第三章 表面现象(合)
- 格式:ppt
- 大小:8.05 MB
- 文档页数:1
《医学物理学(第3版)》习题解答2009.10 部分题解2-10.解:已知 363102525m cm v -⨯==; a P .p 511051⨯= a P .p 521011⨯=()())J (..vp p 110251011105165521=⨯⨯⨯-⨯=-=ω∴-2-11.10-5s第三章 液体的表面现象3-1.解:设由n 个小水滴融合成一个大水滴,释放出的能量为P E ∆。
n 个小水滴的总表面积S 1=24r n ⋅⋅π,大水滴的表面积S 2=42R ⋅π,利用n 个小水滴的体积等于一个大水滴的体积,可求出n 即n ×334r ⋅π=334R ⋅π 所以n ×334r ⋅π=334R ⋅π; ()()936333310102102=⨯⨯==--r R n 个 将910个半径为2×310-mm 小水滴融合成一个半径为2mm 的大水滴时,其释放的能量等于表面能的减少,所以 )44()(2221R r n S S E P ⋅-⋅⨯=-=∆ππαα=3612931066.3)10414.3410414.3410(1073----⨯≈⨯⨯⨯-⨯⨯⨯⨯⨯J3-2解:由于肥皂泡非常薄,因此可忽略肥皂泡的厚度,取外内=R R =2d=0.05m 。
因为肥皂泡有内外两个表面,所以肥皂泡增加的表面积242R S π⨯=∆。
根据SW∆=α可得吹一个直径为10cm 的肥皂泡,需要做的功 4423108105421040---⨯=⨯⨯⨯⨯⨯=∆⋅=ππαS W J 又因为增加表面能等于外力所做的功 W E P =∆ 所以 4108-⨯==∆πW E P J根据拉普拉斯公式,可得球形液面的内外压强差 =-外内p p Rα2由于肥皂泡有内外两个表面,所以其内外压强差 =-外内p p 2.3100.510404423=⨯⨯⨯=--R α(P a ) 3-3.解:根据拉普拉斯公式,可得球形液面的内外压强差 =-外内p p Rα2 所以,当肺泡的半径为0.04mm 时,它的内外压强差为=-外内p p 353100.2100.4104022⨯=⨯⨯⨯=--R α(P a ) 3-4.解:根据拉普拉斯公式可得球形液面的内外压强差 =-外内p p Rα2 因为气泡在水下面只有一个球形表面,所以气泡的内外压强差=-外内p p Rα2 而 h g p p ⋅⋅+ρ0=外 所以,气泡内的压强 h g p p ⋅⋅+ρ0=内+Rα2 即 内p =1.013×105+310×9.8×10+5331001.2101.010732⨯=⨯⨯⨯--(P a ) 3=5.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于乙醇能完全润湿玻璃壁,所以接触角O=0θ,故 rg h ⋅⋅=ρα2所以 332107.2221015.08.97911090.32---⨯=⨯⨯⨯⨯⨯=⋅⋅⋅=r g h ρα (N/m) 3-6.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于水能完全润湿玻璃壁,所以接触角O =0θ,故 rg h ⋅⋅=ρα2所以 112r g h ⋅⋅=ρα 222r g h ⋅⋅=ρα⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=-=-=∆---3333212121105.11105.018.9101073211222r r g gr gr h h h ραραρα =1.99×210-(m)=1.99(cm)3-7.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=;由于水能完全润湿毛细管,所以接触角O =0θ,因此水在毛细管中上升的高度为 rg h ⋅⋅=ρα2而管中水柱的高度r g R h ⋅⋅+='ρα223333103.5103.08.91010732103----⨯=⨯⨯⨯⨯⨯+⨯=(m)=5.3(cm)3-8.解::根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于水和丙酮能完全润湿毛细管,所以接触角O =0θ,因此水和丙酮在毛细管上升的高度分别为rg h ⋅=水水ρα21 ① rg h ⋅=酮酮ρα22 ②②式除以①式可得 酮水水酮ρραα⋅=t h h 12 所以 3332212104.32107310105.2792104.1-⨯=⨯⨯⨯⨯⨯⨯⋅⋅---水水酮酮==αρραh h (N/m) 3-9.