2017年中考数学专题练习21《相似形》
- 格式:doc
- 大小:1.13 MB
- 文档页数:37
相似三角形中考压轴试题一、选择题1.(2014年江苏宿迁3分)如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=8,AD=3,BC=4,点P 为AB 边上一动点,若△P 与A △DPBC 是相似三角形,则满足条件的点P 的个数是【】A.1个B.2个C.3个D.4个二、填空题1.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan ∠α= 3 4.有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD与△DBE 全等;③△BDE 为直角三角形时,BD 为12或 21 4 ;④0<BE ≤ 24 5,其中正确的结论是(填入正确结论的序号).三、解答题1.(2014年福建三明14分)如图,在平面直角坐标系中,抛物线y=ax 2+bx+4与x 轴的一个交点为A (﹣ 2,0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B .(1)求抛物线的函数表达式;(2)经过B ,C 的直线l 平移后与抛物线交于点M ,与x 轴交于点N ,当以B ,C ,M ,N 为顶点的四边形是平行四边形时,求出点M 的坐标;(3)若点D 在x 轴上,在抛物线上是否存在点P ,使得△PBD ≌△PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由.2.(2014年湖北十堰12分)已知抛物线C1:2yax12的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.3.(2014年湖南郴州10分)如图,在Rt△ABC中,∠BAC=90°,∠B=60°BC,=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CP是D等腰三角形?4.(2014年湖南衡阳10分)二次函数y=ax 2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣3m)(其中m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△的面积为APCS,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△B相O似C?5.(2014年湖南益阳12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.6.(2014年内蒙古呼伦贝尔13分)以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:(1)如图1,当点E与点O重合时,连接OC,试判断△CO的B形状,并证明你的结论;(2)如图2,当DE=8时,求线段EF的长;(3)当点E在线段OA上时,是否存在以点E、O、F为顶点的三角形与△A相B似C?若存在,请求出此时线段OE的长;若不存在,请说明理由.7.(2014年山东日照14分)如图1,在菱形OABC中,已知OA=23,∠AOC=60°,抛物线y=ax 2+bx+c (a≠0)经过O,C,B三点.(1)求出点B、C的坐标并求抛物线的解析式.(2)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.①当OP+PC的最小值时,求出点P的坐标;②在①的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PE相F似?若存在,请求出点M的坐标;若不存在,请说明理由.8.(2014年山东威海12分)如图,已知抛物线y=ax 2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△C相O似B?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BD的A度数.9.(2014年宁夏区10分)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.△与PB△QABC相似;有(1)试说明不论点P在BC边上何处时,都(2)若AC=3,BC=4,当BP为何值时,△AQ面P积最大,并求出最大值;R t△AOP(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=AC,是否存在一个的值,使既与Rt△ACP全等,也与Rt△BQP全等.与x轴交于A点,与y轴交于B点,动点P410.(2014年新疆区、兵团12分)如图,直线y x83A O方向向点O匀速运动,同时动点Q从B点出发,以每秒1个从A点出发,以每秒2个单位的速度沿单位的速度沿B A方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3.)(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQ的P面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△A相B似O,并直接写出此时点Q的坐标.11.(2014年新疆乌鲁木齐14分)如图.在平面直角坐标系中,边长为2的正方形ABCD的顶点A、B在x轴上,连接O D、BD、△BOD的外心I在中线BF上,BF与AD交于点E.(1)求证:△OAD≌△EAB;(2)求过点O、E、B的抛物线所表示的二次函数解析式;(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;(4)连接O E,若点M是直线BF上的一动点,且△B与M△DOED相似,求点M的坐标.12.(2014年云南省9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段A C的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM 与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为A C2,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.13.(2014年浙江湖州12分)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P 与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.10.(2013年山东日照14分)已知,如图(a),抛物线2yaxbxc经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N。
备考2023年中考数学一轮复习-图形的变换_图形的相似_相似三角形的应用-填空题专训及答案相似三角形的应用填空题专训1、(2017吉林.中考真卷) 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.2、(2017顺义.中考模拟) 小刚身高180cm,他站立在阳光下的影子长为90cm,他把手臂竖直举起,此时影子长为115cm,那么小刚的手臂超出头顶________cm.3、(2017天津.中考模拟) 如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为________cm.4、(2020南宁.中考模拟) 如图,某水平地面上建筑物的高度为AB,在点D和点F 处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是________ 米.5、(2019白山.中考模拟) 如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为________米.6、(2019宁江.中考模拟) 如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,测得落在地面上的影长BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度AB 为________米.7、(2017.中考模拟) 如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=________米.8、(2017丽水.中考真卷) 如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.9、(2017历下.中考模拟) 如图,边长为4的正方形ABCD中,P是BC边上一动点(不含B、C点).将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有________(写出所有正确结论的序号).①∠NAP=45°;②当P为BC中点时,AE为线段NP的中垂线;③四边形AMCB的面积最大值为10;④线段AM的最小值为2 ;⑤当△ABP≌△ADN时,BP=4 ﹣4.10、(2017黄石.中考模拟) 如图,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为________米(结果保留根号)11、(2016福田.中考模拟) 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________m.12、(2017贵州.中考模拟) 赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.13、(2014遵义.中考真卷) “今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=________里.14、(2019金昌.中考模拟) 如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.15、(2020郑州.中考模拟) 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为________.16、(2020瑞安.中考模拟) 图1是小红在“淘宝·双11”活动中所购买的一张多档位可调节靠椅,档位调节示意图如图2所示。
相似形一.选择题(本大题有10个小题,每小题3分,共30分。
