直流电机控制
- 格式:docx
- 大小:276.69 KB
- 文档页数:7
直流电机的控制原理
直流电机的控制原理可以通过以下内容来说明:
直流电机的控制原理是通过调节电源电压和改变电枢线圈中电流方向来实现的。
具体来说,直流电机的工作原理是根据洛伦兹力和安培力的作用,通过控制电流方向和大小来改变电机的转速和转向。
在直流电机中,电枢线圈是位于电机中心的旋转部分,而电枢线圈两端与电源相连。
当电流通过电枢线圈时,电流会在磁场中发生作用,产生洛伦兹力,使电枢线圈开始旋转。
电枢线圈的旋转会使其上的集电刷与固定的电极接触,改变电枢线圈中电流的方向,从而反转驱动力,使电机的旋转方向改变。
为了控制直流电机的转速和转向,可以通过改变电源电压和电枢线圈中电流的方向来实现。
当电源电压增加时,电枢线圈中的电流增加,从而增大洛伦兹力,加速电机的转速。
同样地,当电源电压减小时,电机的转速会减慢。
另外,改变电枢线圈中电流的方向也会改变洛伦兹力的方向,从而改变电机的转向。
在实际应用中,直流电机的控制可以通过调节电压或使用电压变频器来实现。
通过调节电源电压的大小,可以实现直流电机的速度调节;通过改变电枢线圈中电流的方向,可以实现直流电机的正反转控制。
综上所述,直流电机的控制原理是通过调节电源电压和改变电
枢线圈中电流方向来实现的,从而实现对电机转速和转向的控制。
直流电机控制课程设计一、课程目标知识目标:1. 学生能理解直流电机的工作原理,掌握直流电机的基本结构及其功能。
2. 学生能掌握直流电机控制的基本方法,包括启动、调速、制动等。
3. 学生能了解并描述直流电机在自动化控制中的应用。
技能目标:1. 学生能运用所学知识,进行简单的直流电机控制电路的设计与搭建。
2. 学生能通过实际操作,熟练使用相关仪器设备进行直流电机控制实验。
3. 学生能通过实验数据分析,解决直流电机控制过程中出现的问题。
情感态度价值观目标:1. 学生对直流电机控制技术产生兴趣,培养探究精神和创新意识。
2. 学生在小组合作中,培养团队协作能力和沟通表达能力。
3. 学生关注直流电机控制技术在现实生活中的应用,增强学以致用的意识。
分析课程性质、学生特点和教学要求:1. 本课程为工程技术类课程,注重理论与实践相结合,强调学生的动手能力。
2. 学生为初中年级学生,具备一定的物理基础和动手操作能力,但对复杂电路和控制原理理解有限。
3. 教学要求以学生为主体,注重启发式教学,引导学生主动探究和解决问题。
二、教学内容1. 直流电机的工作原理与结构- 直流电机的组成及其功能- 直流电机的工作原理- 直流电机的类型及特点2. 直流电机控制方法- 直流电机的启动方法- 直流电机的调速方法- 直流电机的制动方法3. 直流电机控制电路设计与搭建- 控制电路元件的识别与选用- 控制电路的设计原理与步骤- 控制电路的搭建与调试4. 直流电机控制实验- 实验设备的使用与操作- 实验步骤与方法- 实验数据的收集与分析5. 直流电机控制技术应用- 直流电机控制技术在现实生活中的应用案例- 直流电机控制技术的未来发展教学内容安排与进度:第一课时:直流电机的工作原理与结构第二课时:直流电机控制方法第三课时:直流电机控制电路设计与搭建第四课时:直流电机控制实验第五课时:直流电机控制技术应用教材章节关联:教学内容与教材第二章“直流电机的原理与应用”相关联,涵盖直流电机的基本概念、原理、控制方法及其在实际中的应用。
直流电机的三种转速控制方法
直流电机是一种常见的电动机类型,广泛应用于各种电力设备和工业机械中。
在实际应用中,为了满足不同的工作需求,需要对直流电机的转速进行控制。
下面将介绍直流电机的三种常见转速控制方法。
一、电压调节法
电压调节法是一种简单常用的直流电机转速控制方法。
通过调节电源的输出电压来控制直流电机的转速。
当电源电压增大时,直流电机的转速也会随之增加。
这种方法适用于转速变化范围较小的情况,例如风扇、泵等。
二、电阻调节法
电阻调节法是一种通过改变电阻来控制直流电机转速的方法。
在直流电机的电路中串接一个可调电阻,通过改变电阻的阻值来改变电机的转速。
当电阻增大时,电机的转速会减小。
这种方法适用于转速变化范围较大的情况,但效率较低。
三、PWM调节法
PWM调节法是一种通过改变脉宽调制信号的占空比来控制直流电机转速的方法。
