八年级(上)数学第一章勾股定理测试题[1]
- 格式:doc
- 大小:337.00 KB
- 文档页数:4
D C B A FE D C B A 新版北师大版八年级数学上册第1章《勾股定理》单元测试试卷及答案(1)一、填空题(1. 如图,在长方形ABCD 中,已知BC=10cm ,AB=5cm ,则对角线BD= cm 。
2. 如图,在正方形ABCD 中,对角线为22,则正方形边长为 。
3. 把直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的 。
4. 三角形中两边的平方差恰好等于第三边的平方,则这个三角形是 三角形。
5. 飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行 千米。
6. 在Rt △ABC 中,∠C=90°,若a:b=3:4,c=20,则a= ,b= 。
7. 已知一个直角三角形的两边长分别是3和4,则第三边长为 。
8. 如图所示,在矩形ABCD 中,AB=16,BC=8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F ,那么AF= 。
9. 如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是 。
10. 如图,数轴上有两个Rt △ABC 、Rt △ABC ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F 分别对应的数是 。
11. 一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,则一个半小时后两船相距 海里。
12. 所谓的勾股数就是指使等式a 2+b 2=c 2成立的任何三个自然数。
我国清代数学家罗士林钻研出一种求勾股数的方法,即对于任意正整数m 、n (m >n ),取a=m 2-n 2,b=2mn ,c=m 2+n 2,则a 、b 、c 就是一组勾股数。
八年级(上)数学第一章 《勾股定理》测试题一、 选择题1、若一个直角三角形的一条直角边长是7cm ,比斜边短1cm ,则斜边长为( )A 、18cmB 、20cmC 、24cmD 、25cm2、一架2.5米长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m ,如果梯子的顶端延墙下滑0.4m ,那么梯脚移动的距离是( )A 、1.5mB 、0.9mC 、0.8mD 、0.5m3、若等腰三角形腰长为10cm ,底边长为16cm ,那么它的面积为( )A 、48cm 2B 、36 cm 2C 、24 cm 2D 、12 cm 24、观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )A 、1组B 、2组C 、3组D 、4组5、如图,在Rt △ABC 中,∠C=900,D 为AC 上一点,且DA=DB=5,如果△DAB 的面积为10,那么DC 的长是( )A 、4 B 、3 C 、5 D 、4.56、如图,一块直角三角形的纸片,两直角边AC=6cm ,BC=8cm 。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A 、2cmB 、3cmC 、4cmD 、5cm7、在△ABC 中,AB=15,AC=13,高AD=12,则三角形的周长是( )A 、42B 、32C 、42或32D 、37或338、已知一直角三角形的木板,三边的平方和为1800cm 2,则斜边长为( )A 、30mB 、80mC 、90mD 、120m9、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A 、900B 、600C 、450D 、30010、 已知χ,y 为正数,且()024322=+--y x ,如果以χ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积是( )A 、5B 、25C 、7D 、15二、填空题11、在锐角△ABC 中,A D ⊥BC ,AD=12,AC=13,BC=14,则AB= 。
一、选择题1.如图,已知 Rt ABC 中,90,6,8C AC BC ∠︒===,将它的锐角A 翻折,使得点A 落在边 BC 的中点 D 处,折痕交 AC 边于点E ,交AB 边于点F ,则 DE 的值为( )A .5B .4C .133D .1432.用梯子登上20m 高的建筑物,为了安全要使梯子的底面距离建筑物15m ,至少需要( )m 长的梯子. A .20 B .25 C .15 D .53.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C .22cm 2D .225cm 4.在下列四组数中,属于勾股数的是( )A .0.3,0.4,0.5B .9,40,41C .2,3,4D .123 5.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A ,沿着纸盒的外部表面爬行至另一个顶点B ,则蚂蚁爬行的最短距离是( )A .3B .2C .5D .21+ 6.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D .122CD BC AB =+ 7.下列几组数中,能作为直角三角形三边长度的是( ) A .2,3,4a b c === B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 8.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22B 2C 21D .19.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 10.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .20 11.