05-第三章-半导体电子和空穴的_...
- 格式:ppt
- 大小:277.00 KB
- 文档页数:5
第一章半导体中的电子状态1.分类说明半导体材料的晶格结构与结合特性。
答:金刚石结构特点:每个原子周围有四个最邻近的原子,组成一个正四面体结构,配位数是4. 夹角109°28′。
金刚石结构可以看成是两个面心立方晶包沿立方体的空间对角线相互位移四分之一对角线套构而成。
闪锌矿结构特点:双原子复式结构,它是由两类原子各自组成的面心立方晶胞沿立方体的空间对角线相互位移四分之一对角线套构而成。
以共价键为主,结合特性具有不同程度的离子性,称为极性半导体。
2.什么是电子共有化运动?原子中内层电子和外层电子参与共有化运动有何不同?答:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去。
因而,电子可以在整个晶体上运动。
因为个原子中相似壳层上的电子才有相同能量,电子只能在相似壳层上转移,因此共有化运动的产生是由于不同原子的相似壳层之间的交叠。
由于内外层交叠程度很不相同,所以只有最外层电子的共有化运动才显著。
3.说明能级分裂成能带的根本原因以及内外层能带有何不同?答:根本原因,当周围n个原子相互靠近时,每个原子中的电子除受到本身原子的势场作用外,还要受到其他原子的作用,其结果是每一个n度简并的能级都分裂为n个彼此相距很近的能级;·内壳层原来处于低能级,共有化运动很弱,能级分裂的很小,能带窄。
外壳层电子原来处于高能级,共有化运动显著,能带分裂的厉害,能带宽。
4.原子中的电子自由电子和晶体中电子受势场作用情况有何不同?自由电子和晶体中电子运动情况有何不同?答: 孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,晶体中的电子是在严格周期性重复排列的势场中运动5.导体、半导体和绝缘体能带的区别?答:金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。
绝缘体禁带宽度大,常温下激发到导带的电子很少,导电性差。
第三章 半导体中载流子的统计半导体靠电子和空穴传导电流,为了了解和描述半导体的导电过程,必须首先了解其中电子和空穴按能量分布的基本规律,掌握用统计物理学的方法求解处于热平衡状态的一块半导体中的载流子密度及其随温度变化的规律。
这就是本章要讨论的主要问题。
§3.1 状态密度为了计算半导体中热平衡载流子的密度及其随温度变化的规律,我们需要两方面的知识:第一,载流子的允许量子态按能量如何分布;第二,载流子在这些允许的量子态中如何分布。
一、 热平衡状态下的电子和空穴1、 热平衡状态在一定温度下,如果没有其他外界作用,半导体中能量较低的价带和施主能级上的电子依靠热激发跃迁到能量较高的受主或(和)导带,分别在价带和导带中引入可以导电的空穴和电子。
同时,高能量状态上电子也有一定的几率退回到它原来的低能量状态。
于是,电子和空穴在所有允许量子态间的可逆跃迁达到稳定的动态平衡,使导带和价带分别具有稳定的电子密度和空穴密度,这种状态即是热平衡状态。
处于热平衡状态下的导带电子和价带空穴称为热平衡载流子。
热平衡载流子具有稳定的、与温度相关的密度。
因此,需要解决如何计算确定温度下半导体热平衡载流子密度的问题。
2、 热平衡状态下的载流子密度由于导电电子和空穴分别分布在导带和价带的量子态中,所以电子和空穴的密度必取决于这些状态的密度分布,以及电子和空穴占据这些状态的几率。
如果状态密度是与能量无关的常数N C 和N V ,则电子和空穴的热平衡密度n 0和p 0直接由N C 和N V 分别与相应的几率函数相乘得出;如果状态密度是能量的函数g C (E) 和g V (E),则载流子密度的计算须采用积分方式,即dE E f E g n CE C )()(0⎰∞=;dE E f E g p VE V )()(0⎰∞-=因此,须了解态密度函数和几率函数的具体函数形式。