请选出每小题中一个符合题意的正确选项,不选、多选、错选均不给分)1. 下列说法中,错误的是( )A.所有的等边三角形都相似B.和同一图形相似的两图形也相似C.所有的等腰直角三角形都相似D.所有的矩形都相似2. 下列图形中,是位似图形的是( )A B C D3. 如图1,小强设计两个直角三角形来测量河宽BC ,他量得AB=2米,BD=3米,CE=9米,则河宽BC 为( )A5米 B.4米 C.6米 D.8米图1 图2 图34.如图2,已知AB∥EF∥CD,则图中相似的三角形有( )A.1对 B.2对 C.3对 D.4对5.如图3,铁道口的栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高( )A.11.25米 B.6.6米 C.8米 D.10.5米6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC 相似的是( )A B C D7.已知,如图4,在ABC 中,P为AB上的一点,在下列四个条件下:①ACP ∠=B ∠;②APC ACB ∠=∠;③2AC AP AB =⋅;④AB CP AP CB ⋅=⋅。
能满足APC 与ACB 相似的条件是( )A.①②④ B.①③④ C.②③④ D.①②③图4 图5 8.如图5所示,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯子上点D距离墙1.4米,BD长0.55米,则梯子的长为( )A.3.85米 B.4.00米 C.4.40米 D4.50米9.如图6,在矩形ABCD中,AE BD ⊥于E,矩形ABCD的面积为40平方厘米,:1:5ABE DBA S S =,则AE的长为( )A4厘米 B.5厘米 C.6厘米 D.7厘米图6 图7 10.如图7,点E是正方形ABCD中边CD的中点,P是BC边上的一点,下列条件中,不能推出ABP 与ECP 相似的是( )A.APB EPC ∠=∠B.90APE ∠=C. P 是BC 的中点D. :2:3BP BC =二.填空题(本大题有10个小题,每小题3分,共30分,将正确答案填在题中的横线上)11.已知线段1,a b c d ====,则这四条线段______比例线段(填“成”或“不成”).12.学校平面图的比例尺是1:500,平面图上校园面积为21300cm ,则学校的实际面积为_______2m .13.如果ABC A B C ''',相似比为3 :2。
相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。
相似三角形具有相同的形状,但是尺寸不同。
理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。
下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。
练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。
若DE = 9cm,求DF和EF的长度。
练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。
练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。
练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。
点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。
求△ADE和△ABC的周长比。
练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。
答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。
设DF = x,EF = y。
根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。
练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。
设PR = x。
根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。
练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。
中考数学复习考点题型专题练习 专题21 与三角形、四边形相关的压轴题解答题1.(2022·黑龙江)如图,在平面直角坐标系中,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,M 为BC 的中点,OA 、OB 的长分别是一元二次方程27120x x -+=的两个根()OA OB <,4tan 3DAB ∠=,动点P 从点D 出发以每秒1个单位长度的速度沿折线DC CB -向点B 运动,到达B 点停止.设运动时间为t 秒,APC △的面积为S .(1)求点C的坐标;(2)求S 关于t 的函数关系式,并写出自变量t 的取值范围;(3)在点P 的运动过程中,是否存在点P ,使CMP 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.(2022·贵州黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图,ABC 和BDE 都是等边三角形,点A 在DE 上.求证:以AE 、AD 、AC 为边的三角形是钝角三角形.(1)【探究发现】小明通过探究发现:连接DC ,根据已知条件,可以证明DC AE =,120ADC =∠︒,从而得出ADC 为钝角三角形,故以AE 、AD 、AC 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.(2)【拓展迁移】如图,四边形ABCD 和四边形BGFE 都是正方形,点A 在EG 上.①试猜想:以AE 、AG 、AC 为边的三角形的形状,并说明理由. ②若2210AE AG +=,试求出正方形ABCD 的面积.3.(2022·海南)如图1,矩形ABCD 中,6,8AB AD ==,点P 在边BC 上,且不与点B 、C重合,直线AP 与DC 的延长线交于点E .(1)当点P 是BC 的中点时,求证:ABP ECP △≌△;(2)将APB △沿直线AP 折叠得到APB ',点B '落在矩形ABCD 的内部,延长PB '交直线AD 于点F .①证明FA FP =,并求出在(1)条件下AF 的值;②连接B C ',求PCB '△周长的最小值;③如图2,BB '交AE 于点H ,点G 是AE 的中点,当2EAB AEB ∠=∠''时,请判断AB 与HG 的数量关系,并说明理由.4.(2022·吉林)如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,6cm =AB .动点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 匀速运动.以PA 为一边作120APQ ∠=︒,另一边PQ 与折线AC CB -相交于点Q ,以PQ 为边作菱形PQMN ,点N 在线段PB 上.设点P 的运动时间为(s)x ,菱形PQMN 与ABC 重叠部分图形的面积为2()cm y .(1)当点Q 在边AC 上时,PQ 的长为cm ;(用含x 的代数式表示)(2)当点M 落在边BC 上时,求x 的值;(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.5.(2022·黑龙江牡丹江)在菱形ABCD和正三角形BGF中,60∠=︒,P是DF的中ABC点,连接PG、PC.(1)如图1,当点G在BC边上时,写出PG与PC的数量关系.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,线段PC 、PG 又有怎样的数量关系,写出你的猜想(不必证明).6.(2022·内蒙古呼和浩特)下面图片是八年级教科书中的一道题:如图,四边形ABCD 是正方形,点E 是边BC 的中点,90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F .求证AE EF =.(提示:取AB 的中点G ,连接EG .)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:;(2)如图1,若点E 是BC 边上任意一点(不与B 、C 重合),其他条件不变.求证:AE EF =;(3)在(2)的条件下,连接AC ,过点E 作EP ⊥AC ,垂足为P .设=BEk BC,当k 为何值时,四边形ECFP 是平行四边形,并给予证明.7.(2022·福建)已知ABC DEC ≌△△,AB =AC ,AB >BC .(1)如图1,CB 平分∠ACD ,求证:四边形ABDC 是菱形;(2)如图2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于∠BAC ),BC ,DE 的延长线相交于点F ,用等式表示∠ACE 与∠EFC 之间的数量关系,并证明;(3)如图3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于∠ABC ),若BAD BCD ∠=∠,求∠ADB 的度数.8.(2022·湖南衡阳)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 从点A 出发,沿线段AD 以每秒1个单位长度的速度向终点D 运动,过点P 作PQ AB ⊥于点Q ,作PM AD ⊥交直线AB 于点M ,交直线BC 于点F ,设PQM 与菱形ABCD 重叠部分图形的面积为S (平方单位),点P 运动时间为t (秒).(1)当点M 与点B 重合时,求t 的值;(2)当t 为何值时,APQ 与BMF 全等;(3)求S 与t 的函数关系式;(4)以线段PQ 为边,在PQ 右侧作等边三角形PQE ,当24t ≤≤时,求点E 运动路径的长.9.(2022·浙江金华)如图,在菱形ABCD中,310,sin5AB B==,点E从点B出发沿折线B C D--向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.(1)如图1,点G在AC上.求证:FA FG=.(2)若EF FG=,当EF过AC中点时,求AG的长.(3)已知8FG=,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与BEF相似(包括全等)?10.(2022·四川南充)如图,在矩形ABCD 中,点O 是AB 的中点,点M 是射线DC 上动点,点P 在线段AM 上(不与点A 重合),12OP AB =.