通过控制开关管的导通时间,使得电机得到短时间的高电压和长时间的低电压,从而实现对电机转速的控制。
这种方法具有调速范围广、效率高的特点,适用于对转速要求较高的场合,
例如机械加工、自动化生产线等。
以上是直流电机的三种常见转速控制方法。
不同的控制方法适用于不同的应用场景,根据实际需求选择合适的方法可以提高电机的性能和效率。
同时,随着科技的不断进步,还出现了更多先进的转速控制技术,例如矢量控制、闭环控制等,这些方法在特定的领域中得到了广泛应用。
未来,随着技术的不断发展,直流电机的转速控制方法将会更加多样化和高效化。
直流电机控制方法
直流电机的控制方法主要有以下几种:
1. 速度控制:通过改变电压或电流的大小来控制电机的转速。
可以使用PWM (脉冲宽度调制)技术来实现精确的速度控制。
2. 方向控制:通过改变电机的电流流向来控制电机的旋转方向。
可以使用H桥电路来实现方向控制。
3. 位置控制:通过测量电机转子的位置来控制电机的旋转角度。
可以使用编码器等位置传感器来获取转子位置信息,并使用闭环控制算法来实现精确的位置控制。
4. 力矩控制:通过改变电机的电流大小来控制电机输出的力矩。
可以使用电流反馈控制算法来实现力矩控制。
5. 转矩控制:通过改变电机的电流大小和方向来控制电机输出的转矩。
转矩控制可以实现精确的负载控制和工艺要求。
这些控制方法可以单独应用,也可以组合使用,以实现不同的应用需求。
一、实训目的本次直流电机控制实训旨在使学生掌握直流电机的基本原理、控制方法及其在实际应用中的操作技能。
通过实训,学生能够了解直流电机的结构、工作原理,学习PWM(脉宽调制)技术、单片机控制等现代电机控制技术,并能够独立完成直流电机的控制实验,提高动手能力和工程实践能力。
二、实训内容1. 直流电机基本原理学习首先,对直流电机的基本结构和工作原理进行了学习。
直流电机主要由转子、定子、电刷、换向器和励磁绕组等部分组成。
在了解这些基本组成部分的基础上,进一步学习了直流电机的转矩、转速与电压、电流之间的关系,以及直流电机的启动、制动和调速方法。
2. PWM技术学习PWM技术是现代电机控制中的重要技术之一。
通过学习PWM技术,了解了PWM信号的产生原理、特点及其在电机控制中的应用。
同时,学习了PWM控制电路的设计和调试方法。
3. 单片机控制学习单片机是现代电机控制系统的核心控制器。
通过学习单片机的基本原理、编程方法和接口技术,掌握了如何使用单片机控制直流电机的转速和转向。
4. 实验操作在实验过程中,按照以下步骤进行操作:(1)搭建实验电路:根据实验要求,连接直流电机、PWM控制器和单片机等元器件,搭建完整的实验电路。
(2)编写程序:使用C语言编写单片机控制程序,实现直流电机的转速和转向控制。
(3)调试程序:通过示波器等工具观察PWM信号和电机运行状态,对程序进行调试和优化。
(4)测试实验效果:观察电机转速和转向是否符合预期,验证实验效果。
三、实验结果与分析1. 转速控制实验在转速控制实验中,通过调整PWM信号的占空比,实现了直流电机的无级调速。
实验结果表明,随着PWM占空比的增大,电机转速逐渐提高;随着PWM占空比的减小,电机转速逐渐降低。
2. 转向控制实验在转向控制实验中,通过改变PWM信号的极性,实现了直流电机的正反转。
实验结果表明,当PWM信号正负极性相反时,电机转向相反。
3. 实验结果分析通过本次实训,掌握了直流电机的基本原理、PWM技术和单片机控制方法。
直流电机控制原理图
直流电机是一种常见的电动机,它通过直流电源驱动,能够将
电能转换为机械能,广泛应用于工业生产、交通运输、家用电器等
领域。
直流电机的控制原理图是直流电机控制系统的重要组成部分,它能够帮助我们了解直流电机的工作原理和控制方式,本文将介绍
直流电机控制原理图的相关知识。
首先,直流电机控制原理图包括直流电机、电源、控制器等组件。
直流电机通常由定子、转子、碳刷、电枢等部分组成,电源为
直流电源,控制器则是用来控制电机运行的设备。
在直流电机控制
原理图中,这些组件通过电气连线连接在一起,形成一个完整的控
制系统。
在直流电机控制原理图中,电源为直流电源,它可以是电池、
直流发电机、直流稳压电源等。
电源的电压和电流大小将直接影响
到直流电机的运行性能,因此在设计直流电机控制系统时,需要根
据实际需要选择合适的电源。
控制器是直流电机控制系统中的关键部件,它可以根据外部输
