O 解:如图1,设OA为静止时秋千绳索的长,则
AC=1,CF=5, BF=CD=10. AF=CF-AC=5-1=4.
设绳索长为OA=OB=x尺。
则 OF=OA-AF=(x-4)尺
在Rt△OBF中,由勾股定理,得:
B
F
OB2=BF2+OF2,即x2=102+(x-4)2
解得:x=14.5尺
E
A
∴绳索长为14.5尺。
荧屏对角线大约为74厘米 ∴售货员没搞错
课堂小结
说说这节课你有什么收获?
探索直角三角形两直角边的平方和等于斜边的平方; 利用勾股定理解决实际问题。
祝同学们学习进步!
解 如图,在Rt△ACB中,∠C=90°,
A
AC=8m ,BC=6m, 由勾股定理,得
AB2=AC2+BC2
=82+62=100
于是 AB= 100 =10
所以,钢丝绳的长度为10m. B
C
例2 明朝程大位的著作《算法統宗》有一道 “蕩秋千”的趣題,是用詩歌的形式的:
平地秋千未起,踏板一尺離地; 送行二步與人齊,五尺人高曾記。 仕女佳人爭蹴,終朝笑語歡嬉; 良工高士好奇,算出索長有幾?
因为大正方形的面积相等,而SⅠ+ SⅡ和SⅢ的面积都
等于大正方形面积减去四个直角三角形的面积
。
归纳总结
勾股定理
直角三角形两直角边的平方和等于斜边的 平方。
如果直角三角形两直角边分别为a、b,斜边
为c,那么 a2 + b2 = c2
B
c
a
在西方又称毕达哥
拉斯定理!
A
b
C
❖ 精y=讲0点拨