二、 态密度的定义及求解思路假定在能带中无限小的能量间隔d E 内有d Z 个量子态,则状态密度g (E )定义为dE dZ E g /)(=也就是说,状态密度g (E )就是在能带中能量E 的附近每单位能量间隔内的量子态数。
半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
半导体物理第三章半导体中载流子的统计分布第三章半导体中载流子的统计分布第三章 Part 1 3.1 状态密度 3.2 3 2 费米能级和载流子的统计规律3.3 电子和空穴浓度的一般表达式电子和空穴浓度的般表达式 3.4 本征半导体的载流子浓度3.5 杂质半导体的载流子浓度3.6 杂质补偿半导体 3.7 3 7 简并半导体3.1 状态密度状态密度g(E)dZ(E) g( E ) = dE表示在能带中能量E附近单位能量间隔内的量子态数。
dZ 为E到E+dE内的量子态数计算状态密度的方法:1、k空间的量子态密度 1 k空间的量子态密度2、dZ或Z(E)dZ=k空间量子态密度×能量间隔对应的k空间体积Z(E)=k空间量子态密度×能量为E的等能面在k空间的体积一、导带底附近的状态密度1、k空间的量子态密度对于边长为L的立方晶体,波矢对于边长为L的立方晶体波矢 k 的三个分量为的三个分量为: n n n 即( k x = x , = y , z = z ) k ky k x ,k y ,k z L L L 其中 n x , n y , n z 取 0,±1,±2… 每个代表点都与体积为每一个代表点都与体积为 1 = 1 的一个小的个小 L3 V 立方体相联系即 k 空间中,电子的状态密度是V 若考虑电子的自旋,量子态密度是2V。
若考虑电子的自旋量子态密度是2V一、导带底附近的状态密度2、求dZ或Z 2 dZ Z①等能面为球面:1 h2k2 假设导带底在k=0,即 E (k ) = EC + * 2 mn以k 为半径的球面对应E,以 k + d k 为半径的球面对应E+dEdZ = 2V × 4πk dk由 E - k 关系可解得关系可解得:(2m ) ( E - EC ) k= h2n112m dE kdk = 2 hn一、导带底附近的状态密度得到(2m ) dZ = 4π V ( E - EC ) dE h1 23 ? 2 n 3所以(2m ) g ( E ) = 4π V ( E - EC ) h3 ? 2 n 31 2一、导带底附近的状态密度②实际材料:对于Si、Ge来说,在导带底附近等能面为旋转椭球面假设有S个能谷,在每个能谷附近:2 2 ? k x + k y k z2 ? h E( k ) = Ec + + ? ? 2 ? mt ml ? 2将上式变形2 kx2mt ( E ? Ec ) h2态数为+2 ky2mt ( E ? Ec ) h2k z2 2ml ( E ? Ec ) h2=1能量为E的等能面在k空间所围成的s个旋转椭球体积内的量子4 2 mt ( E ? Ec ) [2 ml ( E ? Ec )]1 2 Z ( E ) = 2Vs π 3 h2 h一、导带底附近的状态密度则导带底(附近)状态密度为(8s m ml ) dZ ( E ) gC ( E ) = = 4π V dE h2 2 t 312( E ? Ec)12* mn = mdn = ( s 2 mt2 ml )1 3 令,称 m 为导带底电子状态密度 dn有效质量,则有效质量则(2m ) dZ d (E) = 4π V gC ( E ) = d E h* 32 n 3( E ? Ec)12二、价带顶的状态密度①等能面为球面:①等能面为球面h2k 2 E (k ) = Ev 2m* pg v ( E ) = 4π V ?(2 m * ) 3 2 p h3( Ev - E )1 2②实际材料:价带顶在价带顶在k=0,而且重空穴带(mp)h和轻空穴带 (mp)l在布里渊区而空穴带 ( ( 在布渊区的中心处重合。
第一章半导体的能带理论共价键:硅锗原子之间组合靠的是共价键结合,他们的晶格结构与碳原子组成的金刚石类似。