(1)判断ABP △的形状,并说明理由.(2)当点M 为边DC 中点时,连接CP 并延长交AD 于点N .求证:PN AN =.(3)点Q 在边AD 上,85,4,5AB AD DQ ===,当90CPQ ∠=︒时,求DM 的长.11.(2022·湖北武汉)已知CD 是ABC 的角平分线,点E ,F 分别在边AC ,BC 上,AD m =,BD n =,ADE 与BDF 的面积之和为S .(1)填空:当90ACB ∠=︒,DE AC ⊥,DF BC ⊥时,①如图1,若45B ∠=︒,m =n =_____________,S =_____________;②如图2,若60∠=︒,m=n=_____________,S=_____________;B(2)如图3,当90∠=∠=︒时,探究S与m、n的数量关系,并说明理由:ACB EDF(3)如图4,当60n=时,请直接写出S的大小.ACB∠=︒,120∠=︒,6EDFm=,412.(2022·山东临沂)已知ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线∠的大小是否发生变化?说明理由.(3)在满足(2)的段AC上的位置发生变化时,DPQ条件下,探究线段AQ与CP之间的数量关系,并加以证明.13.(2022·江西)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积1S 与S 的关系为__________; (2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,,OE OP 分别与正方形的边相交于点M ,N .①如图2,当BM CN =时,试判断重叠部分OMN 的形状,并说明理由; ②如图3,当CM CN =时,求重叠部分四边形OMCN 的面积(结果保留根号); (3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH ∠(设GOH α∠=),将GOH ∠绕点O 逆时针旋转,在旋转过程中,GOH ∠的两边与正方形ABCD的边所围成的图形的面积为2S ,请直接写出2S 的最小值与最大值(分别用含α的式子表示),(参考数据:sin15tan152︒=︒=︒=-14.(2022·贵州贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在ABCD □中,AN 为BC 边上的高,AD m AN=,点M 在AD 边上,且BA BM =,点E 是线段AM 上任意一点,连接BE ,将ABE △沿BE 翻折得FBE .(1)问题解决:如图①,当60BAD ∠=︒,将ABE △沿BE 翻折后,使点F 与点M 重合,则AM AN=______;(2)问题探究:如图②,当45BAD ∠=︒,将ABE △沿BE 翻折后,使EF BM ∥,求ABE ∠的度数,并求出此时m 的最小值;(3)拓展延伸:当30BAD ∠=︒,将ABE △沿BE 翻折后,若EF AD ⊥,且AE MD =,根据题意在备用图中画出图形,并求出m 的值.15.(2022·吉林长春)【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形ABCD 为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中AD =.他先将A 4纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E ,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H ,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想ADG AFG △≌△.【问题解决】(1)小亮对上面ADG AFG △≌△的猜想进行了证明,下面是部分证明过程: 证明:四边形ABCD 是矩形,∴90BAD B C D ∠=∠=∠=∠=︒. 由折叠可知,1452BAF BAD ∠=∠=︒,BFA EFA ∠=∠.∴45EFA BFA ∠=∠=︒. ∴AF AD ==.请你补全余下的证明过程.【结论应用】(2)DAG ∠的度数为________度,FG AF的值为_________; (3)在图①的条件下,点P 在线段AF 上,且12AP AB =,点Q 在线段AG 上,连结FQ 、PQ ,如图②,设AB a ,则FQ PQ +的最小值为_________.(用含a 的代数式表示)16.(2022·广东深圳)(1)【探究发现】如图①所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF 处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF 处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图③,在菱形ABCD 中,E 为CD 边上的三等分点,60,D ∠=︒将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.17.(2022·黑龙江)ABC和ADE都是等边三角形.(1)将ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA PB PC+=)成立;请证明.(2)将ADE绕点A旋转到图②的位+=(或PA PC PB置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.18.(2022·辽宁锦州)在ABC中,AC BC=,点D在线段AB上,连接CD并延长至点E,使DE CD=,过点E作EF AB⊥,交直线AB于点F.(1)如图1,若120ACB ∠=︒,请用等式表示AC 与EF 的数量关系:____________.(2)如图2.若90ACB ∠=︒,完成以下问题:①当点D ,点F 位于点A 的异侧时,请用等式表示,,AC AD DF 之间的数量关系,并说明理由;②当点D ,点F 位于点A 的同侧时,若1,3DF AD ==,请直接写出AC 的长.19.(2022·广西)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.20.(2022·湖北十堰)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).21.(2022·陕西)问题提出(1)如图1,AD 是等边ABC 的中线,点P 在AD 的延长线上,且AP AC =,则APC ∠的度数为__________. 问题探究(2)如图2,在ABC 中,6,120CA CB C ==∠=︒.过点A 作AP BC ∥,且AP BC =,过点P 作直线l BC ⊥,分别交AB BC 、于点O 、E ,求四边形OECA 的面积. 问题解决(3)如图3,现有一块ABC 型板材,ACB ∠为钝角,45BAC ∠=︒.工人师傅想用这块板材裁出一个ABP △型部件,并要求15,BAP AP AC ∠=︒=.工人师傅在这块板材上的作法如下:①以点C 为圆心,以CA 长为半径画弧,交AB 于点D ,连接CD ; ②作CD 的垂直平分线l ,与CD 于点E ; ③以点A 为圆心,以AC 长为半径画弧,交直线l 于点P ,连接AP BP 、,得ABP △. 请问,若按上述作法,裁得的ABP △型部件是否符合要求?请证明你的结论.。
中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。
相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长. 解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//,∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =. 又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH . 由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行.例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FCAB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.Welcome !!! 欢迎您的下载,资料仅供参考!。
图形的相似一.选择题(共24小题)1.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE ∥BC,,DE=6cm,则BC的长为()A.9cm B.12cm C.15cm D.18cm 2.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是()A.54B.36C.27D.21 3.(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=()A.B.C.D.4.(2022•武威)若△ABC∽△DEF,BC=6,EF=4,则=()A.B.C.D.5.(2022•十堰)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC 和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A.0.3cm B.0.5cm C.0.7cm D.1cm 6.(2022•台湾)△ABC的边上有D、E、F三点,各点位置如图所示.若∠B=∠F AC,BD=AC,∠BDE=∠C,则根据图中标示的长度,求四边形ADEF 与△ABC的面积比为何?()A.1:3B.1:4C.2:5D.3:8 7.(2022•宿迁)如图,点A在反比例函数y=(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.C.2D.4 8.(2022•孝感)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C 为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4B.3C.2D.1 9.(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割10.(2022•湘潭)在△ABC中(如图),点D、E分别为AB、AC的中点,则S △ADE:S△ABC=()A.1:1B.1:2C.1:3D.1:4 11.