氟化物测定方法
- 格式:docx
- 大小:38.57 KB
- 文档页数:25
氟化物氟化物(F﹣)是人体必需的微量元素之一,缺氟易患龋齿病,饮水中含氟的适宜浓度为0.5—1.0mg/L(F﹣)。
当长期饮用含氟量高于1-1.5mg/L的水时,则易患斑齿病,如水中含氟量高于4mg/L时,则可导致氟骨病。
氟化物广泛存在于自然水体中。
有色冶金、钢铁和铝加工、焦炭、玻璃、陶瓷、电子、电镀、化肥、农药厂的废水及含氟旷物的废水中常常都存在氟化物。
127以上,效率较高,但温度控制较难,排除干扰也较差,在蒸馏时易发生暴沸,不安全。
水蒸气蒸馏法温度控制严格,排除干扰好,不易发生暴沸。
1.水蒸气蒸馏法水中氟化物在含高氯酸(或硫酸)的溶液中,通入水蒸气,以氟硅酸或氢氟酸形式而被蒸出。
仪器蒸馏装置试剂高氯酸:70—72%。
步骤(1)取50ml水样(氟浓度高于2.5mg/L时,可分取少量样品,用水稀释至50ml)于蒸馏瓶中,加10ml高氯酸,摇匀。
连接好装置加热,待蒸馏瓶内溶液温度(2)仪器试剂(1)(2)步骤(1)取400ml蒸馏水于蒸馏瓶中,在不断摇动下缓慢加入200ml浓硫酸,混匀。
放入5—10粒玻璃球,连接装置。
开始缓慢升温,然后逐渐加快升温速度,至温度达180℃时停止加热,弃去接收瓶中馏出液,此时蒸馏瓶中酸与水的比例为2+1,此操作的目的是除去蒸馏装置和酸液中氟化物的污染。
待蒸馏瓶中的溶液冷至120℃以下,加入250ml样品混匀,按上述加热方式加热至180℃时止(不得超过180℃,以防带出硫酸盐)。
此时接收瓶中馏出液的体积约为250ml,用水稀释至250ml标线,混匀。
供测定用。
(2)当样品中氯化物含量过高时,可于蒸馏前,加入适量固体硫酸银(每毫克氯化物可加入5mg硫酸银),再进行蒸馏。
注:应注意蒸馏装置连接处的密合性。
一、氟试剂分光光度法概述1.方Fˉ)。
2.干PO433+2.5;C o2+3.方法的适用范围水样体积为25ml,使用光程为30mm比色皿,本法的最低检出浓度为0.05mg/L 氟化物;测定上限为1.80mg/L。
氟化物的测定-硝酸银滴定法GB11896-89概述- 本文档介绍了氟化物的测定方法之一,即硝酸银滴定法(GB-89)。
- 该方法适用于水和废水中氟化物的测定。
试剂和仪器- 试剂:- 氟化银溶液(0.02mol/L)- 硝酸银溶液(0.02mol/L)- 硝酸铵标准溶液(0.1mol/L)- 硝酸钾标准溶液(0.1mol/L)- 氨氢溴酸标准溶液(0.1mol/L)- 仪器:- 滴定管- 滴定管架- 称量瓶- 烧杯- 恒温槽- 电子天平- 集气瓶操作步骤1. 样品准备:- 将待测样品取一定量,加入恒温槽中。
如有固体样品,需溶解并稀释到适当浓度。
- 对于废水样品,需先用氨氢溴酸标准溶液进行预处理。
2. 滴定操作:- 取一定量的待测样品,加入称量瓶中,加入硝酸铵和硝酸钾标准溶液,进行预处理。
- 将处理后的样品溶液转移到烧杯中,加入足够的氟化银溶液进行反应。
- 在滴定管中滴加硝酸银溶液,直到溶液变色为止。
- 记录滴定管中加入的硝酸银溶液体积,计算氟化物的浓度。
3. 结果计算:- 根据所滴加的硝酸银溶液的体积计算氟化物的浓度。
- 结果可用公式或计算器进行计算。
4. 结论:- 根据测定结果,得出待测样品中氟化物的浓度。
注意事项- 操作过程中要注意安全,佩戴适当的个人防护装备。
- 严格按照操作步骤进行,避免误差。
- 使用标准溶液进行校准和质控,确保测定结果准确可靠。
参考资料- GB11896-89《水和废水中氟化物的测定-硝酸银滴定法》。
水中氟化物的测定方法一、离子选择电极法离子选择电极法是一种常用的测定水中氟化物含量的方法。
该方法利用离子选择电极对水中的氟离子进行选择性测定,通过测量电极的电位变化来确定氟化物的浓度。