四原子分别处于正四面体的顶角,任意顶角上的原子和中心原子各贡献一个价电子为两原子共有,共有的电子在两原子之间形成较大的电子云密度,通过他们对原子实的引力把两个原子结合在一起。
闪锌矿型结构:类似于金刚石的结构但是是由两种原子构成的,一个中心原子周围有4个不同种类的原子。
因为原子呈现电正性或者电负性,有离子键的成分。
纤锌矿结构:离子性结合占优的话,就形成该结构。
不具有四方对称性,取而代之是六方对称性。
共有化运动:原子的电子分列不同能级,也即是电子壳层。
当原子互相接近形成晶体时,电子壳层互相交叠,电子可以转移到相邻原子上去,可以在整个晶体中移动,这种运动叫做电子的共有化运动。
能带:电子的能级在受到其他原子影响之后,就会出现分裂现象,这种分裂后产生n个很近的能级叫做能带。
禁带:分裂的每一个能带称为允带,允带之间则称为禁带。
单电子近似:晶体中某一个电子是在周期性排列且固定不动的原子核的势场,以及其他大量电子的平均势场中运动,势场是周期性变化的,周期于晶格周期相同。
电子在周期性势场中的运动特点和自由电子的运动十分相似。
导体、半导体、绝缘体的能带:导体是通过上层的不满带导电的。
对于半导体和绝缘体,从上到下分别是空带、禁带、价带(满带),在外电场作用下并不导电,但是当外界条件(加热光照)发生变化时,满带中的少量电子可能被激发到空带当中,这些电子可以参与导电,同时满带变成部分占满,满带也会起导电作用。
这种导电作用等效于把这些空的量子状态看作带正电荷的准粒子的导电作用,常称这些空的量子状态为空穴。
绝缘体的禁带宽度很大,激发点很困难,而半导体相对容易,在常温下就有电子被激发到导带。
有效质量:在描述电子运动规律的方程中出现的是电子的有效质量mn*,而不是电子的惯性质量m0。
这是因为其中f并非全部外力,其实电子还收到原子和其他电子的作用,此时用有效质量进行计算可以简化问题,f和加速度挂钩,而内部势场作用用有效质量概括。
第三章:平衡半导体到现在为止,我们已经讨论了一般晶体,确定了单晶晶格中电子的一些特性。
这一章,我们将运用这些概念来研究半导体材料,尤其是用导带和价带中量子态密度以及费米-狄拉克分布函数来确定导带和价带中电子和空穴的浓度。
此外,我们还会利用这些概念给出半导体材料的费米能级。
这一章我们将涉及平衡半导体:所谓平衡半导体或处于热平衡状态的半导体,是指无外界(如电压、电场、磁场或温度梯度等)作用影响的半导体。
在这种情况下,材料的所有特性均与时间无关。
平衡状态是研究半导体物理特性的起点,之后我们才会研究偏离平衡状态时出现的特性,例如给半导体材料施加电压时的情况。
这一章我们将要讨论的内容有:1.确定本征半导体热平衡时的电子和空穴浓度2.确定非本征即掺杂半导体热平衡时的电子和空穴浓度3.研究电子和空穴浓度随能量和温度变化的统计规律4.确定本征半导体费米能级的位臵,讨论费米能级随掺杂浓度和温度的变化。
3.1本征半导体中的载流子浓度半导体器件的特性很大程度依赖于半导体材料的电导率,通过控制加入到半导体材料中的特定杂质的数量,就可以改变半导体的电学性能。
掺杂原子的类型决定了半导体材料中起作用的载流子是电子还是空穴。
掺杂原子的引入可以改变电子在有效能量状态上的分布,费米能级的位臵成了杂质原子类型和浓度的函数。
电流实际上表征了电荷的流动速度。
半导体中的两种载流子电子和空穴均对电流有贡献。
因为半导体中的电流大小取决于导带中的电子数目和价带中的空穴数目,所以半导体中的载流子浓度是一个重要参数。
电子和空穴浓度与状态密度函数及费米-狄拉克分布函数有关。
3.1.1本征半导体平衡时的电子和空穴浓度分布导带中电子(关于能量)的分布为导带中的有效量子态密度与某个量子态被电子占据的概率的乘积。
()()()()3.1c F n E g E f E =其中,()F f E 是费米-狄拉克分布函数,()c g E 是导带中有效量子态密度,在整个导带能量范围对上式积分便可得到导带中单位体积的总电子浓度。