第二节 定积分计算公式和性质
- 格式:doc
- 大小:162.00 KB
- 文档页数:5
定积分计算法则一、定积分的基本概念1. 定积分的定义- 设函数y = f(x)在区间[a,b]上有界。
- 在[a,b]中任意插入n - 1个分点a=x_0< x_1< x_2<·s< x_{n - 1}< x_n = b,把区间[a,b]分成n个小区间[x_{i - 1},x_i],i = 1,2,·s,n。
- 记Δ x_i=x_i - x_{i - 1},λ=max{Δ x_1,Δ x_2,·s,Δ x_n}。
- 在每个小区间[x_{i - 1},x_i]上任取一点ξ_i∈[x_{i - 1},x_i],作和式∑_{i = 1}^n f(ξ_i)Δ x_i。
- 如果当λ→0时,上述和式的极限存在(这个极限值与[a,b]的分法及ξ_i的取法均无关),则称函数y = f(x)在区间[a,b]上可积,并称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_{a}^bf(x)dx,即∫_{a}^bf(x)dx=limlimits_{λ→0}∑_{i = 1}^n f(ξ_i)Δ x_i。
其中f(x)叫做被积函数,f(x)dx叫做被积表达式,x叫做积分变量,a叫做积分下限,b叫做积分上限,[a,b]叫做积分区间。
2. 定积分的几何意义- 当f(x)≥slant0,x∈[a,b]时,定积分∫_{a}^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x轴所围成的曲边梯形的面积。
- 当f(x)≤slant0,x∈[a,b]时,定积分∫_{a}^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x轴所围成的曲边梯形面积的负值。
- 当f(x)在[a,b]上有正有负时,定积分∫_{a}^bf(x)dx表示x轴上方的曲边梯形面积减去x轴下方的曲边梯形面积。
二、定积分的基本性质(假设以下性质中的函数在相应区间上可积)1. 线性性质- ∫_{a}^b[k_1f(x)+k_2g(x)]dx = k_1∫_{a}^bf(x)dx + k_2∫_{a}^bg(x)dx,其中k_1,k_2为常数。
定积分性质与运算法则引言在微积分中,定积分是一个重要的概念。
定积分可以用来计算曲线所包围的面积、求某一区间上函数的平均值等。
为了更好地理解和应用定积分,我们需要了解定积分的性质和运算法则。
定积分性质定积分的存在性定积分的存在性是指,对于一个定义在区间[a, b]上的函数f(x),如果在[a, b]上连续或者仅有有限个间断点,那么这个函数在[a, b]上就是可积的。
也就是说,函数f(x)在[a, b]上的定积分是存在的。
定积分的线性性质定积分具有线性性质,即对于两个可积函数f(x)和g(x),以及任意实数c,有如下等式成立:∫(c1f(x) + c2g(x)) dx = c1∫f(x) dx + c2∫g(x) dx其中,c1和c2是任意实数。
定积分的加法法则对于一个可积函数f(x),以及给定的区间[a, b]和[c, d],有如下等式成立:∫(a到b) f(x) dx + ∫(b到c) f(x) dx = ∫(a到c) f(x) dx这说明,对于一个函数在不同的区间上的定积分,我们可以通过将这些区间连在一起进行求解,得到整个区间上的定积分。
定积分的比较性质对于两个可积函数f(x)和g(x),如果在[a, b]上满足f(x) ≤ g(x),那么有如下不等式成立:∫(a到b) f(x) dx ≤ ∫(a到b) g(x) dx也就是说,如果在某个区间上一个函数始终小于等于另一个函数,那么这两个函数在该区间上的定积分的大小关系也是相同的。
定积分的运算法则分部积分法分部积分法是一种计算定积分的方法,它可以将一个乘积形式的积分转化为一个易于处理的形式。
分部积分法的公式如下:∫u(x) v’(x) dx = u(x) v(x) - ∫v(x) u’(x) dx其中,u(x)和v(x)是可导的函数。
代换法代换法是另一种常用的计算定积分的方法,它通过引入新的变量来简化积分的计算。
代换法的公式如下:∫f(u(x)) u’(x) dx = ∫f(u) du其中,u是一个可导函数。
第二节定积分计算公式和性质一、变上限函数设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数,我们把称为函数在区间上变上限函数记为图5-10从几何上看,也很显然。