入信号控制电机的启停、正反转、速度调节等功能。
常见的直流电
机控制器有直流调速器、直流电机驱动器、直流电机控制板等,它们可以根据具体的控制要求选择使用。
在直流电机控制原理图中,还会包括一些辅助元件,如限流电阻、过载保护器、电流传感器等。
这些辅助元件能够提高电机控制系统的稳定性和安全性,保护电机免受过载、短路等异常情况的影响。
总的来说,直流电机控制原理图是直流电机控制系统的重要组成部分,它通过电气连线将直流电机、电源、控制器等组件连接在一起,形成一个完整的控制系统。
掌握直流电机控制原理图的相关知识,能够帮助我们更好地理解直流电机的工作原理和控制方式,为实际应用提供参考和指导。
直流无刷电机控制器原理直流无刷电机(BLDC)控制器是一种用于控制无刷电机转速和方向的设备,它通过精确的电子控制来实现对电机的精准驱动。
在本文中,我们将详细介绍直流无刷电机控制器的原理,包括其工作原理、结构组成、控制方法等内容。
1. 直流无刷电机控制器的工作原理。
直流无刷电机控制器的工作原理主要是通过对电机的三相驱动信号进行精确的控制,从而实现对电机的转速和方向的控制。
在控制器内部,通常包含了驱动电路、传感器信号处理电路和控制逻辑电路。
其中,驱动电路用于产生电机的三相驱动信号,传感器信号处理电路用于处理电机位置和速度的反馈信号,控制逻辑电路用于实现对电机的闭环控制。
2. 直流无刷电机控制器的结构组成。
直流无刷电机控制器通常由主控芯片、功率放大器、传感器、电源模块等部分组成。
主控芯片是控制器的核心部分,它负责处理传感器反馈信号并生成电机驱动信号,功率放大器用于放大主控芯片输出的驱动信号,传感器用于检测电机的位置和速度,电源模块用于为整个控制器提供稳定的电源供应。
3. 直流无刷电机控制器的控制方法。
直流无刷电机控制器通常采用开环控制和闭环控制两种方法。
开环控制是指根据预先设定的电机驱动信号直接驱动电机,这种控制方法简单、成本低,但精度较低。
闭环控制是指通过传感器反馈信号对电机进行实时监测和调节,以实现对电机的精准控制,这种控制方法精度高,但成本较高。
4. 直流无刷电机控制器的应用领域。
直流无刷电机控制器广泛应用于工业自动化、电动汽车、无人机、家用电器等领域。
在工业自动化中,直流无刷电机控制器可以实现对生产线上各种设备的精准控制;在电动汽车中,直流无刷电机控制器可以实现对电动汽车驱动系统的精准控制;在无人机中,直流无刷电机控制器可以实现对无人机飞行稳定性的控制;在家用电器中,直流无刷电机控制器可以实现对家用电器的精准驱动。
5. 结语。
通过本文的介绍,相信读者对直流无刷电机控制器的原理有了更深入的了解。
直流电机控制原理
直流电机控制原理是一种将直流电源的电能转换为机械能的机电装置。
它通过控制电流方向和大小,来改变电机的转速和转矩。
直流电机控制的基本原理可以归纳为电流控制和转矩控制。
在电流控制方面,采用调节电机输入电流的方法来实现转速和转矩的控制。
其中,调节输入电流的大小可以通过改变电源电压、电阻、或者采用PWM(脉宽调制)技术进行控制。
而在转矩
控制方面,通过改变电机的电势(反电势)来控制电机的转矩输出。
直流电机的转速和转矩与输入电流之间存在一定的数学关系。
通常情况下,直流电机的转速与输入电压成正比,转矩与输入电流成正比。
因此,在控制直流电机的转速和转矩时,可以通过调节输入电压和电流的大小来实现。
为了实现精确的控制,常常使用PID调节器来控制直流电机。
PID调节器是一种基于比例、积分和微分的控制算法,通过根
据当前的误差、误差累积和误差变化率来动态地调节控制信号,以实现所需的输出。
在实际应用中,直流电机的控制可分为开环控制和闭环控制两种方式。
开环控制是指通过设定电机的输入电压或电流,来达到所需的输出转速和转矩。
而闭环控制则是通过测量电机的转速或转矩,并将其与设定值进行比较,从而实现对电机输入电压或电流的自动调节。
总的来说,直流电机控制原理是通过调节电流方向和大小,来控制电机的转速和转矩。
这种控制可通过调节电源电压、电阻、使用PWM技术或PID调节器等方法来实现。
同时,可通过开环控制和闭环控制两种方式来实现精确的电机控制。
专业资料电机简要学习手册2015-2-3一、直流电机原理与控制方法1直流电机简介直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