(2022•衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:≈1.414,≈1.732,≈2.236)()A.0.73m B.1.24m C.1.37m D.1.42m 12.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个13.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE ∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为()A.B.3C.2D.4 14.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.3 15.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE ∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③16.(2022•泰安)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E 为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①AB⊥AC;②AD=4OE;③四边形AECF是菱形;④S△BOE=S△ABC,其中正确结论的个数是()A.4B.3C.2D.1 17.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.18.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE =DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④19.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18 20.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.21.(2022•丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段AB=3,则线段BC的长是()A.B.1C.D.2 22.(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9 23.(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.16 24.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是()①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;A.①③B.①②③C.②③D.①②④二.填空题(共17小题)25.(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.26.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件,使△ADE∽△ABC.27.(2022•河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?(填“是”或“否”);(2)AE=.28.(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.29.(2022•新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心,将△DCE绕点D顺时针旋转90°与△DAF恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若AQ•DP=3,则BQ=.30.(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.31.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为米.32.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=m.33.(2022•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有(填结论对应的应号).34.(2022•娄底)九年级融融陪同父母选购家装木地板,她感觉某品牌木地板拼接图(如实物图)比较美观,通过手绘(如图)、测量、计算发现点E是AD 的黄金分割点,即DE≈0.618AD.延长HF与AD相交于点G,则EG≈DE.(精确到0.001)35.(2022•苏州)如图,在矩形ABCD中,=.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为v1,点N运动的速度为v2,且v1<v2.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形MA′B′N.若在某一时刻,点B 的对应点B′恰好与CD的中点重合,则的值为.36.(2022•湖州)如图,已知在△ABC中,D,E分别是AB,AC上的点,DE ∥BC,=.若DE=2,则BC的长是.37.(2022•武威)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.38.(2022•温州)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD=13m,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.39.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD ⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.40.(2022•达州)人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=.41.(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.三.解答题(共9小题)42.(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.43.(2022•常德)如图,已知AB是⊙O的直径,BC⊥AB于B,E是OA上的一点,ED∥BC交⊙O于D,OC∥AD,连接AC交ED于F.(1)求证:CD是⊙O的切线;(2)若AB=8,AE=1,求ED,EF的长.44.(2022•广元)在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.45.(2022•常德)在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB 到E使BE=FC,G是AF的中点,GE交BC于O,连接GD.(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO •FC.(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.46.(2022•孝感)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.尝试证明:(1)请参照小慧提供的思路,利用图2证明:=;应用拓展:(2)如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.①若AC=1,AB=2,求DE的长;②若BC=m,∠AED=α,求DE的长(用含m,α的式子表示).47.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.48.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.(1)若AB=8,求线段AD的长.(2)若△ADE的面积为1,求平行四边形BFED的面积.49.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD =∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.50.(2022•宁波)【基础巩固】(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE =3,求的值.【拓展提高】(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG 平分∠EFC,FG=10,求BF的长.。
中考数学复习《相似》专题训练--附带参考答案一、选择题1.如图,在△ABC中,D,E分别是AB,AC上的点DE∥BC,若AD=6,BD=3,AE=8,则EC的长是()A.4 B.2 C.5 D.942.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论不正确的是()A.ADBD =AEECB.AFAE=DFBEC.AEEC=AFFED.DEBC=AFFE3.如图,在△ABC中,∠ACB=2∠B,CD平分∠ACB,AD=2,BD=3,则AC的长为()A.3 B.√10C.4 D.2√34.如图,已知ΔABC和ΔEDC是以点C为位似中心的位似图形,且ΔABC和ΔEDC的位似比为1∶2,ΔABC面积为2,则ΔEDC的面积是()A.2 B.8 C.16 D.325.如图,在平行四边形ABCD中,E是CD延长线上一点,BE与AD交于点F,若CD=2DE,则S△DEFS△ABF=()A.12B.√22C.14D.186.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:OD的值为()A.4:3 B.3:4 C.16:9 D.9:167.如图,在平行四边形ABCD中,点E是CD边上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F.若S△DEF=2,则S△ABE=()A.15.5 B.16.5 C.17.5 D.18.58.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8,AE=2则OF的长度是()A.6 B.√6C.5 D.√5二、填空题9.