a n m ++,若存在,求出实数a 的取值范围;若不存在,请说明理由.【答案】22.,1(),)1(-∞-⋃+∞23.()0,+∞24.存在,03a <<-【解析】【分析】(1)根据对数的真数大于0结合分析不等式运算求解;(2)根据题意分析可知()f x b =在(1,)+∞上有且只有一个解,进而结合函数单调性运算求解;(3)根据定义域和值域可得01a <<,且1m n <<,结合单调性分析可知2()(1)10h x ax a x =+-+=有两个大于1相异实数根,结合二次函数零点分布运算求解.【小问1详解】由101x x ->+,得1x >或1x <-.所以()f x 的定义域为,1(),)1(-∞-⋃+∞.【小问2详解】令12()111x t x x x -==-++,可知()t x 在()1,∞+上为增函数,可得()()10t x t >=,且()1t x <,可知()t x 的值域为()0,1,因为12a =,则12log y x =在定义域内为减函数,可得()12log 10f x >=,所以函数()f x 在()1,+∞上的值域为()0,+∞,又因为函数()()g x f x b =-在()3,∞+有且只有一个零点,即()f x b =在()3,∞+上有且只有一个解,所以b 的范围是()0,+∞.【小问3详解】存在,理由如下:假设存在这样的实数a ,使得当()f x 的定义域为[,]m n 时,值域为[]1log ,1log a a n m ++,由m n <且1log 1log +<+a a n m ,可得01a <<,且1m n <<.令12()111x t x x x -==-++,可知()t x 在(1,)+∞上为增函数,因为01a <<,则log a y x =在定义域内为减函数,所以()f x 在(1,)+∞上为减函数,可得()()()()1log log 11log log 1a a aa m f m am m n f n an n -⎧==⎪⎪+⎨-⎪==⎪+⎩,可知11x ax x -=+在(1,)+∞上有两个互异实根,可得2(1)10ax a x +-+=,即2()(1)10h x ax a x =+-+=有两个大于1相异实数根.则()()2Δ14011210a a a a h ⎧=-->⎪-⎪->⎨⎪>⎪⎩,解得03a <<-,所以实数a的取值范围(0,3-.【点睛】方法点睛:应用函数思想确定方程解的个数的两种方法(1)转化为两熟悉的函数图象的交点个数问题、数形结合、构建不等式(方程)求解;。
2020-2021高一数学上期末试卷带答案一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<3.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]4.已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<6.函数()2sin f x x x =的图象大致为( )A .B .C .D .7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}9.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
安徽省六安市第一中学 20212021 学年高一数学上学期 期末考试试题(含解析)数学试卷第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线的倾斜角为( )A. 30° B. 60° C. 120° D. 150°【答案】A【解析】直线的斜率为 ,因此倾斜角为 30°.故选 A.2. 空间直角坐标系中,已知点A.B.C.【答案】A【解析】点,,则线段 的中点坐标为( ) D.由中点坐标公式得中得为:,即.故选 A. 3. 一个三棱锥的正视图和俯视图如图所示,则该三棱锥的俯视图可能为( )【答案】D 【解析】由几何体的三视图可知,三棱锥的顶点在底面的射影在底面棱上,可知几何体如图:- 1 - / 13侧视图为:D. 故选:D. 4. 下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面, 则每三点一定不共线;④三条平行直线确定三个平面.其中正确的有( ) A. 1 个 B. 2 个 C. 3 个 D. 4 个 【答案】A 【解析】关于①,三个不共线的点能够确定一个平面,因此①不正确; 关于②,一条直线和直线外一点能够确定一个平面,因此②不正确; 关于③,若三点共线了,四点一定共面,因此③正确; 关于④,当三条平行线共面时,只能确定一个平面,因此④不正确. 故选 A.5. 已知圆,圆,则两圆的位置关系为( )A. 相离 B. 相外切 【答案】AC. 相交D. 相内切【解析】圆,即,圆心为(0,3),半径为 1,圆,即,圆心为(4,0),半径为 3..因此两圆相离,故选 A.6. 设入射光线沿直线 y=2x+1 射向直线是( )A.B.C.【答案】D,则被 反射后,反射光线所在的直线方程 D.【解析】由可得反射点 A(−1,−1),在入射光线 y=2x+1 上任取一点 B(0,1),则点 B(0,1)关于 y=x 的对称点 C(1,0)在反射光线所在的直线上。
2020-2021高中必修一数学上期末试卷及答案(4)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 3.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12BC.2D .24.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>5.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<6.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-17.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦8.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.99.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 10.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭11.若函数y a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( )A .1B .2C .3D .412.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U二、填空题13.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________. 14.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________. 15.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______. 16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.17.函数()()4log 5f x x =-+________.18.函数{}()min 2f x x =-,其中{},min ,{,a a b a b b a b≤=>,若动直线y m =与函数()y f x =的图像有三个不同的交点,则实数m 的取值范围是______________.19.已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________. 20.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.三、解答题21.已知定义在R 上的函数()f x 是奇函数,且当(),0x ∈-∞时,()11xf x x+=-. ()1求函数()f x 在R 上的解析式;()2判断函数()f x 在()0,+∞上的单调性,并用单调性的定义证明你的结论.22.已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭. (1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t .23.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气4min 后,测得车库内的一氧化碳浓度为64L /L μ,继续排气4min ,又测得浓度为32L /L μ,经检测知该地下车库一氧化碳浓度(L /L)y μ与排气时间(min)t 存在函数关系:12mty c ⎛⎫= ⎪⎝⎭(c ,m 为常数)。
2025届安徽省六安市霍邱县正华外语学校高三数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元2.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .223B .23C 3或62D 23或623.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+,x ,y R ∈,则23x y +=( ) A .2B .53C .43D .324.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺5.已知全集为R ,集合122(1),{|20}A x y x B x x x -⎧⎫⎪⎪==-=-<⎨⎬⎪⎪⎩⎭,则()A B =R ( )A .(0,2)B .(1,2]C .[0,1]D .(0,1]6.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A .58厘米B .63厘米C .69厘米D .76厘米7.已知复数z ,满足(34)5z i i -=,则z =( ) A .1B .5C .3D .58.已知双曲线2222:10,0()x y C a b a b-=>>的左、右顶点分别为12A A 、,点P 是双曲线C 上与12A A 、不重合的动点,若123PA PA k k =, 则双曲线的离心率为( ) A .2B .3C .4D .29.如图,在正方体1111ABCD A B C D -中,已知E 、F 、G 分别是线段11A C 上的点,且11A E EF FG GC ===.则下列直线与平面1A BD 平行的是( )A .CEB .CFC .CGD .1CC10.某工厂只生产口罩、抽纸和棉签,如图是该工厂2017年至2019年各产量的百分比堆积图(例如:2017年该工厂口罩、抽纸、棉签产量分别占40%、27%、33%),根据该图,以下结论一定正确的是( )A .2019年该工厂的棉签产量最少B .这三年中每年抽纸的产量相差不明显C .三年累计下来产量最多的是口罩D .口罩的产量逐年增加11.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-12.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A 发生的概率为A .14B .58C .38D .12二、填空题:本题共4小题,每小题5分,共20分。