锂离子电池简介及主要应用
- 格式:doc
- 大小:25.88 KB
- 文档页数:6
锂离子电池的构造原理及应用锂离子电池是一种重要的储能设备,被广泛应用于移动电子设备、电动汽车、储能系统等领域。
本文将从锂离子电池的构造原理和应用两个方面进行阐述。
一、构造原理锂离子电池是一种化学储能设备,其主要由正极、负极、电解质和隔膜四个部分组成。
1. 正极正极是锂离子电池中最重要的部分,其主要材料为氧化物,如锂钴酸、锂镍酸、锂锰酸等。
正极材料的物理、化学性质和结构对电池的性能具有重要影响。
正极中的锂离子可以与电解质中的阴离子发生化学反应,从而释放出电子,形成电流。
正极的化学反应过程为:LiCoO2 → Li1-xCoO2 + xLi+ + xe-2. 负极负极的主要材料为石墨,负责接收正极释放出的电子。
负极通过离子通道与电解质中的锂离子发生化学反应,将锂离子嵌入到石墨层中。
负极的化学反应过程为:C6 + xLi+ + xe- → LiC63. 电解质电解质是锂离子电池中重要的组成部分,它位于正极和负极之间,阻止它们直接接触。
电解质的主要作用是使电池中的正负极之间形成电化学反应,同时离子在电解质中传导。
目前,广泛使用的电解质主要为有机溶剂,如EO/EC,EMC,DMC,炭酸二甲酯等。
4. 隔膜隔膜位于正极和负极之间,起到隔离他们的作用,同时通过离子通道促进离子的传输。
隔膜的主要作用是防止正负极之间的直接接触和短路。
二、应用领域锂离子电池是一种高效的储能设备,具有能量密度高、循环寿命长、无记忆效应等特点,广泛应用于移动电子设备、电动汽车、储能系统等领域。
1. 移动电子设备锂离子电池在移动电子设备中得到广泛应用,如手机、平板电脑、笔记本电脑等。
近年来,随着消费者对移动设备续航能力的要求越来越高,锂离子电池的能量密度和循环寿命也得到了大幅提升。
2. 电动汽车锂离子电池在电动汽车中的应用,使电动汽车的运行和充电更加方便和环保。
锂电池能够提供高能量密度和高功率密度,同时具有循环寿命长、无污染等特点。
3. 储能系统随着可再生能源的发展和建设,储能系统也得到了广泛应用。
锂离子电池简介2017-021.锂离子电池原理充电的时候,在外加电场的影响下,正极材料LiCoO2中的锂元素脱离出来,变成带正电荷的锂离子(Li+),在电场力的作用下,从正极移动到负极,与负极的碳原子发生化学反应,生成LiC6,于是从正极跑出来的锂离子就很“稳定”的嵌入到负极的石墨层状结构当中。
从正极跑出来转移到负极的锂离子越多,电池可以存储的能量就越多。
放电的时候刚好相反,内部电场转向,锂离子(Li+)从负极脱离出来,顺着电场的方向,又跑回到正极,重新变成钴酸锂分子(LiCoO2)。
从负极跑出来转移到正极的锂离子越多,这个电池可以释放的能量就越多。
在每一次充放电循环过程中,锂离子(Li+)充当了电能的搬运载体,周而复始的从正极→负极→正极来回的移动,与正、负极材料发生化学反应,将化学能和电能相互转换,实现了电荷的转移,这就是“锂离子电池”的基本原理。
由于电解质、隔离膜等都是电子的绝缘体,所以这个循环过程中,并没有电子在正负极之间的来回移动,它们只参与电极的化学反应。
2.锂离子电池构成锂离子电池内部需要包含几种基本材料:正极活性物质、负极活性物质、隔离膜、电解质。
正负极需要活性物质,是为了更容易参与化学反应,从而实现能量转换。
正负极材料不但要活泼,还需要具有非常稳定的结构,才能实现有序的、可控的化学反应。
一般选用锂的金属氧化物,如钴酸锂、钛酸锂、磷酸铁锂、锰酸锂、镍钴锰三元等材料。
负极通常选择石墨或其他碳材料做活性物质。
电解质是锂离子传导的介质,要求锂离子电导率要高,电子电导率要小(绝缘),化学稳定性要好,热稳定性要好,电位窗口要宽。