如图AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,l1与l2相交于点O,如果AC=2,OC= 1,OF=3,BE=8那么DE的长为.10.如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比为2:3则△ABC和△DEF的面积比是.11.如图,已知,在△ABC中∠C=90°,点D是AC上的一点∠A=∠DBC,BDAB =23那么ADCD的值为.12.如图,在梯形ABCD中AB∥CD,EF∥CD,AB=2,EF=5,AEED =32则DC=.13.如图,在平行四边形ABCD中,点E是AB的中点AF:DF=2:3,射线EF与AC交于点O,与CD的延长线交于点H,则AOOC的值为.三、解答题14.如图,点D,E在线段BC上,△ADE是等边三角形,且∠BAC=120°(1)求证:△ABD∽△CAE;(2)若BD=2,CE=8,求BC的长.15.如图,D为Rt△ABC的直角边BC上一点以CD为直径的半圆O与斜边AB相切于点E,BF∥AC,交CE 的延长线于点F.已知AC:BF=3:4.(1)求sin∠ABC的值.(2)若BE=6,求⊙O的半径的长.16.如图,在正方形ABCD中,E为对角线AC上一点,连结EB、ED,延长BE交AD于点F.(1)求证:∠BEC =∠DEC ;(2)当CE=CD时,求证:2=⋅ .DF EF BF17.如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求AE的值;AF的值.(3)当四边形ABCD的周长取最大值时,求DEDF18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接AC ,BC ,D 为AB 延长线上一点,连接CD ,且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O,△ABC 的面积为5CD 的长;(3)在(2)的条件下,E 为⊙O 上一点,连接CE 交线段OA 于点F ,若12EF CF ,求BF 的长.5参考答案1.A2.D3.B4.B5.C6.A7.C8.D9.16310.4:911.5412.713.2714.(1)证明:∵∠BAC=120°∴∠BAD+∠EAC=60°∵△ADE是等边三角形∴∠ADE=∠AED=60°∴∠BAD+∠B=60°,∠ADB=∠AEC=120°∴∠B=∠EAC,又∠ADB=∠AEC∴ABD∽△CAE(2)解:∵△ABD∽△CAE∴BDAE=ADCE即AD2=BD•CE=16解得,AD=4,则DE=4 ∴BC=BD+DE+EC=14 15.(1)解:∵BF∥AC ∴△AEC∽△BEF∴AEBE =ACBF=34∵CD为⊙O的直径∠ACB=90°∴AC 是⊙O 的切线∵AB 是⊙O 的切线∴AC =AE∴sin ∠ABC = AC AB =37(2)解:如图,连接OE∵AE BE =34 BE =6∴AE = 92∴AB = 212 AC = 92∴BC = √AB 2−AC 2=3√10∵AB 是⊙O 的切线∴OE ⊥AB∴∠OEB =∠ACB∵∠OBE =∠ABC∴△OBE ∽△ABC∴OE AC =BE BC , 即OE 92=3√10 解得:OE = 9√1010 ,即⊙O 的半径的长为 9√1010 .16.(1)证明: 四边形 是正方形BC CD ∴= ,且 BCE DCE ∠=∠ .又 CE 是公共边BEC DEC ∴≌BEC DEC ∴∠=∠ ;(2)证明:如图所示:连结ABCD BDCE CD =DEC EDC ∴∠=∠ .BEC DEC ∠=∠ BEC AEF∠=∠ EDC AEF ∴∠=∠ .AEF FED EDC ECD ∠+∠=∠+∠FED ECD ∴∠=∠ .四边形 是正方形ECD ADB ∴∠=∠ .FED ADB ∴∠=∠ .又 BFD ∠ 是公共角FDE FBD ∴∽EF DF DF BF ∴= ,即 .17.(1)证明:∵AO =OD∴∠OAD =∠ADO∵OC 平分∠BOD∴∠DOC =∠COB又∵∠DOC+∠COB ∠=∠OAD+∠ADO∴∠ADO =∠DOC∴CO ∥AD ;(2)解: ∵OA=OB=OC∴∠ADB=90°∴△AOD 和△ABD 是等腰直角三角形∴AD= √2AO∴AD AO =√2∵DE=DF∴∠DFE=∠AEDABCD 2DF EF BF =⋅∵∠DFE=∠AFO∴∠AFO=∠AED∵∠AOF=∠ADE=90°∴△ADE ∽△AOF∴AE AF =AD AO = √2;(3)解:如图2∵OD =OB ,∠BOC =∠DOC ,∴△BOC ≌△DOC (SAS ),∴BC =CD设BC =CD =x ,CG =m ,则OG =2﹣m∵OB 2﹣OG 2=BC 2﹣CG2 ∴4﹣(2﹣m )2=x 2﹣m 2,解得:m =14x 2 ,∴OG =2 −14x 2 ∵OD =OB ,∠DOG =∠BOG ,∴G 为BD 的中点又∵O 为AB 的中点,∴AD =2OG =4 −12x 2∴四边形ABCD 的周长为2BC+AD+AB =2x+4 −12x 2+ 4 =−12x 2+ 2x+8 =−12(x −2)2+ 10 ∵−12< 0,∴x =2时,四边形ABCD 的周长有最大值为10.∴BC =2∴△BCO 为等边三角形,∴∠BOC =60°,∵OC ∥AD ,∴∠DAC =∠COB =60° ∴∠ADF =∠DOC =60°,∠DAE =30°,∴∠AFD =90°,∴DE DA =√33 DF =12 DA ∴DE DF =2√33 .18.(1)证明:如图,连接OC∵AB 为⊙O 的直径∴90ACB ∠=︒∴90ACO BCO ∠+∠=︒.∵OA=OC∴ACO A ∠=∠.∵∠BCD =∠A∴ACO BCD ∠=∠∴90BCD BCO ∠+∠=︒∴90OCD ∠=︒,即OC CD ⊥又∵OC 是半径∴CD 是⊙O 的切线;(2)解:如图,在(1)的基础上作CG AD ⊥于点G .∵⊙O,AB 为直径∴5OC =25AB = ∵1252ABC S AB CG =⋅=125252CG ⨯= ∴2CG =∴在Rt OCG 中2222(5)21OG OC CG =-=-=.∵90OCG DCG ∠+∠=︒ 90CDG DCG ∠+∠=︒∴OCG CDG ∠=∠.又∵90OGC CGD ∠=∠=︒∴OGC CGD ~∴OG OC CG CD =,即152= ∴5CD =(3)解:如图,在(2)的基础上,连接OE ,过点E 作EH AD ⊥于点H .5第 11 页 共 11 页 ∴5OA OE ==由(2)可知51BG OB OG =-=.∵∴EH CG∴EHF CGF ~ ∴12EH HF EF CG GF CF ===. ∴12EH CG = 2GF HF =. ∵CG=2∴1EH =∴在R t HEO 中2222(5)12OH OE EH =-=-= ∴52AH OA OH =-=.∵BG GF HF AH AB +++=∴2BG HF HF AH AB +++=5125225HF HF ++= 解得1HF =∴2GF = ∴51251BF BG GF =+=+=.EH AD ⊥CG AD ⊥。
中考数学专题复习:二次函数压轴题(相似三角形问题)一、解答题(共16小题)1.如图抛物线y =ax 2+ax +c (a ≠0)与x 轴的交点为A 、B (A 在B 的左边)且AB =3,与y 轴交于C ,若抛物线过点E (﹣1,2).(1)求抛物线的解析式;(2)在x 轴的下方是否存在一点P 使得△PBC 的面积为3?若存在求出P 点的坐标,不存在说明理由;(3)若D 为原点关于A 点的对称点,F 点坐标为(0,1.5),将△CEF 绕点C 旋转,在旋转过程中,线段DE 与BF 是否存在某种关系(数量、位置)?请指出并证明你的结论.2.如图,直线y =﹣x +3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y =x 2+bx +c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)连接AC ,在x 轴上是否存在点Q ,使以P 、B 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y 212x =-+bx +c 与x 轴交于A (﹣2,0)、B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQOQ的最大值;(3)把抛物线y 212x =-+bx +c 沿射线AC y ',M是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标.4.如图,抛物线212y x mx n =++与直线132y x =-+交于,A B 两点,交x 轴与,D C 两点,连接,,AC BC 已知()()0,3,3,0A C .(1)求抛物线的解析式;(2)求证:ABC 是直角三角形;(3)P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以A 、P 、Q 为顶点的三角形与ACB △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,D 为OC 的中点,直线AD 交抛物线于点E (2,6),且△ABE 与△ABC 的面积之比为3∶2.(1)求直线AD 和抛物线的解析式;(2)抛物线的对称轴与轴相交于点F ,点Q 为直线AD 上一点,且△ABQ 与△ADF 相似,直接写出点Q 点的坐标.第5题图第6题图6.如图,抛物线y =-x ²+b x+c 与x 轴交于点A (-1,0)和B (3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)若P 为抛物线的顶点,动点Q 在y 轴右侧的抛物线上,是否存在点Q 使∠QCO =∠PBC ?若存在,请求出点Q 的坐标.若不存在,请说明理由.7.已知抛物线()20y ax bx c a =++>与x 轴交于点()0A 1,和()40B ,,与y 轴交于点C ,O 为坐标原点,且OB OC =.(1)求抛物线的解析式;(2)如图1,点P 是线段BC 上的一个动点(不与点B 、C 重合),过点P 作x 轴的垂线交抛物线于点Q ,连接OQ .当四边形OCPQ 恰好是平行四边形时,求点Q 的坐标;(3)如图2,在(2)的条件下,D 是OC 的中点,过点Q 的直线与抛物线交于点E ,且2DQE ODQ ∠=∠,在直线QE 上是否存在点F ,使得BEF △与ADC △相似?若存在,求点F 的坐标:若不存在,请说明理由.8.