它是能实现直流电能和机械能互相转换的电机。
当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。
直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。
但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。
但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。
2 直流电动机基本结构与工作原理2.1 直流电机结构如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。
定子按照励磁可分为直励,他励,复励。
电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。
2.2 直流电机工作原理如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷A 流入,经过线圈abcd,从电刷B 流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。
如果转子转到如上图(b)所示的位置,电刷A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是dcba,从电刷B 流出。
此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。
这就是直流电动机的工作原理。
外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。
直流电动机控制系统直流电动机是一种基本的电机类型,应用非常广泛。
而直流电动机控制系统则是控制直流电动机的关键工具。
本文将介绍直流电动机控制系统的工作原理、基本组成部分以及应用场景。
工作原理直流电动机控制系统的工作原理基于电流和电磁场的相互作用。
当通电后,电动机内的电流会在电磁铁中产生磁场。
这个磁场会作用于转子,导致它开始旋转。
而直流电动机控制系统的目的就是在保持稳定的基础上,改变电流的方向和大小,进而实现电机的转速控制。
组成部分直流电动机控制系统包含多个组成部分,下面将逐一介绍。
电源电源是直流电动机控制系统不可或缺的一个部分。
它提供了系统所需的电能,通常使用的是交流电源。
电动机电动机是直流电动机控制系统的核心,负责产生转动力。
根据控制系统的不同,会有不同规格的电机,例如不同转速和转矩。
电机驱动器电机驱动器是用来控制电流的方向和大小,改变电机的转速。
通常是由开关管、驱动电路以及电源组成。
传感器和反馈传感器和反馈是直流电动机控制系统中非常重要的部分,它可以检测电机的状态并将信息反馈给控制系统。
常用的传感器包括转速传感器、温度传感器等。
控制器控制器是直流电动机控制系统的大脑,根据传感器和反馈的信息来决定电机所要做的动作,例如改变电流的方向和大小,控制电机的运转。
应用场景直流电动机控制系统可以应用于许多领域,例如工业制造、航空和交通运输等。
在工业制造中,它可以应用于机械加工、制造生产线等设备;在航空中,它可以应用于航空器的起飞和着陆;在交通运输中,它可以应用于电动车辆、电动自行车和其他交通工具上。
直流电动机控制系统是控制电机的重要工具。
本文介绍了直流电动机控制系统的工作原理、基本组成部分以及应用场景。
希望本文能帮助您更好地了解直流电动机控制系统的基本知识,从而更好地应用于实际生产和生活中。
无刷直流电机控制方法
无刷直流电机的控制方法有以下几种:
1. 电压控制方法:通过改变驱动电机的电压来控制电机的转速。
利用PWM调整电压占空比,可以精确控制电机的转速和扭矩。
2. 闭环控制方法:通过采集电机的转速、位置或电流等信息,来计算误差并进行校正,实现对电机的闭环控制。
常见的闭环控制方法有速度闭环控制和位置闭环控制。
3. 传感器反馈控制方法:通过安装速度、位置或电流等传感器来实时监测电机状态,并将反馈信号与期望信号进行比较,通过控制器对电机进行控制。
这种方法可以提高控制精度和响应速度。
4. 感应器反馈控制方法:通过对电机正弦电流的反馈进行控制,实现对电机的控制。