人们找到了由高纯度的有机溶剂、电解质锂盐、和必要的添加剂等原料,在一定条件下、按一定比例配制而成的电解质。
有机溶剂有PC(碳酸丙烯酯),EC(碳酸乙烯酯),DMC(碳酸二甲酯),DEC (碳酸二乙酯),EMC(碳酸甲乙酯)等材料。
电解质锂盐有LiPF6,LiBF4等材料。
钴酸锂钴酸锂(LiCoO2)是二次锂离子电池的正极材料之一。
二次锂离子电池因其具有工作电压高、重量轻、比能量大、自放电低、循环寿命长、无记忆效应等优点而作为电源有广泛应用。
该项目以纳米四氧化三钴和碳酸锂为原料,经过混料、焙烧、研磨、二段焙烧、粉碎分级制备锂离子电池正极材料钴酸锂。
工艺路线短,产品质量稳定,无环境污染。
制备的材料外形为片状颗粒,分散良好,具有良好的可供锂离子脱嵌的层状结构和良好的循环稳定性。
磷酸铁锂锂离子电池的性能主要取决于正负极材料。
磷酸铁锂作为锂电池材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。
其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。
1C充放循环寿命达2000次。
单节电池过充电压30V不燃烧,穿刺不爆炸。
磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。
以满足电动车频繁充放电的需要。
具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料,国内市场年需求12000吨以上。
锂离子电池简介锂离子电池(Li-ion Batteries)是锂电池发展而来。
所以在介绍Li-ion之前,先介绍锂电池。
举例来讲,以前照相机里用的扣式电池就属于锂电池。
锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。
电池组装完成后电池即有电压,不需充电.这种电池也可能充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。
后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。
当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。
而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。
同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。
锂离子电池的构造及原理锂离子电池是一种能够将化学能转换为电能并用于电子设备的电池。
它的构造及原理相对简单,但这并不影响它成为了现代电子设备的主要能源来源。
本篇文章将会介绍锂离子电池的相关构造及原理,帮助读者更好地了解这种电池。
第一章:锂离子电池简介锂离子电池是一种高效、经济、环保且应用广泛的电池。
它采用了锂离子在正负极之间的迁移来储存化学能,并将其转换为电能。
随着技术的发展,锂离子电池在电动汽车、智能手机、笔记本电脑等领域都得到了广泛应用。
第二章:锂离子电池的构造锂离子电池的构造相对简单,但却是其性能表现的关键。
其主要构成部分包括正极、负极、电解液和隔膜。
2.1 正极锂离子电池的正极一般采用含有锂的金属氧化物,例如锂钴氧化物(LiCoO2)、锂铁磷酸铁(LiFePO4)、锂镍钴铝氧化物(LiNiCoAlO2)等。
这些物质的作用就是在电池放电时,释放出锂离子。
2.2 负极锂离子电池的负极一般采用石墨或者石墨化碳。
这些负极材料的作用就是吸收锂离子。
2.3 电解液电解液是将正负极隔开的一种物质。
一般来说,电解液是由一种或多种溶于有机溶剂中的锂盐组成的。