因为X是上一个动点,从而以线段为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10)定积分计算公式利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。
因此,必须寻求计算定积分的简便方法。
我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为图5-11另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b所经过的路程应该是(见图5-11)即由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可。
如果抛开上面物理意义,便可得出计算定积分的一般方法:设函数在闭区间上连续,是的一个原函数,即,则这个公式叫做牛顿-莱布尼兹公式。
为了使用方便,将公式写成牛顿-莱布尼兹公式通常也叫做微积分基本公式。
它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。
它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。
例1 计算因为是的一个原函数所以例 2 求曲线和直线x=0、x=及y=0所围成图形面积A(5-12)解这个图形的面积为图5-12二、定积分的性质设、在相应区间上连续,利用前面学过的知识,可以得到定积分以下几个简单性质:性质1 被积函数的常数因子可以提到定积分符号前面,即(A为常数) 性质2函数的代数和的定积分等于它们的定积分的代数和,即这个性质对有限个函数代数和也成立。
第二节定积分计算公式和性质、变上限函数设函数/S)在区间卜上]上连续,并且设x为^上]上的任一点,于是,/W 在区间卜“]上的定积分为M比这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数恥),我们把处)称为函数7匕)在区间卜上]上变上限函数记为心:二「‘r咐m :图5-10从几何上看,也很显然。
因为X是上一个动点,从而以线段b』]为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10)定积分计算公式利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。
因此,必须寻求计算定积分的简便方法。
我们知道:如果物体以速度吨作直线运动,那么在时间区间也打上所经过的路程S为图5-111 f 曲■■ V -------------------- <5 』 £■另一方面,如果物体经过的路程 s 是时间t 的函数「盯,那么物体从t=a 到t=b 所经过的路程应该是(见图5-11)由导数的物理意义可知即(丿是一个原函数,因此,为了求出定积分设函数 /W 在闭区间上连续, 陀)是") 的一个原函数,即 弘)5), 则打加皿紂―%)这个公式叫做牛顿-莱布尼兹公式。
为了使用方便,将公式写成"(诟十魁"糾-陀)牛顿-莱布尼兹公式通常也叫做微积分基本公式。
它表示一个函数定积分等于这个函数的原函数在积分上、 下限处函数值之差。
它揭示了定积分和不定积分的内在联系,提供 了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。
例1计算I"应先求出被积函数 皿)的原函数呦,再求呦在区间 M 上的增量血卜册即可。
如果抛开上面物理意义,便可得出计算定积分 因为I 是-的一个原函数所以般方法:例2求曲线 图形面积A(5-12)解这个图形的面积为 = J am 二—uosjrg图5-12-—COS7T + cos 0 = 1 -Fl = 2二、定积分的性质设「•;)、-:—在相应区间上连续,利用前面学过的知识,单性质: 性质1被积函数的常数因子可以提到定积分符号前面,即(A 为常数)性质2函数的代数和的定积分等于它们的定积分的代数和,即f L/C )士 ★出“打(说士 f £陽这个性质对有限个函数代数和也成立。
第二节定积分计算公式和性质一、变上限函数设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数,我们把称为函数在区间上变上限函数记为图5-10从几何上看,也很显然。
因为X是上一个动点,从而以线段为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10)定积分计算公式利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。