该方法操作简便、快速,且具有较高的准确性和灵敏度,适用于水质监测和环境分析等领域。
二、离子色谱法离子色谱法是一种常用的测定水中氟化物含量的方法。
该方法利用离子交换柱将样品中的氟离子与其他离子分离,再通过色谱柱分离和检测,最终得到氟化物的浓度。
离子色谱法具有高分辨率、高灵敏度和高选择性的特点,适用于各种水样的氟化物测定。
三、离子选择电极与离子色谱法相结合离子选择电极与离子色谱法相结合是一种常用的测定水中氟化物含量的方法。
该方法先利用离子选择电极对水样中的氟离子进行快速筛选,然后再使用离子色谱法对筛选出的样品进行精确测定。
这种组合方法兼具快速筛选和准确测定的优点,能够满足不同场合对氟化物测定的需求。
四、紫外分光光度法紫外分光光度法是一种常用的测定水中氟化物含量的方法。
该方法利用氟化物与酸性溴酸钾反应生成溴离子,溴离子在紫外光的照射下产生吸收,通过测量吸收光强的变化来确定氟化物的浓度。
紫外分光光度法具有简单、快速、灵敏度高的特点,适用于水质监测和环境分析等领域。
五、电化学法电化学法是一种常用的测定水中氟化物含量的方法。
该方法利用电极与水样中的氟离子发生氧化还原反应,通过测量电流或电位的变化来确定氟化物的浓度。
电化学法具有灵敏度高、准确性好的特点,适用于水质监测和环境分析等领域。
六、离子交换法离子交换法是一种常用的测定水中氟化物含量的方法。
该方法利用具有特定功能基团的离子交换树脂与水样中的氟离子进行吸附和解吸,通过测定解吸液中氟离子的浓度来确定氟化物的含量。
离子交换法具有操作简便、准确性高的特点,适用于水质监测和环境分析等领域。
水中氟化物的测定方法有离子选择电极法、离子色谱法、离子选择电极与离子色谱法相结合、紫外分光光度法、电化学法和离子交换法等。
实验四水中氟化物的测定—离子选择电极法水中氟化物的含量是衡量水质的重要指标之一,生活饮用水水质限值为1.0mg ·L-1。
测定氟化物的方法有氟离子选择电极法、离子色谱法、比色法和容量滴定法,前两种方法应用普遍。
本实验采用氟离子选择电极法测定游离态氟离子浓度,当水样中含有化合态(如氟硼酸盐)、络合态的氟化物时,应预先蒸馏分离后测定。
一.实验目的和要求1. 掌握用离子活度计或pH 计、晶体管毫伏计及离子选择电极测定氟化物的原理和测定方法,分析干扰测定的因素和消除方法。
2. 复习教材第二章中的相关内容;在预习报告中列出被测原电池,简要说明测定方法原理和影响测定的因素。
二.仪器1. 氟离子选择电极(使用前在去离子水中充分浸泡)。
2. 饱和甘汞电极。
3. 精密pH 计或离子活度计、晶体管毫伏计,精确到0.1mV。
4. 磁力搅拌器和塑料包裹的搅拌子。
5.100mL、50mL 容量瓶。
6.10.00mL、5.00mL 移液管或吸液管。
7.100mL 聚乙烯杯。
三.试剂所用水为去离子水或无氟蒸馏水。
1. 氟化物标准贮备液:称取0.2210g基准氟钠(NaF)(预先于105~110℃烘干2h或者于500~650℃ 烘干约40min,冷却),用水溶解后转入1000mL 容量瓶中,稀释至标线,摇匀。
贮存在聚乙烯瓶中。
此溶液每毫升含氟离子100μg。
2. 乙酸钠溶液:称取15g 乙酸钠(CH3COONa)溶于水,并稀释至100mL。
3. 盐酸溶液:2mol ·L-1。
4. 总离子强度调节缓冲溶液(TISAB):称取58.8g二水合柠檬酸钠和85g硝酸钠,加水溶解,用盐酸调节pH至5~6,转入1000mL 容量瓶中,稀释至标线,摇匀。
5. 水样① ,② 。
四.测定步骤1. 仪器准备和操作:按照所用测量仪器和电极使用说明,首先接好线路,将个开关置于“关”的位置,开启电源开关,预热15min,以后操作按说明书要求进行。