电解液发挥的作用是维持两种电极之间的电荷平衡。
2.4 隔膜隔膜是将正负极完全隔开的一层材料。
这种材料通常是由聚合物制成的。
隔膜的作用是让正负极在电流的作用下进行迁移,同时确保电池工作时不会短路。
第三章:锂离子电池的工作原理锂离子电池在充电和放电过程中都会发生化学反应。
下面分别介绍其充电和放电原理。
3.1 充电在充电过程中,正极放出锂离子,负极则接收这些离子。
同时,电荷通过电解液传输。
与此同时,充电器也会向电池输送电能,使这些锂离子逆向迁移,到达正极。
3.2 放电在放电过程中,则是相反的反应。
存储在正极的锂离子会流向负极,同时释放出能量。
这些锂离子通过电解液传输,在负极被吸收。
伴随这个过程,锂离子电池的电压下降。
第四章:锂离子电池的优势和不足锂离子电池的优势主要在于其高能量密度、长寿命、较小的自放电率以及易于维护。
锂离⼦电池基础知识电池基础知识培训资料⼀、锂离⼦电池⼯作原理与性能简介:1、电池的定义:电池是⼀种能量转化与储存的装置,它通过反应将化学能或物理能转化为电能,电池即是⼀种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作⽤的电解质中,当连接在某⼀外部载体上时,通过转换其内部的化学能来提供能源。
2、锂离⼦电池的⼯作原理:即充放电原理。
Li-ion的正极材料是氧化钴锂,负极是碳。
当对电池进⾏充电时,电池的正极上有锂离⼦⽣成,⽣成的锂离⼦经过电解液运动到负极。
⽽作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离⼦就嵌⼊到碳层的微孔中,嵌⼊的锂离⼦越多,充电容量越⾼。
同样,当对电池进⾏放电时(即我们使⽤电池的过程),嵌在负极碳层中的锂离⼦脱出,⼜运动回正极。
回正极的锂离⼦越多,放电容量越⾼。
我们通常所说的电池容量指的就是放电容量。
在Li-ion 的充放电过程中,锂离⼦处于从正极→负极→正极的运动状态。
Li-ion就象⼀把摇椅,摇椅的两端为电池的两极,⽽锂离⼦就象运动员⼀样在摇椅两端来回奔跑。
所以,Li-ion⼜叫摇椅式电池。
通俗来说电池在放电过程中,负极发⽣氧化反应,向外提供电⼦;在正极上进⾏还原反应,从外电路接收电⼦,电⼦从负极流到正极,⽽电流⽅向正好与电⼦流动⽅向相反,故电流经外电路从正极流向负极。
电解质是离⼦导体,离⼦在电池内部的正负极之间定向移动⽽导电,阳离⼦流向正极,阴离⼦流向负极。
整个电池形成了⼀个由外电路的电⼦体系和电解质的离⼦体系构成的完整放电体系,从⽽产⽣电能。
正极反应:LiCoO2==== Li1-x CoO2 + xLi+ + xe负极反应:6C + xLi+ + xe- === Li x C6电池总反应:LiCoO2 + 6C ==== Li1-xCoO2 + LixC63、电池的连接:根据电池的电压与容量的需求,可以把电池做串联、并联及混连连接。
li4ti5o12 锂离子电池负极材料工作原理一、概述1. 简介li4ti5o12是一种常用的锂离子电池负极材料,其在电池领域具有重要的应用价值。
本文将介绍li4ti5o12的工作原理,希望可以为电池研究领域的学者和工程师提供一定的参考价值。
二、锂离子电池概述1. 电池结构及原理锂离子电池是由正极、负极、电解液和隔膜组成的。
其工作原理是通过锂离子在正负极之间的往返迁移,完成电荷的存储和释放。
三、li4ti5o12的化学组成及结构特点1. 化学组成li4ti5o12是由锂离子和钛氧簇组成的过渡金属氧化物,其化学式为li4ti5o12。
2. 结构特点li4ti5o12具有尖晶石结构,其晶格稳定性和高电导率是其在电池中应用的关键优势之一。
四、li4ti5o12的工作原理1. 锂离子嵌入/脱嵌机制li4ti5o12在充放电过程中,锂离子会在其晶格结构中嵌入或脱嵌,完成电荷的存储和释放。