因此,必须寻求计算定积分的简便方法。
我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为图5-11另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b 所经过的路程应该是(见图5-11)即由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可。
如果抛开上面物理意义,便可得出计算定积分的一般方法:设函数在闭区间上连续,是的一个原函数,即,则这个公式叫做牛顿-莱布尼兹公式。
为了使用方便,将公式写成牛顿-莱布尼兹公式通常也叫做微积分基本公式。
它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。
它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。
例1 计算因为是的一个原函数所以例 2 求曲线和直线x=0、x=及y=0所围成图形面积A(5-12)解这个图形的面积为图5-12二、定积分的性质设、在相应区间上连续,利用前面学过的知识,可以得到定积分以下几个简单性质:性质1 被积函数的常数因子可以提到定积分符号前面,即(A为常数)性质2函数的代数和的定积分等于它们的定积分的代数和,即这个性质对有限个函数代数和也成立。
智慧城市的智能公共交通智慧城市的建设已经成为现代城市规划的重要组成部分,其中智能公共交通系统的发展具有关键性的意义。
智慧公共交通通过融合信息技术与交通系统,提供更加高效、便捷、可持续的出行方式,为城市居民带来全新的出行体验。
一、智能公共交通系统智能公共交通系统是指通过网络技术和智能设备,使城市公共交通更加智能化、高效化的系统。
其核心是基于信息技术的数据采集、分析和应用,为公共交通管理实现智能化、精细化的运营管理。
1.1 数据采集与分析智能公共交通系统通过各类传感器、监控设备等手段,实现对城市交通状况、公交车辆运营、乘客需求等数据的实时采集。
这些数据经过处理和分析,可以为公共交通管理者提供决策参考,优化车辆调度,提高运行效率。
1.2 公交信号优化智能公共交通系统还可以通过智能信号控制技术,为公交车辆提供绿波通行的便利。
交通信号可以根据实时交通数据和公交车辆的位置信息,动态调整信号灯的时长,尽量减少红灯等待时间,提高公交出行速度和运行效率。
1.3 公交调度与导航智能公共交通系统通过建立信息平台,将公交车辆的实时位置信息与乘客需求进行匹配,实现公交车辆的实时调度和导航。
乘客可以通过手机或电子显示屏查看公交车辆的实时到站信息和运行状态,提前规划出行路线,减少等待时间。
二、智能公共交通的优势智能公共交通系统的引入,为城市公共交通带来了诸多优势和便利,不仅提升了乘客出行体验,也有助于城市交通管理的提升。
2.1 提高运行效率智能公共交通系统可以实时获取乘客需求和交通状况,通过优化调度和信号控制,提高公交车辆的运行效率。
乘客等待时间减少,公交车辆的行驶速度增加,整体交通流量得以优化,提升了公共交通的吸引力。
2.2 减少碳排放智能公共交通系统的推广使用,可以减少汽车出行需求,降低交通拥堵,从而减少了尾气排放和能源的消耗。
这有助于改善城市的空气质量,减少环境污染,推动可持续交通的发展。
2.3 提升出行体验智能公共交通系统为乘客提供了多种出行信息服务,包括实时车辆到站信息、乘车路线建议、交通状况预测等。
定积分的计算方法及其性质证明定积分是微积分中重要的概念之一,它在数学和物理等领域中都有广泛的应用。
本文将介绍定积分的计算方法,并证明一些与定积分相关的性质。
一、定积分的计算方法1. 首先,我们介绍定积分的定义。
对于函数f(x)在[a, b]上的定积分可以用下面的极限形式表示:∫[a, b] f(x) dx = lim(n→∞) ∑[i=1 to n] f(xi)Δx其中,xi是[a, b]上的一系列划分点,Δx是每个子区间的长度。
2. 一种常用的计算定积分的方法是使用定积分的几何意义。
对于非负函数f(x),它在[a, b]上的定积分表示f(x)与x轴之间的面积。
当f(x)是负函数时,定积分可以表示为x轴与f(x)之间的绝对值的面积。
例如,计算函数y = x^2在[1, 2]上的定积分可以通过计算由y = x^2, x = 1, x = 2和x轴所围成的区域的面积来完成。
3. 常用的定积分计算方法之一是基于牛顿-莱布尼兹公式,也称为微积分的基本定理。