这种方法不需要安装传感器,并具有较高的控制精度和响应速度。
5. 磁场定向控制方法:通过感应器或感应器反馈对电机磁场进行定向控制,实现对电机转矩和速度的精确控制。
需要注意的是,无刷直流电机的控制方法选用应根据具体应用场景和要求来确定,而不同的控制方法也可能会相互结合使用,以满足对电机的精确控制。
直流电机控制原理
直流电机的控制原理是通过改变电机的电流和电压来实现转速和转向的控制。
一般来说,直流电机的转速与电压成正比,而转向则与电流方向相关。
在电机控制系统中,常用的控制方式包括电压控制和电流控制。
1. 电压控制:通过改变电机输入端的电压来控制电机的转速。
这种控制方式常用于较简单的电机控制系统,如家用电器中的风扇调速。
通过改变电压大小,可以实现电机转速的调节。
2. 电流控制:通过改变电机输入端的电流来控制电机的转向和转速。
在这种控制方式下,通过改变电流的方向和大小,可以实现电机正转、反转和调速等功能。
电机启动时,通常会施加较大的启动电流,然后根据需要逐渐减小电流来控制转速。
为了实现电机的精确控制,还常常使用脉宽调制(PWM)技术。
脉宽调制是通过调节一个定时周期内高电平的时长来控制输出电压或电流的一种技术。
在直流电机控制系统中,通过改变PWM的占空比(高电平时长与一个周期时长的比值),可
以实现电机转速的微调。
较大的占空比意味着输出电压或电流的变化幅度较大,从而实现较高的转速。
此外,还可结合反馈控制系统来实现闭环控制。
反馈控制的原理是通过测量电机的转速或转角,并与期望值进行比较,然后根据误差来调整输出。
通过反馈控制,可以实现电机的精确控制和稳定运行。
直流控制电机有两种常见的控制方式,分别是电压控制和电流控制。
这两种方式在实际应用中有着各自的特点和优势。
我们来简述一下电压控制的特点。
电压控制是指通过控制电机的输入电压来实现对电机的转速和转矩的控制。
在电压控制方式下,控制系统对电机的输入电压进行调节,从而控制电机的运行状态。
这种方式的特点是控制简单,成本相对较低,并且适用于一些对控制精度要求不是很高的场合。
但是,电压控制方式往往无法很好地控制电机的启动和制动过程,且在负载波动较大的情况下稳定性较差。
接下来,我们再来简述一下电流控制的特点。
电流控制是通过控制电机的输入电流来实现对电机转速和转矩的控制。
在电流控制方式下,控制系统对电机的输入电流进行调节,从而控制电机的运行状态。
相比于电压控制,电流控制方式能够更准确地控制电机的转速和转矩,并且具有更好的动态响应性能。
但是,电流控制方式也相对复杂一些,需要更高的系统成本,并且对控制系统的稳定性和抗干扰能力要求较高。
电压控制和电流控制是直流控制电机常用的两种控制方式。
在选择控制方式时,需根据实际应用场景的要求和限制进行综合考虑,以便选择最合适的控制方式。
在一些对精确控制要求不是很高的场合,可以选择电压控制方式;而在对精确控制和动态响应性能要求较高的场合,则需要选择电流控制方式。
通过合理选择和应用控制方式,可以更好地发挥直流控制电机的性能,满足不同场合的实际需求。
简而言之,在直流控制电机的两种控制方式中,电压控制方式具有成本低、控制简单的特点,适合对控制精度要求不高的场合;而电流控制方式则具有精确控制和良好的动态响应性能,适合对控制精度和动态性能要求较高的场合。
在实际应用中,需根据具体需求和限制进行综合考虑,选择最合适的控制方式。
直流控制电机是一种常见的电动机,广泛应用于工业生产和各类机械设备中。
它可通过不同的控制方式来实现对电机转速和转矩的精确控制,其中电压控制和电流控制是两种常见的方式。
我们再深入了解一下电压控制的特点。
(1)直流电机选择
由于本次毕业设计采用的是飞思卡尔公司提供的伺服电机,伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数),而且伺服电机一般是功率小,运行精确,能高速制动,惯量小,适合闭环控制,也就是能检测到实际位置和理论位置的误差,并消除。
(2)直流电机的控制
PWM控制
脉宽调制的全称为:Pulse Width Modulator,简称PWM。
由于它的特殊性能,常被用作直流回路中灯具调光或直流电动机调速。
这里将要介绍的就是利用脉宽调制(PWM)原理制作的马达控制器。
该装置可用于12v或24v直流电路中,两者间只需稍做变动。