2. 极化行为li4ti5o12的极化行为会影响其在电池中的循环性能,合理控制极化行为对于提升电池性能具有重要意义。
五、li4ti5o12在锂离子电池中的应用1. 优势作为负极材料,li4ti5o12具有高安全性、长循环寿命和良好的高温性能等诸多优势。
2. 局限性li4ti5o12的比容量相对较低,这在一定程度上限制了其在电动车等大容量电池领域的应用。
六、结论1. 未来展望随着电动汽车等领域的快速发展,li4ti5o12作为锂离子电池负极材料仍然具有着广阔的应用前景。
期待更多的研究可以进一步提升其性能,推动锂离子电池技术的发展。
以上就是li4ti5o12 锂离子电池负极材料的工作原理的介绍,希望可以对相关领域的研究者们提供一些参考。
七、li4ti5o12的改进和性能优化方向1. 表面涂层对li4ti5o12进行表面涂层可以有效地改善其电化学性能,增强其循环寿命和安全性能。
2. 纳米结构设计利用纳米技术,设计制备纳米结构的li4ti5o12材料可以提高其比表面积和离子传导率,进而提升电池的性能。
锂离子电池简介使用煤炭,石油和天然气的很长一段时间以来,都是以化石燃料为主要能源,这样的能源结构,使得环境污染严重,并且由此导致的全球变暖问题和生态环境恶化问题受到越来越多的关注。
所以,可再生能源和新能源的发展成为在未来技术领域和未来经济世界的一个最具有决定性的影响。
锂离子电池作为一种新的二次清洁,且可再生能源,其具有工作电压高,质量轻,能量密度大等优点,在电动工具,数码相机,手机,笔记本电脑等领域得到了广泛的应用,并且显示出强大的发展趋势。
锂离子电池的发展历史第二十世纪六十、七十年代,几乎在锂电池是发明的同时,研究发现许多插层化合物可以与金属锂的可逆反应,构成锂电池[1]。
早在第二十世纪七十年代提出了分层组织作为阴极的斯梯尔最有代表性的一种,金属锂作为阳极的Li-TiS2系统。
1976年Whittingham证实了系统的可靠性。
随后,埃克森公司的Li-TiS2系统进行深入研究,并希望其商业化。
但是,系统很快就暴露出许多致命的缺陷。
首先,活性金属锂容易导致有机电解液的分解,导致电池内部压力。
由于锂电极表面的表面电位分布不均匀,在锂金属的电荷将在锂沉积的阴极,产生锂“枝晶”。
一方面会造成可逆嵌锂容量损失,另一方面,枝晶可以穿透隔膜和负极连接,造成电池内部短路,瞬间吸收大量的热,发生爆炸,导致严重的安全隐患。
这一系列因素导致金属锂电池的循环性能和安全两差异,所以Li-TiS2系统未能实现商业化。
1980,阿尔芒首次提出摇椅电池的想法。
使用低锂嵌入化合物锂化合物代替金属锂作为阳极,采用高嵌锂电位嵌锂化合物作正极。
同年,在美国德州大学Goodenough教授的国家提出了一系列的锂过渡金属氧化物LixMO2(M=Co 、Ni 或Mn)为两电池正极材料锂。
1987,奥邦成功组装了浓差电池MO2 (WO2)/LiPF6-PC/LiCoO2和证明“摇椅电池”的想法的可行性,但由于负电极材料形成LiMoO2 CLiWO2嵌入电位高(0.7-2.0 V vs.Li/Li+)嵌锂容量较低,并没有显示高电压的锂离子二次电池的优点,比容量高。
1987,日本的索尼公司使用锂嵌入焦炭(LiXC6)取代锂金属作为阳极,通过LixC6/LiC1O4+PC+EC/Li1-XMO2(M=Co, Ni, Mn)的电池系统,是可逆的嵌脱锂的碳材料为负极,同时保持高电压比在同一时间的能量,成功地解决了锂离子二次电池的循环寿命低的缺点,安全性能差。
纯锂离子电池的研究起步于80年代后期的1989,在第二十世纪,日本nagoura 等人。
发展到锂离子电池的两倍阳极石油焦为正极、锂离子钴作为阴极。