全氟化物的测量技术
全氟化物是一类化合物,通常指的是含有全氟烷基或全氟烷基
衍生物的化合物,如全氟辛烷磺酸(PFOS)和全氟辛烷酸(PFOA)。
这些化合物在环境中具有持久性和生物富集性,因此对其测量技术
的研究具有重要意义。
测量全氟化物的技术包括但不限于以下几种:
1. 高效液相色谱-串联质谱(HPLC-MS/MS),这是一种常用的
测定全氟化物含量的方法。
样品经过适当的前处理后,使用HPLC分
离出目标化合物,然后通过串联质谱进行定量分析。
2. 气相色谱-串联质谱(GC-MS/MS),对于一些挥发性较强的
全氟化物,可以使用GC-MS/MS进行分析。
这种方法通常需要对样品
进行适当的提取和富集处理。
3. 气相色谱-质谱(GC-MS),对于一些较短链全氟化物的测定,可以使用GC-MS进行分析。
这种方法同样需要对样品进行适当的前
处理。
4. 其他方法,除了色谱-质谱方法外,还有一些其他测定全氟
化物的方法,如离子色谱法、电化学法等。
这些方法各有优缺点,
适用于不同类型的样品和不同的分析要求。
需要指出的是,测量全氟化物的技术在实际应用中需要考虑到
样品的特性、分析的灵敏度要求、分析的准确性要求等因素。
同时,样品的前处理步骤也是非常重要的,对于不同的样品可能需要针对
性地选择合适的前处理方法。
总的来说,测量全氟化物的技术涉及到多个方面的知识,需要
综合考虑样品特性、分析要求和实验条件等因素,选择合适的分析
方法进行测定。
氟化物测定方法范文氟化物是一种常见的离子化合物,在环境和工业过程中广泛存在。
氟化物的测定是很重要的,因为它们对人类和环境健康有一定的影响。
目前,常用的氟化物测定方法主要包括离子选择电极法、草酸法、离子色谱法、电感耦合等离子体发射光谱法和荧光分析法。
本文将详细介绍这些方法及其主要应用。
离子选择电极法是一种简单而准确的氟化物测定方法。
这种测定方法利用电极与待测溶液中的氟离子产生化学反应,通过测量电极的电势变化来确定氟离子的浓度。
这种方法具有响应快、操作简单、灵敏度较高等特点,尤其适合于现场快速分析。
然而,离子选择电极法在测定复杂样品时可能会受到其他离子的干扰,因此在实际应用前需要进行前处理。
草酸法是一种经典的氟化物测定方法。
该方法通过溶液中氟化物与添加的过量草酸形成可滴定的草酸氟络合物,再用酸碱滴定法测定未反应草酸的体积,从而计算出氟离子的浓度。
草酸法适用于各种水和土壤样品中氟化物的测定,具有较高的准确性和精密度。
然而,该方法操作复杂,滴定时间较长,在实际应用中需要考虑测定结果的准确性和灵敏度。
离子色谱法是一种常用的氟化物测定方法。
该方法利用色谱柱通过溶液中的氟化物进行分离,再通过检测器检测分离出的氟化物离子来确定其浓度。
离子色谱法具有操作简单、灵敏度高、选择性好等优点,广泛应用于水和环境样品中氟化物的测定。
然而,离子色谱法需要使用昂贵的仪器设备和复杂的色谱柱,一般需要经验丰富的操作人员进行操作和分析。
电感耦合等离子体发射光谱法(ICP-OES)是一种高灵敏度和高选择性的氟化物测定方法。
该方法通过将样品溶解于酸中,然后通过电感耦合等离子体产生激发的氟化物,通过测量其激发光谱来确定氟离子的浓度。
ICP-OES具有无干扰、高精度和高灵敏度等优点,广泛应用于水和土壤中氟化物的测定。
然而,ICP-OES需要复杂的仪器设备和高技术要求,操作繁琐,且对样品的前处理要求较高。
荧光分析法是一种基于荧光现象的氟化物测定方法。
水质氟化物的测定水质是指水中所含有的各种化学物质的性质和含量,其中氟化物是水质中常见的一种化学物质。
本文将介绍氟化物的测定方法及其对水质的影响。
一、氟化物的测定方法氟化物的测定方法主要有离子选择性电极法、离子色谱法和光度法等。
离子选择性电极法是一种常用的测定氟化物含量的方法。