如图,抛物线y=mx 2+8mx +12m (m >0)与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C ,顶点为D ,其对称轴与x 轴交于点E ,联接AD ,OD .(1)求顶点D 的坐标(用含m 的式子表示);(2)若OD ⊥AD ,求该抛物线的函数表达式;(3)在(2)的条件下,设动点P 在对称轴左侧该抛物线上,PA 与对称轴交于点M ,若△AME 与△OAD 相似,求点P 的坐标.9.抛物线23y x bx =-++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标;(2)在直线AC 上方的抛物线上找一点P ,使12ACP ACD S S =,求点P 的坐标;(3)在坐标轴上找一点M ,使以点B ,C ,M 为顶点的三角形与ACD 相似,直接写出点M 的坐标.10.如图.在平面直角坐标系中,抛物线2()20y ax x c a =++≠与x 轴交于点A 、B ,与y 轴交于点C ,点A 的坐标为()1,0-,对称轴为直线1x =.点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交直线BC 于点F ,交抛物线2()20y ax x c a =++≠于点E .(1)求抛物的解析式;(2)当以C 、E 、F 为顶点的三角形与ABC 相似时,求线段EF 的长度:(3)如果将ECF △沿直线CE 翻折,点F 恰好落在y 轴上点N 处,求点N 的坐标.11.如图,已知:抛物线y =x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点D 为顶点,连接BD ,CD ,抛物线的对称轴与x 轴交于点E .(1)求抛物线解析式及点D 的坐标;(2)G 是抛物线上B ,D 之间的一点,且S 四边形CDGB =4S △DGB ,求出G 点坐标;(3)在抛物线上B ,D 之间是否存在一点M ,过点M 作MN ⊥CD ,交直线CD 于点N ,使以C ,M ,N 为顶点的三角形与△BDE 相似?若存在,求出满足条件的点M 的坐标,若不存在,请说明理由.12.如图,已知抛物线y=ax 2+bx+c (a≠0)经过A (-1,0),B (4,0),C (0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E ,使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.13.如图,抛物线22y ax bx =+-经过点()4,0A 、()10B ,两点,点C 为抛物线与y 轴的交点.(1)求此抛物线的解析式;(2)P 是x 轴上方抛物线上的一个动点,过P 作PM x ⊥轴,垂足为M ,问:是否存在点P ,使得以A 、P 、M 为顶点的三角形与OAC ∆相似若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上找一点D ,过点D 作x 轴的垂线,交AC 于点E ,是否存在这样的点D ,使DE 最长,若存在,求出点D 的坐标,以及此时DE 的长,若不存在,请说明理由.14.如图,在同一直角坐标系中,抛物线1L :28y ax bx =++与x 轴交于()8,0A -和点C ,且经过点()2,12B -,若抛物线1L 与抛物线2L 关于y 轴对称,点A 的对应点为'A ,点B 的对应点为B'.(1)求抛物线2L 的表达式;(2)现将抛物线2L 向下平移后得到抛物线3L ,抛物线3L 的顶点为M ,抛物线3L 的对称轴与x 轴交于点N ,试问:在x 轴的下方是否存在一点M ,使MNA ' 与ACB '△相似?若存在,请求出抛物线的3L 表达式;若不存在,说明理由.15.已知抛物线21:(0)L y ax a =>上一点(,)M m n ,点(,)M m n 在第一象限,过点M 分别作y 轴、x 轴的垂线段,MA MB ,垂足分别是,A B .(1)如图1,若四边形MAOB 是正方形,则m 和a 的数量关系是_______________.(2)若抛物线21:(0)L y ax a =>与直线1:2l y x =-的一个交点C 的纵坐标是12.①求抛物线21:(0)L y ax a =>的解析式.②如图2,将抛物线21:(0)L y ax a =>沿着直线l 平移,平移过程中抛物线的顶点始终在直线l 上.若平移前的抛物线1L 与平移后的抛物线2L 恰好相交于点M ,四边形MAOB 也是正方形,求抛物线2L 的顶点E 的坐标.③在②的条件下继续平移抛物线21:(0)L y ax a =>,得到抛物线33,L L 的顶点D 的横坐标大于点E 的横坐标,:5:OE OD b ,抛物线3L 与x 轴的两个交点,F H (点F 在点H 的左边)之间的距离是6.连接,MF MBF 与DGO △是否相似?请说明理由.16.在平面直角坐标系中,已知抛物线y =mx 2+4mx +4m +6(m <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当m =﹣6时,直接写出点A ,B ,C ,D 的坐标;(2)如图1,直线DC 交x 轴于点E ,若tan ∠AED=43,求m 的值及直线DE 的解析式;(3)如图2,在(2)的条件下,若点Q 为OC 的中点,连接AQ ,动点P 在第二象限的抛物线上运动,过点P 作x 轴的垂线.垂足为H ,交AQ 于点M ,过点M 作MN ⊥DE ,垂足为N ,求PM +MN 的最大值.参考答案1.(1)y =﹣x 2﹣x +2;(2)存在,P (3,﹣10);(3)DE ⊥BF 且DE =2BF ,2.(1)抛物线解析式为y =x 2﹣4x +3;(2)Q 点的坐标为(0,0)或(73,0).3.(1)2142y x x =-++(2)PQ OQ取得最大值12,此时,(2,4)P .(3)15(2,)2N ,211(2,)2N -,35(2,2N -.4.(1)215322y x x =-+;(2)22;(3)存在,满足条件的点P 的坐标为1136(,),1314,39⎛⎫ ⎪⎝⎭,1744,39⎛⎫⎪⎝⎭.5.(1).234y x x =-++;(2)Q (1,4)或Q (352,)6.(1)223y x x =-++;(2)()512-,7.(1)抛物线的解析式为254y x x =-+;(2)()22Q -,(3)存在,()142F ,,281455F ⎛⎫- ⎪⎝⎭,8.(1)(4,-4m);(2)22y x =-+;(3)(0,1,2)9.(1)223y x x =--+;(1,4)D -;(2)35,22⎛⎫-- ⎪⎝⎭P 或35,22⎛⎫- ⎪⎝⎭;(3)点M 的坐标为(0,0)或(9,0)-,或10,3⎛⎫- ⎪⎝⎭.10.(1)223y x x =-++;(2)94EF =(3)N 的的坐标是1)+11.(1)2=23y x x --;顶点D (1,-4);(2)(2,3)G -;(3)存在,点720,39M ⎛⎫- ⎪⎝⎭或532,39⎛⎫- ⎪⎝⎭.12.(1)抛物线的解析式为:y=-12x 2+32x+2.(2)存在.E 点坐标为(0,2),(3,2).(3)∠ADB=45°.13.(1)215222y x x =-+-;(2)(2,1);(3)(2,1),214.(1)抛物线2L 的解析式为21382y x x =-++.(2)函数3L 的解析式为:2121322y x x =-+-或2126323y x x =-+-.15.(1)am =1;(2)①212y x =;②5(5,)2E -;③MBF V 与DGO △相似16.(1)(﹣3,0),(﹣1,0),(0,﹣18),(﹣2,6)(2)m 23=-,y 43=-x 103+(3)263。
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
中考数学专题训练:相似三角形(附参考答案)1.若a3=b2,则a+bb的值为( )A.32B.53C.52D.232.如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( )A.3 B.4C.5 D.63.如图,AD∥BE∥FC,直线l1,l2分别与三条平行线交于点A,B,C和点D,E,F.若AB=3,BC=5,DF=12,则EF的长为( )A.4.5 B.6C.7.5 D.84.如图,小雅同学在利用标杆BE测量建筑物的高度时,测得标杆BE高1.2 m,又知AB∶BC=1∶8,则建筑物CD的高是( )A.9.6 m B.10.8 mC.12 m D.14 m5.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2).现以原点O为位似中心,在第一象限内作与△ABC的相似比为2的位似图形△A′B′C′,则顶点C′的坐标是( )A.(2,4) B.(4,2)C.(6,4) D.(5,4)6.如图(单位:mm),小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5 m时,标准视力表中最大的“E”字高度为72.7 mm,当测试距离为3 m时,最大的“E”字高度为( )A.121.17 mm B.43.62 mmC.29.08 mm D.4.36 mm7.如图,AC是□ABCD的对角线,点E在CD的延长线上,连接BE分别交AC,AD 于点F,G,则下列式子一定正确的是( )A.AFCF =AGDGB.ABCE=CFAFC.BFFG =EFBFD.ADDG=ABDE8.如图,在△ABC中,D,E分别为边AB,AC上的点,试添加一个条件:________________________,使得△ADE与△ABC相似.(任意写出一个满足的条件即可)9.如图,已知在梯形ABCD中,AD∥BC,S△ABDS△BCD =12,则S△BOCS△BCD=______.10.如图,在矩形ABCD中,若AB=3,AC=5,AFFC =14,则AE的长为_____.11.如图,为了测量山坡的护坡石坝高,把一根长为4.5 m 的竹竿AC斜靠在石坝旁,量出竿上AD长为1 m时,它离地面的高度DE为0.6 m,则坝高CF为________m.12.已知在平面直12角坐标系中,△AOB的顶点分别为A(2,1),B(2,0),O(0,0).若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为__________________________.13.如图,在△ABC中,点D,E分别是AB,AC的中点.若S△ADE=2,则S△ABC=_____.14.如图,在平面直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是____________.15.