该定理表明,如果函数F(x)是f(x)的一个原函数,则有:∫[a, b] f(x) d x = F(b) - F(a)这意味着我们可以通过求解函数f(x)的原函数,并使用原函数在区间的端点处的值来计算定积分。
4. 对于一些特定的函数,我们可以使用一些基本的公式和性质来计算定积分。
例如,对于多项式函数和三角函数,我们可以利用它们的导数和基本积分表来计算定积分。
5. 对于一些复杂的函数,我们可以将其进行分解成更简单的函数,然后分别计算它们的定积分,最后将结果进行合并。
这种方法常用于计算不可积函数的定积分。
二、定积分的性质证明1. 定积分的线性性质对于函数f(x)和g(x),以及常数a和b,有以下等式成立:∫[a, b] (af(x) + bg(x)) dx = a∫[a, b] f(x) dx + b∫[a, b] g(x) dx这个性质可以通过定积分的定义和极限运算的性质进行证明。
第二节 定积分计算公式和性质一、变上限函数设函数()x f 在区间[]b a ,上连续,并且设x 为[]b a ,上的任一点,于是,()x f 在区间[]b a ,上的定积分为()dx x f xa ⎰ 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 ()dt t f x a ⎰ 如果上限x 在区[]b a ,间上任意变动,则对于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在[]b a ,上定义了一个以x 为自变量的函数()x ϕ,我们把()x ϕ称为函数()x f 在区间[]b a ,上变上限函数记为()()()b x a dt t f x x a ≤≤=⎰ϕ从几何上看,也很显然。
因为X 是[]b a ,上一个动点,从而以线段[]b a ,为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10)定积分计算公式利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。
因此,必须寻求计算定积分的简便方法。
我们知道:如果物体以速度()()()0〉t v t v 作直线运动,那么在时间区间[]b a ,上所经过的路程s 为()dt t v s b a ⎰=另一方面,如果物体经过的路程s 是时间t 的函数()t s ,那么物体从t=a 到t=b 所经过的路程应该是(见图5-11)即 ()()()a s b s dt t v ba -=⎰ 由导数的物理意义可知:()()t v t s ='即()t s 是()t v 一个原函数,因此,为了求出定积分()dt t v ba ⎰,应先求出被积函数()t v 的原函数()t s ,再求()t s 在区间[]b a ,上的增量()()b s a s -即可。
如果抛开上面物理意义,便可得出计算定积分()dx x f ba ⎰的一般方法: 设函数()x f 在闭区间[]b a ,上连续,()x F 是()x f 的一个原函数,即()()x f x F =',图 5-10 图5-11则()()()a F b F dx x f ba-=⎰ 这个公式叫做牛顿-莱布尼兹公式。
为了使用方便,将公式写成 ()()[]()()a F b F x F dx x f b a b a -==⎰牛顿-莱布尼兹公式通常也叫做微积分基本公式。
它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。
它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。
例1 计算dx x ⎰102 因为331x 是2x 的一个原函数所以3103131103102=-=⎥⎦⎤⎢⎣⎡=⎰x dx x 例2 求曲线x y sin =和直线x=0、x=π及y=0所围成图形面积A(5-12)解 这个图形的面积为[]ππ00cos sin x xdx A -==⎰2110c o s c o s =+=+-=π二、定积分的性质 设()x f 、()x g 在相应区间上连续,利用前面学过的知识,可以得到定积分以下几个简单性质:性质 1 被积函数的常数因子可以提到定积分符号前面,即()()dx x f A dx x Af ba ba ⎰⎰=(A 为常数)性质2 函数的代数和的定积分等于它们的定积分的代数和,即 ()()[]()()dx x g dx x f dx x g x f ba b a b a ⎰⎰⎰±=± 这个性质对有限个函数代数和也成立。