该方法利用离子选择性电极与氟离子之间的选择性反应,通过测定电极的电位变化来确定氟离子的浓度。
离子色谱法是一种准确、灵敏的测定氟化物的方法。
该方法利用离子交换柱将水样中的氟化物分离出来,再通过检测器测定其浓度。
离子色谱法具有高灵敏度、高选择性和高准确性的优点。
光度法是一种常用的快速测定氟化物的方法。
该方法利用氟化物与特定试剂反应产生的显色反应,通过测量反应产物的吸光度来确定氟化物的浓度。
二、氟化物对水质的影响适量的氟化物对人体有益,可以预防龋齿。
但当水中氟化物超过一定浓度时,就会对人体健康产生负面影响。
高浓度的氟化物会引起氟中毒,主要表现为骨骼病变和牙齿病变。
骨骼病变主要表现为骨质疏松、骨折等症状,严重者可能导致畸形。
牙齿病变主要表现为氟斑牙和牙齿发黄。
氟化物还会对环境产生一定的影响。
过量的氟化物会对水生生物造成毒害,影响水生态系统的平衡。
三、氟化物的控制与治理为了保障水质安全,对于含氟化物超标的水源,需要进行相应的控制与治理。
可以通过加装氟化物去除装置来减少水中氟化物的含量。
常用的去除氟化物的方法有活性炭吸附、反渗透、离子交换等。
加强水源地的保护与管理,防止氟化物源的污染。
定期对水源地进行监测和评估,采取相应的保护措施,减少氟化物的输入。
加强水处理工艺的控制与优化。
通过合理的水处理工艺,如增加沉淀、过滤和气浮等步骤,可以有效去除水中的氟化物。
四、结语氟化物作为水质中常见的一种化学物质,其浓度的高低对人体健康和环境都有一定的影响。
因此,及时测定水中氟化物的含量,采取相应的控制与治理措施,是保障水质安全的重要措施。
希望通过本文的介绍,能增加对氟化物测定及其对水质的影响的了解,为保护水资源和人民健康作出贡献。
GB5750-85氟化物测定方法水中氟化物的测定,可采用电极法和比色法。
电极法的适应范围较宽,浑浊度、色度较高的水样均不干扰测定。
比色法适用于较清洁的水样,当干扰物质过多时,水样需预先进行蒸馏。
20.1 离子选择电极法20.1.1 应用范围20.1.1.1 本法适用于测定生活饮用水及其水源水中氟离子的含量。
20.1.1.2 色度、浑浊度及干扰物质较多的水样可用本法直接测定。
20.1.1.3 本法的最低检测量随不同的电极性能而稍有不同。
20.1.2 原理氟化镧单晶对氟离子有选择性,被电极膜分开的两种不同浓度氟溶液之间存在电位差,这种电位差通常称为膜电位。
膜电位的大小与氟溶液的离子活度有关。
氟电极与饱和甘汞电极组成一对原电池。
利用电动势与离子活度负对数值的线性关系直接求出水样中氟离子浓度。
为消除OH-的干扰,测定时通常将溶液pH控制在5.5~6.5之间。
20.1.3 仪器20.1.3.1 氟离子电极和饱和甘汞电极。
20.1.3.2 离子活度计或精密酸度计。
20.1.3.3 电磁搅拌器。
20.1.4 试剂20.1.4.1 氟化物标准贮备溶液:将氟化钠(NaF)于105℃烘2h,冷却后称取0.2210g,溶于纯水中,并定容至100ml,贮于聚乙烯瓶中备用。
此溶液1.00ml含1.00mg氟化物。
20.1.4.2 氟化物标准溶液:将氟化物标准贮备溶液(20.1.4.1)用纯水稀释成1.00ml含10.0μg氟化物的标准溶液。
20.1.4.3 离子强度缓冲液I:适用于干扰物浓度高的水样。
称取348.2g 柠檬酸三钠(Na3C6H5O7·5H2O),溶于纯水中,用1+1盐酸调节pH值为6,最后用纯水定容至1000m l。
20.1.4.4 离子强度缓冲液Ⅱ:适用于较清洁水。
称取58g氯化钠(NaCl)、3.48g柠檬酸三钠(Na3C6H5O7·5H2O),量取57ml冰乙酸,溶于纯水中,用10mol/L 氢氧化钠溶液调节pH值至5.0~5.5,最后用纯水定容至1000m l。