在同一年,公司正式推出市场的市场结构为C(焦炭)/LiPF6+PC+DEC/LiCoO2的第一代商用锂离子电池,并首次利用锂离子电池的概念。
此后,在锂离子电池材料研究的不断深入和系统的研究,1997,索尼公司将石默坐正极的锂离子电池的商业化。
由于锂离子电池的快速发展时代的到来,目前已在相机、手机、笔记本电脑、电动工具等小型二次电池市场占有最大份额,也在近几年电动汽车锂离子电池也得到了快速的发展。
在电池的发展史上,你可以看到这个世界电池工业的发展的三个特点,一是绿色环保电池的快速发展,包括锂离子电池,镍氢电池等;二是电池的转换,这是一个可持续发展策略;第三是光电池,进一步向小,薄的方向发展。
在电池的商业化中,锂离子电池的比例是最高的,特别是聚合物锂离子电池,可实现薄形的充电电池。
由于锂离子电池的体积小,能量高,质量轻,并且可以充电,无污染,具有电池行业的发展的三个主要特点,所以它在发达国家迅速增长。
近年来,电子信息市场的发展,特别是移动电话和笔记本电脑的使用,为锂离子电池带来更多的市场机会。
由于锂离子电池具有安全的独特优势,它将逐步取代传统电池成为主流。
聚合物锂离子电池被称为二十一世纪的电池,这是一个锂离子电池的新时代,其发展前景非常乐观。
锂离子电池的组成锂离子电池是由四部分组成,正极材料,正极材料,隔膜和电解液等。
正极材料为锂离子电池提供锂离子,常见的有锰酸锂、钴酸锂和镍钴锰酸锂材料;负极材料在锂离子电池中的主要作用是储存锂离子,在电池的充放电中,实现锂离子的嵌入和脱嵌,主要是石墨;隔膜在锂离子电池中的作用是阻止电子在正负极之间自由穿梭,但是电解液中的离子可以自由通过,常见的材料为单层PP膜、PE膜以及PP/PE/PP三层复合膜[2],电解质在锂离子电池正负极之间的离子传导,目前使用最广泛的电解质LiPF6。
锂离子电池的工作原理锂离子电池的工作原锂不同于一般电池的氧化-还原过程,而是Li+的嵌入-脱嵌过程,即锂离子可以可逆的从主体材料中嵌入或脱出。
在充电和放电的两个阶段,Li+在正负两个不同电极间来回嵌入和脱嵌:充电池时,Li+先从正极实现脱嵌,通过电解质到达负极,在负极嵌入,此时,锂离子电池的负极实现富锂的状态;放电时的过程与充电时互为逆过程。
锂离子电池的正极材料由一种嵌锂式化合物组成,如果有外界电场,正极材料中的Li+可以在电场的作用下从晶格中实现脱出和嵌入。
以LiCoO2为例,其电极与电池反应如下:正极: LiCoO2 → xLi+ + Li1-xCoO2 + xe- (1)负极: xe- + xLi+ + 6C → LixC6 (2)电池: LiCoO2 + 6C ↔ Li1-xCoO2 + LixC6 (3)锂离子电池的优缺点1) 锂离子电池的优点[5](1)高电压开路电压通常为3.6 V,而镍氢电池和镍镉电池开路功率仅为1.2 V. (2)大容量,高能量和高储能密度,锂电池的核心价值,在相同的输出功率,对锂离子电池不仅比镍氢电池轻一半的重量,体积小20%。
(3)生命周期:锂离子电池的循环寿命很长,一般为1000倍,而镍氢和镍镉电池一般只有500次。
(4)放电率:锂离子电池充电快,只有1-2个小时的时间可以充电,达到最佳状态。
同时,锂离子电池泄漏是不可多得的。
而锂离子电池自放电率低,低于10%/月,远低20%的镍镉电池和镍氢电池30%。
(5)工作温度:锂离子电池的工作温度范围宽,在20℃-60℃温度下都可以使用。
(6)锂离子电池无记忆效应:锂离子电池可以充放电不充分而不降低其容量。
2) 锂离子电池的缺点(1)锂离子电池的内部阻抗高。
由于锂离子电池电解液为有机溶剂,其电导率比镍镉电池的电解质溶液,金属氢化物镍电池要低得多,所以锂离子电池的内部阻抗比镍氢电池和镍镉电池的11倍左右。
(2)工作电压变化较大。