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于血液在毛细管产生完全润湿现象,所以接触角O =0θ,故 rg h ⋅⋅=ρα2所以,血液表面张力系数3332109.572105.08.91005.11025.22---⨯=⨯⨯⨯⨯⨯⨯=⋅⋅⋅=r g h ρα (N/m)第四章 振动和波动及超声波成像的物理原理4-2.解:已知 kg M 5=;()cm t cos x 44010π+π=(1) 由()cm t cos x 44010π+π=得m cm A 11010-==;)srad (π=ω40;mk 2=ω; m k 2ω= 则)J (.)J (.mA kA E 384394400105160021212122222=π=⨯⨯π⨯=ω==s .T 0504022=ππ=ωπ=; Hz Tf 201==; ()()sm 43t 40cos 4s m 4t 40sin 4vπ+ππ=π+ππ-= ()()2222sm 45t 40cos 160s m 4t 40cos 160a π+ππ=π+ππ-=(2) 当s .t 21=时,则()m .cos x 2110254214010--⨯=π+⨯π=;()sm .cos v π=π+⨯ππ=224321404)J (kx E );J (mv E p k 242222220105051600212120852121π=⨯⨯⨯π⨯==π=π⨯⨯==-(或)J (E E E k p 222202040π=π-π=-=)4-3.解:已知cm A 2=;0=t 时,刚好向x 反向传播;πω==250Hz f , 则 s rad π=ω100()ϕ+ω=t cos A x ,0=t 时 0=x 则 2πϕ±=又由 ()0sin 〈+-=ϕωωt A v , 得 2π=ϕ所以,振动方程为 cm 2t 100cos 2x ⎪⎭⎫ ⎝⎛π+π=速度方程为 s cm t sin v ⎪⎭⎫ ⎝⎛π+ππ-=2100200 s m t cos ⎪⎭⎫ ⎝⎛π+ππ=231002 ;s m 2v m π= 加速度方程为 222100200s m t cos a ⎪⎭⎫ ⎝⎛π+ππ-=;22m s m 200a π= 4-4. 解:(1)2A x =时,222121kA kx E p ==; 41218122==kA kAE E p 即势能占总能量的25%,动能占总能量的75% 。
《粉体工程》课程笔记第一章颗粒物性1.1 颗粒粒径和颗粒分布颗粒粒径是指颗粒的线性尺寸,通常用直径表示。
颗粒的形状、大小和分布对其物理和化学性质有重要影响。
颗粒分布是指颗粒大小的分布情况,可以通过粒度分布曲线来表示。
粒度分布曲线通常以颗粒直径的对数为横坐标,以对应直径的颗粒体积或质量分数为纵坐标。
颗粒的粒径分布可以分为单峰分布和双峰分布。
单峰分布是指颗粒大小集中在某个范围内,而双峰分布则是指颗粒大小分布在两个不同的范围内。
颗粒的粒径分布对其堆积、流动性等物理性质有重要影响。
1.2 颗粒形状和表面现象颗粒形状是指颗粒的外形特征,可以分为规则形状和不规则形状。
规则形状的颗粒如球形、立方体等,而不规则形状的颗粒则呈现出各种复杂的几何形状。
颗粒的形状对其堆积、流动性等物理性质有重要影响。
表面现象是指颗粒表面的吸附、反应、润湿等性质。
颗粒的表面现象对其在流体中的沉降、分散等行为有重要影响。
例如,表面活性剂可以改变颗粒的润湿性,从而影响其在流体中的分散性。
1.3 颗粒间的作用力颗粒间的作用力主要包括范德华力、静电力、氢键等。
这些作用力对颗粒的团聚、分散、堆积等行为有重要影响。
范德华力是由于颗粒表面分子的瞬时偶极矩引起的吸引力,静电力是由于颗粒表面带电而产生的相互作用力,氢键则是一种特殊的相互作用力,常见于含有氢键供体和受体的颗粒之间。
颗粒间作用力的强度和性质决定了颗粒体系的稳定性。
当颗粒间作用力较弱时,颗粒容易发生分散;而当颗粒间作用力较强时,颗粒容易发生团聚。
1.4 颗粒的团聚与分散颗粒在空气中或其他介质中容易发生团聚现象。
颗粒的团聚会导致其堆积密度降低,流动性变差。
颗粒的分散是指颗粒在介质中均匀分布,颗粒的分散性对其在流体中的沉降、输送等行为有重要影响。
颗粒的团聚与分散可以通过调节介质性质、添加分散剂等方法来控制。
介质性质包括介质的pH值、离子强度等,这些参数可以影响颗粒表面的电荷和润湿性,从而影响颗粒的分散性。