分析化学第2章-误差及分析数据的统计处理
- 格式:ppt
- 大小:647.50 KB
- 文档页数:55
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
第2章误差及分析数据的统计处理2.1 有效数字及其运算规则2.1.1有效数字指在分析工作中实际能测到的数字,它包括所有的准确数字和最后一位可疑数字。
在有效数字中, 只有最后一位数是不确定的,可疑的。
有效数字位数由仪器准确度决定,它直接影响测定的相对误差。
在科学实验中,对于任一物理量的测定,其准确度都是有一定限度的,例如:读取滴定管的刻度,甲得到23.43ml,乙得到23.42ml,丙得到23.44ml,这些四位数字中,前三位都是很准确的,第四位是估读出来的,所以稍有差别,称为可疑数字,但是它并不是臆造的,这4位数字都是有效数字。
有效数字就是实际能测到的数字,其位数的多少,反映测量的精确程度。
1.零的作用:在1.0008中,“0” 是有效数字;在0.0382中,“0”定位作用,不是有效数字;在0.0040中,前面3个“0”不是有效数字,后面一个“0”是有效数字。
在3600中,一般看成是4位有效数字,但它可能是2位或3位有效数字,分别写3.6×103,3.60×103或3.600×103较好。
注意:1.单位变换不影响有效数字的位数。
例如:1.0L=1.0×103ml ,不能写成1000ml2. pH ,pM ,lgc ,lgK 等对数值,有效数字的位数取决于小数部分(尾数)位 数,因整数部分代表该数的方次。
如pH=11.20,有效数字的位数为两位。
3. 有效数字的位数,直接与测定的相对误差有关。
例:测定某物质的含量为0.5180g ,即0.5180±0.0001g 相对误差%02.0%10051801±=⨯±=Er课堂练习:一、下列数据包括几位有效数字:(1)0.0330 (2)10.030(3)0.01020(4)8.7×10-5(5)PKa=4.74(6) PH=10.00二、见课后题第11页11题2.1.2 有效数字的运算规则2.1.2.1有效数字的修约规则在处理数据过程中,涉及到的各测量值的有效数字位数可能不同,因此需要按下面所述的计算规则,确定各测量值的有效数字位数,有效数字确定后,就要将它后面多余的数字舍弃,此过程称为“数字修约”。
第二章 误差和分析数据处理何测量都不可能绝对准确,在一定条件下,测量结果只能接近于真实值,而不能达到真实值个定量分析要经过许多步骤,并不只是一次简单的测量,每步测量的误差,都影响分析结果的性,因而定量分析结果的误差更加复杂行定量分析时,必须根据对分析结果准确度的要求,合理地安排实验,避免不必要的追求高准节 测量误差是衡量一个测量值的不准确性的尺度,反映测量准确性的高低差越小,测量的准确性越高1、 绝对误差和相对误差测量之中的误差,主要有两种表示方法:绝对误差与相对误差(一)绝对误差:测量值与真值(真实值)之差称为~绝对误差是以测量值的单位为单位,可以是正值,也可以是负值,及测量值可能大于或小于测量值越接近真值,绝对误差越小;反之,越大(二)相对误差:绝对误差与真值的比值称为~相对误差反映测量误差在测量结果中所占的比例,它没有单位通常相对误差以%,%0表示如果不知道真值,但知道测量的绝对误差,则相对误差也可以测量值x为基础表示在分析工作中,用相对误差衡量分析结果,比绝对误差更常用根据相对误差的大小,还能提供正确选择分析仪器的仪器对于高含量组分测定的相对误差应当要求严些(小些)对于低含量组分测定的相对误差可以允许大些在相对误差要求固定时,测定高含量组分可选用灵敏度较低的仪器,而对低含量组分灵敏度较高的仪器二、真值与标准参考物质可知的真值,有三类:理论真值、约定真值、相对真值:三角形内角和为180度:国际单位及我国的法定计量单位是约定真值各元素的原子量物质的理论含量:常用标准参考物质的证书上所给出的含量作为相对真值标准参考物质:1必须是经工人的权威机构鉴定,并给予证书的2必须具有很好的均匀性与稳定性3其含量测量的准确度至少要高于实际测量的3倍约定真值与相对真值是分析化学工作中最常用的真值除理论真值外,其它真值都是由实验测得,都带有一定的误差三、系统误差和偶然误差按误差的性质分:系统误差和偶然误差(一)系统误差:是由某种确定的原因引起的,一般它有固定的方向(正或负)和大小,重复测定时重复出现根据系统误差的来源分为:方法误差、仪器(或试剂)误差、操作误差方法误差:是由于不适当的试验设计或所选择的分析方法不恰当所引起的,通常方法误差影响的存在,使测定结果要么总是偏高;要么总是偏低,误差的方向固定仪器或试剂误差:是由仪器未经校准或试剂不合格所引起的:是由于分析工作者的操作不符合要求造成的在一个测定过程中这三种误差都可能存在:如果在多次测定中系统误差的绝对值保持不变,但相对值随被测组分含量的增大而:如果系统误差的绝对值随样品量的增大而成比例增大,相对值不变,则称为~也有时,系统误差的绝对值虽然随样品量的增大而增大,但不成比例系统误差是以固定的方向和大小出现,并具有重复性。