如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC∶S△DEC=4∶9,BC=6,求EC的长.16.如图,在△ABC中,AB=4,BC=5,点D,E分别在BC,AC上,CD=2BD,CE =2AE,BE交AD于点F,则△AFE面积的最大值是______.17.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布前形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB的高为6 cm,小孔O到物体和实像的水平距离BE,CE分别为8 cm,6 cm,则实像CD的高度为________cm.18.如图,在正方形ABCD中,点E是边CD上一点,连接BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连接AF,有以下五个结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF⊥BD;④2BG2=BH·BD;⑤若CE∶DE=1∶3,则BH∶DH=17∶16.你认为其中正确的是____________.(填写序号)19.已知,如图1,若AD是△ABC中∠BAC的内角平分线,通过证明可得ABAC =BDCD,同理,若AE是△ABC中∠BAC的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在△ABC中,BD=2,CD=3,AD是△ABC的内角平分线,则△ABC的BC边上的中线长l的取值范围是_____________.20.如图,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB 上,且CF=BE,AE2=AQ·AB.求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ.21.在等腰三角形ABC中,AB=AC,点D是边BC上一点(不与点B,C重合),连接AD.(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连接AE,DE,则∠BDE=________.(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连接BE.①在图2中补全图形;②探究CD与BE的数量关系,并证明.(3)如图3,若ABBC =ADDE=k,且∠ADE=∠C,试探究BE,BD,AC之间满足的数量关系,并证明.参考答案1.C 2.B 3.C 4.B 5.C 6.B 7.C8.ADAB =AEAC(答案不唯一) 9.2310.1 11.2.712.(4,2)或(-4,-2)13.8 14.(4,2) 15.(1)证明略(2)EC=916.43 17.4.5 18.①②③④ 19.12<l<25220.(1)证明略(2)证明略21.(1)30°(2)①图略②CD与BE的数量关系为CD=BE,证明略(3)AC=k(BD+BE),证明略。
2017年中考数学专题练习21《相似形》【知识归纳】(一)1.成比例线段在四条线段中,如果其中两条线段的比 另外两条线段的比,那么这四条线段叫做成比例线段.2.比例线段的基本性质若a b =c d ,则 ;当b =c 时, ,那么b 是a ,d 的比例中项.3.线段的黄金分割点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且AC AB=BC AC =5-12≈0.618,则C 点叫做线段AB 的 . 4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。
(二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角 ,对应边的比 .2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应 ,那么这两个三角形相似;(2)如果一个三角形的两条边与另一个三角形的两条边对应 ,且夹角 ,那么这两个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应 ,那么这两个三角形相似;(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形 .3.相似三角形的性质(1)相似三角形周长的比等于 .(2)相似三角形面积的比等于 . (3)相似三角形对应高、对应角平分线、对应中线的比等于 .4.相似多边形的性质(1)相似多边形周长的比等于 . (2)相似多边形面积的比等于 .5.位似图形(1)定义两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做,对应边的比叫做.位似是一种特殊的相似.(2)性质(1)位似图形上的任意一对对应点到位似中心的距离的比等于;(2)位似图形对应点的连线或延长线相交于点;(3)位似图形对应边;(4)位似图形对应角 .【基础检测】1.(2016•德州)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移B.旋转C.轴对称D.位似2.(2016•达州)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB 的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.53.(2016•哈尔滨)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.4.(2016•巴中)如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE 的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:15.(2016•烟台)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)6.(2016·辽宁丹东·3分)如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC 的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.7.(2016·广西桂林·3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD 于H,点O是AB中点,连接OH,则OH= .8.(2016·贵州安顺·4分)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,355,那么EH的长为.9. (2016·四川眉山)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC 的位似比为2:1,并直接写出点A2的坐标.10. (2016·四川眉山)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.【达标检测】一.选择题1.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对 B.1对 C. 2对 D.3对2.如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A. 1:2 B.2:3 C.1:3 D.1:43.(2016·湖北随州)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD 相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:254.如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠C D.DE=12BC5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A. P1B. P2C. P3D. P46.(2016·江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③7. (2016·辽宁丹东)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个二、填空题8.如图,在△ABC中,DE∥BC,23DEBC,△ADE的面积是8,则△ABC的面积为9.(2016贵州毕节)在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD= .10.(2016·湖北武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为_______.11.(2016·黑龙江龙东)已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是.12.(2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.13.如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,AB=2,∠CBO=45°,在直线BE上求点M,使△BMC 与△ODC相似,则点M的坐标是.三、解答题14.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.15.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:AD AC BE BC.16.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;17. (2016·陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.18. (2016·重庆市A 卷·12分)在△ABC 中,∠B=45°,∠C=30°,点D 是BC 上一点,连接AD ,过点A 作AG⊥AD,在AG 上取点F ,连接DF .延长DA 至E ,使AE=AF ,连接EG ,DG ,且GE=DF .(1)若AB=2,求BC 的长;(2)如图1,当点G 在AC 上时,求证:BD=CG ;(3)如图2,当点G 在AC 的垂直平分线上时,直接写出的值.【知识归纳答案】(一)1.成比例线段在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段.2.比例线段的基本性质若a b =c d ,则ad=bc ;当b =c 时,b 2=ad ,那么b 是a ,d 的比例中项.3.线段的黄金分割点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且ACAB=BC AC =5-12≈0.618,则C 点叫做线段AB 的黄金分割点. 4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。