它主要是通过改变输出方波的占空比,使得负载上的平均接通时间从0-100%变化,以达到调整负载亮度/速度的目的。
PWM信号一般可有微控制器产生。
如图1
图1 微控制器产生的PWM控制信号
(3)直流电机的反馈与控制
旋转编码器
旋转编码器是用来测量转速的装置。
它分为单路输出和双路输出两种。
技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。
单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。
编码器若以信号原理来分,有增量型编码器,绝对型编码器。
增量型编码器(旋转型)由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z
相脉冲以代表零位参考位。
由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。
编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。
分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。
绝对型编码器(旋转型)光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。
这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。
绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。
这样,编码器的抗干扰特性、数据的可靠性大大提高了。
(4)微控制器的PID调速控制
在工程实际中,应用最为广泛的调节器控制规律为比例、积
分、微分控制,简称PID控制,又称PID调节。
它结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统
控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例控制(P)是一种最简单的控制方式。
其控制器的
输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
在积分(I)控制中,控制器的输出与输入误差信号的
积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称
有差系统(System with Steady-state Error)。
为了消除
稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳
态误差。
在微分(D)控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态性。
图2 PID调速控制方框图
如图2所示为直流电机伺服驱动系统控制方块图,由微控制器作为运动控制元件,输出PWM信号驱动H桥作为PWM功放,编码器采集到的信号传回微控制器,用于PID控制。
(5)控制电路选择
对于电机控制,我们采用的是直接连接的普通的那种两片BTS7960B控制一个电机的电路,通常称作是BTS7960B组成的H桥电机驱动控制电路。
将两片BTS7960B的INH连接在一起,IS连接在一起,通过一个锁存器再分别由单片机控制,INH端口是使能端,由单片机控制输出,输出高电平使能BTS7960B,使BTS7960B正常工作;通过两片BTS7960B的IN端口输出来控制电机正传和反转;通过编码器来反馈小车的实际速度,并控制电机使小车达到接近设定速度。
(6)芯片介绍
智能功率芯片BTS7960是应用于电机驱动的大电流半桥高集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边 MOSFET和一个驱动 Ic。
集成的驱动Ic具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和过温、过压、欠压、过流及短路保护的功能。
BTS7960通态电阻典型值为16mQ,驱动电流可达 43A
(7)芯片引脚结构
(8)引脚定义和功能
(9)硬件电路图的选择(见下图)。