对电池放电到额定容量的80%,镍镉电池的电压变化很小(约20%),锂离子电池电压变化较大(约40%)。
这是电池供电的严重缺陷。
然而,由于锂离子电池的放电电压高,很容易检测到电池的剩余电量。
(3)电极材料的成本还是比较高的。
(4)对锂离子电池的装配的要求也更加严格,需要低湿度的条件下完成的,电池的结构比较复杂,和特殊的保护电路是需要的。
(5)锂离子电池用有机电解液,使电池有一定的安全隐患的。
锂离子电池的主要应用领域在第二十个世纪的90年代,主要应用于各种便携式电子产品的锂离子电池,电池与材料性能和设计技术的进步,锂离子电池的应用范围不断扩大。
目前,锂离子电池的主要应用在以下领域:1) 电子产品中的应用由于能源和重高的体积比能量,锂离子电池可以做的更小,更轻,因此便携式电子产品的品种得到了广泛的应用。
手机,数码相机,摄像机,笔记本电脑和掌上游戏机(PSP)的普及,锂离子电池市场一直保持快速增长,并占据了大部分的市场份额。
在大电流充放电性能的提高,锂离子电池也将扩大其在无线电话和电动工具领域的分享。
2) 运输车辆上的应用(1)电动自行车作为未来城市交通发展的主要模式,公共交通已经得到各界的认可,但“公共交通”总运输只能形成一个广泛的网络,很难满足服务点的不同点。
而对于短距离运输电动自行车等方式补充说:“这种缺乏公共交通”。
此外,在对中国国情的客观因素来看,电动自行车更优秀很多点和实用性。
电动自行车将不在驱动产生污染,电动汽车和电动自行车的工业发展开始符合中国国情的开始。
因此,这种自行车制造商的研究和开发,如中国蘑菇生长。
特别是近年来,随着石油资源的短缺和环境污染的加剧。
为了解决能源和污染问题,全球开发热潮再次上升,和电动自行车已成为一个新的绿色产业,政府积极推动型。
”。
(2)电动汽车替代进口油一举两得锂离子电动汽车的发展,减少温室气体排放。
电动汽车的发展,在符合科学发展观,是中国汽车工业的战略机遇,是国家的战略选择“八五”以来,电动汽车被正式的国家重点工程。
“十五”和“五一一”电动汽车项目中,被列入“863”12计划重大专项。
我国锂离子电池的电动汽车的技术优势和发达的国家,具有资源优势和市场优势。
因此,重点研究的焦点,并迅速推动锂离子电池电动汽车的产业化,是中国国情的战略选择,也是确保能源安全的重要途径。
在2008北京奥运会,中国自主研发的50以上的纯电动公交车奇迹般地创造了零锚,零故障记录,对科技奥运全世界解释,绿色奥运的魅力和风格;2010上海世博会将是一个伟大的首次超过1000辆,包括燃烧材料汽车电池,混合电动汽车四种类型,超级电容车和纯电动汽车等新能源汽车。
世博会期间,约10000吨,估计节省传统燃料,减少有害气体排放118吨,减少28400吨温室气体的排放。
此外,电动汽车充电站和其他相关设施已建成并投入使用,我国电动汽车产业发展日趋成熟。
3) 在航空航天上的应用2004锂离子电池已用于火星着陆器和火星车。
在探索任务未来系列也将使用锂离子电池。
此外,美国宇航局的太空探索机构,其他航天机构考虑到锂离子电池在空间任务中的应用。
目前,在航空领域的锂离子电池的主要功能是提供用于发射和飞行校正的支持,和地面操作,同时提高电池的效率和支持夜间操作。
4) 在储能装置中的应用利用峰谷电力监管是一个困难的问题,通常确保高峰用电,需要建设更多的电厂,但这种方式,既增加了投资成本,并在低发电厂需要照常运行,造成了能量的浪费。
因此,一些企业投资兴建发电厂跳出来的想法,改变了大中型能源存储设备的采购,低收费,在用电高峰期的储电能,分时收费,形成双赢的局面。
作为一种绿色电池,由于高能量密度的锂离子电池,循环性能好,高电荷保持性能,是公认的高容量、高功率电池的理想选择。
欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。