江苏省苏州市2017年中考数学一轮复习第21讲《相似形》练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省苏州市2017年中考数学一轮复习第21讲《相似形》练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省苏州市2017年中考数学一轮复习第21讲《相似形》练习的全部内容。
2017年中考数学一轮复习第21讲《相似形》【考点解析】知识点一、平行线分线段成比例【例1】(2016·山东济宁)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=0.6,故答案为:0.6.【变式】(2015浙江舟(2015福建宁德)如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )A.4 B.4。
5C.5 D.5。
5【答案】B .【分析】根据平行线分线段成比例即可得. 【解析】∵直线a∥b∥c,AC=4,CE=6,BD=3,∴AC BD CE DF =,即436DF=,解得DF=4.5.故选B . 【点评】考查平行线分线段成比例,能够从图中找到对应线段是解题的关键。
知识点二、相似三角形及其判定【例2】(2015湖北随州)如图,在△ABC 中,点D 、E 分别在边AB、AC 上,下列条件中不能判断△ABC∽△AED 的是( )A .∠AE D=∠B B .∠ADE=∠C C.AD AE =AC AB D .AD AB =AEAC【答案】D【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可. 【解析】由题意得∠DAE=∠CAB ,A 、当∠AED=∠B时,△ABC∽△AED,故本选项不符合题意;B 、当∠ADE=∠C 时,△ABC∽△AED,故本选项不符合题意;C 、当AD AC =AEAB 时,△ABC∽△AED,故本选项不符合题意; D 、当AD AB =AEAC时,不能推断△ABC∽△AED,故本选项符合题意;故选D.【点评】此题考查了相似三角形的判定.此题难度不大,注意掌握数形结合思想的应用.【变式】6。
中考数学专题练习《相似形》【知识归纳】(一)1.成比例线段在四条线段中,如果其中两条线段的比 另外两条线段的比,那么这四条线段叫做成比例线段.2.比例线段的基本性质若a b =c d ,则 ;当b =c 时, ,那么b 是a ,d 的比例中项.3.线段的黄金分割点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且AC AB=BC AC =5-12≈0.618,则C 点叫做线段AB 的 . 4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。
(二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角 ,对应边的比 .2.相似三角形的判定(1)如果一个三角形的两角分别与另一个三角形的两角对应 ,那么这两个三角形相似;(2)如果一个三角形的两条边与另一个三角形的两条边对应 ,且夹角 ,那么这两个三角形相似;(3)如果一个三角形的三条边和另一个三角形的三条边对应 ,那么这两个三角形相似;(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形 .3.相似三角形的性质(1)相似三角形周长的比等于 .(2)相似三角形面积的比等于 . (3)相似三角形对应高、对应角平分线、对应中线的比等于 .4.相似多边形的性质(1)相似多边形周长的比等于 . (2)相似多边形面积的比等于 .5.位似图形(1)定义两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做,对应边的比叫做.位似是一种特殊的相似.(2)性质(1)位似图形上的任意一对对应点到位似中心的距离的比等于;(2)位似图形对应点的连线或延长线相交于点;(3)位似图形对应边;(4)位似图形对应角 .【基础检测】1.(2016•德州)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移B.旋转C.轴对称D.位似2.(2016•达州)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB 的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.53.(2016•哈尔滨)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.4.(2016•巴中)如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE 的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:15.(2016•烟台)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)6.(2016·辽宁丹东·3分)如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC 的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.7.(2016·广西桂林·3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD 于H,点O是AB中点,连接OH,则OH= .8.(2016·贵州安顺·4分)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,,那么EH的长为.9. (2016·四川眉山)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC 的位似比为2:1,并直接写出点A2的坐标.10. (2016·四川眉山)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.【达标检测】一.选择题1.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对 B.1对 C. 2对 D.3对2.如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A. 1:2 B.2:3 C.1:3 D.1:43.(2016·湖北随州)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD 相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:254.如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A.AD=AE B.DB=EC C.∠ADE=∠C D.DE=12BC5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A. P1B. P2C. P3D. P46.(2016·江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③7. (2016·辽宁丹东)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个二、填空题8.如图,在△ABC中,DE∥BC,23DEBC,△ADE的面积是8,则△ABC的面积为9.(2016贵州毕节)在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD= .10.(2016·湖北武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为_______.11.(2016·黑龙江龙东)已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是.12.(2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.13.如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,,∠CBO=45°,在直线BE上求点M,使△BMC 与△ODC相似,则点M的坐标是.三、解答题14.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.15.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:AD AC BE BC.16.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;17. (2016·陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.18. (2016·重庆市A 卷·12分)在△ABC 中,∠B=45°,∠C=30°,点D 是BC 上一点,连接AD ,过点A 作AG⊥AD,在AG 上取点F ,连接DF .延长DA 至E ,使AE=AF ,连接EG ,DG ,且GE=DF .(1)若AB=2,求BC 的长;(2)如图1,当点G 在AC 上时,求证:BD=CG ;(3)如图2,当点G 在AC 的垂直平分线上时,直接写出的值.【知识归纳答案】(一)1.成比例线段在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段.2.比例线段的基本性质若a b =c d ,则ad=bc ;当b =c 时,b 2=ad ,那么b 是a ,d 的比例中项.3.线段的黄金分割点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且AC AB=BC AC =5-12≈0.618,则C 点叫做线段AB 的黄金分割点. 4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。