性质3 积分的上、下限对换则定积分变号,即()()dx x f dx x f ab b a ⎰⎰-= 以上性质用定积分的定义及牛顿-莱布尼兹公式均可证明,此处证明从略。
性质4 如果将区间[]b a ,分成两个子区间[]c a ,及[]b c ,那么有()()()dx x f dx x f dx x f b cc a b a ⎰⎰⎰+=这个于区间分成有限个的情形也成立。
下面用定积分的几何意义,对性质4加以说明。
当a<c<b 时,从图5-13a 可知,由y=f ()x 与和x=a x=b 及x 轴围成的曲边梯形面积A :A A A 21+= 图 5-12 图 5-13a因为⎰⎰⎰===bc ca b a dxx f A dx x f A dx x f A )(;)(;)(21所以⎰⎰⎰+=bc c a b a dxx f x f dx x f )()()(即性质4成立。
当a<b<c 时,即点c 在[]b a ,外,由图5-13b 可知,()()()dx x f dx x f A A dx x f cb b ac a ⎰⎰⎰+=+=21()()()()()dxx f x f dxx f dx x f x f bc c a c b ca b a ⎰⎰⎰⎰⎰+=-=所以显然,性质4也成立。
总之,不论c 点在[]b a ,内还是[]b a ,外,性质4总是成立的。
例3 求dxx x ⎰⎪⎭⎫ ⎝⎛+21213[][]2ln 71ln 2ln 18ln 13132121321212212+=-+-=+=+=⎪⎭⎫ ⎝⎛+⎰⎰⎰x x dxx dx x dx x x例 4 求dx x2sin 2202⎰π解 dx x 2sin 2202⎰π=()dx x ⎰-20cos 1π[][]120sin 2sin 2sin cos 20202020-=+-=-=-=⎰⎰πππππππx x dx x dx例 5 求dx x x ⎰+10221解 图5-13b()41a r c t a n 11111111010210221022π-=-=⎪⎭⎫ ⎝⎛+-=+-+=+⎰⎰⎰x x dx x dxx x dx x x 所以[]()252212121202012200121=+=+-=+-=---⎰⎰⎰x x x d xdx x dx x 例 6 求dx x ⎰-21 解 (){2001≤≤〈≤--==x x x x x x f 于是, ⎰⎰⎰--+-=012021xdx xdx dx x2020122121⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=-x x25221=+=例 7 设 ()1121112≤≤-≤〈-⎪⎩⎪⎨⎧=x x xx x f 求()dx x f ⎰-21解 因为 ()[]上分段连续在2,1-x f所以()()()dx x f dx x f dx x f ⎰⎰⎰+=--211121=()dx x dx x ⎰⎰+--2121111 =2111212⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--x x x =23- 例8 火车以v=72km/h 的速度在平直的轨道上行驶,到某处需要减速停车。
设火车以加速度a=-5m/2s 刹车。
问从开始刹车到停车,火车走了多少距离?解 首先要算出从开始刹车到停车经过时间。
当 时火车速度s m s m h km v /203600100072/720=⨯==刹车后火车减速行驶。
其速度为()t at v t v 5200-=-=当火车停住时,速度()0=t v ,故从()0520=-=t t v 解得s s m s m t 4/5/202==于是在这段时间内,火车走过的距离为 ()()40240402520520⎥⎦⎤⎢⎣⎡-=-==⎰⎰t t dt t dt t v s=mm402454202=⎪⎪⎭⎫⎝⎛⨯-⨯即在刹车后,火车需走过40m才能停住。
习题5-2 1 求下列定积分:(1)dxx⎰--2121211(2);dxxx⎰⎪⎭⎫⎝⎛+2121(3)dxx⎰+331211(4)()dxxx⎰+πsincos(5)dxxx⎰⎪⎪⎭⎫⎝⎛+321(6)tdt⎰-222cosππ(7)dxxxx⎰-+++12241133(8)dxxxx⎰+20sincos2cosπ(9)dxxx⎰3622cossin1ππ(10)dxx⎰π0sin(11)设(){()⎰-≤≤-≤〈-=2121111,2dxxfxf xxxx求2.求由2xy=与直线x=1,x=2及x轴所成的图形的面积。
3.一物体由静止出发沿直线运动,速度为23tv=,其中,v以m/s单位,求物体在1s到2s之间走过的路程。