在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A .10B .4C .22D .2 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .64二、填空题13.如图,有一个直角三角形纸片,两直角边18cm AC =,24cm BC =,点D 在边BC 上,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则BD 的长是______cm .14.如图,已知正方形ABCD 的面积为4,正方形FHIJ 的面积为3,点D 、C 、G 、J 、I 在同一水平面上,则正方形BEFG 的面积为__________.15.如图所示的正方形网格中,A ,B ,C ,D ,P 是网格线交点.若∠APB =α,则∠BPC 的度数为 ____(用含α的式子表示).16.如图,在Rt ABC △中,90ACB ︒∠=,10AB =,8AC =,D 是AB 的中点,M 是边AC 上一点,连接DM ,以DM 为直角边作等腰直角三角形DME ,斜边DE 交线段CM 于点F ,若2MDF MEF S S =,则CF 的长为________.17.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.18.一根长16cm 牙刷置于底面直径为5cm 、高为12cm 的圆柱形水杯中.牙刷露在杯子外面的长度为hcm ,则h 的取值范围是___.19.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD =3,AE =10,则正方形ODCE 的边长等于____.20.如图,它是四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短的直角边长为a,较长的a b的值为__________.直角边为b,那么三、解答题21.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是多少?22.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求作图:(1)在图1中画一个边长为5的菱形;(2)在图2中画一个面积为5的直角三角形.23.先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点的距离P 1P 2222121))((x x y y =-+-.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知点A (2,4),B (﹣3,﹣8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点B 的纵坐标为﹣1,A ,B 两点间的距离等于6.试求点A 的纵坐标;(3)已知一个三角形各顶点的坐标分别为A (﹣3,﹣2),B (3,6),C (7,﹣2),你能判断三角形ABC 的形状吗?说明理由.24.如图,在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,将△DCE 沿DE 翻折,使点C 落在点A 处.(1)设BD =x .在Rt △ABD 中,根据勾股定理,可得关于x 的方程 ;(2)分别求DC 、DE 的长.25.正方形网格的每个小正方形的边长为1,格点ABC 中,AB 、BC 、AC 三边的长分别为5、10、13.(1)在数轴上画出1-2这两个点;(2)请在正方形网格中画出格点ABC ;(3)这个三角形ABC 的面积为_________.26.如图,在锐角△ABC 中,AD ⊥BC 于点D ,点E 在AD 上,DE =DC ,BE =AC ,点F 为BC 的中点,连结EF 并延长至点M ,使FM =EF ,连结CM .(1)求证:△BDE ≌△ADC ;(2)求证:AC ⊥MC ;(3)若AC =m ,则点A 、点M 之间的距离为 (用含m 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由折叠可得△AEF ≌△DEF ,可知AE=DE ,由点 D 为边 BC 的中点,可求CD=118422CB =⨯=,设DE=x ,CE=6-x ,在Rt △CDE 中由勾股定理()22246x x +-=解方程即可.【详解】解:∵将它的锐角A 翻折,使得点A 落在边 BC 的中点 D 处,折痕交 AC 边于点E ,交AB 边于点F ,∴△AEF ≌△DEF ,∴AE=DE ,∵点 D 为边 BC 的中点, ∴CD=118422CB =⨯=, 设DE=x ,CE=6-x , 在Rt △CDE 中由勾股定理,222CD CE DE +=即()22246x x +-=, 解得133x =. 故选择:C .【点睛】 本题考查折叠性质,中点定义,勾股定理,掌握折叠性质,中点定义,勾股定理,关键是利用勾股定理构造方程.2.B解析:B【分析】可依据题意作出简单的图形,结合图形利用勾股定理进行求解,即可.【详解】解:如图所示:∵AC =20m ,BC =15m ,∴在Rt △ABC 中,AB=22152025+=m ,故选:B .【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.3.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,CD=BD=102=EM ,∴EG=GM=52,∴EF=FG=5,∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.4.B解析:B【分析】根据勾股数的定义:满足222+=a b c 的三个正整数,成为勾股数,据此可判断.【详解】A .0.3、0.4、0.5,不是正整数,所以不是勾股数,选项错误;B .9、40、41,是正整数,且满足22294041+=,是勾股数,选项正确;C .2、3、4,是正整数,但222234+≠,所以不是勾股数,选项正确;D .1、2、3,不是正整数,所以不是勾股数,选项错误;故选:B . 【点睛】本题考查了勾股数的判定方法,解题关键是要看这组数是否为正整数,且满足最小两个数的平方和等于最大数的平法. 5.C解析:C【分析】从正方体外部可分三类走法直接走AB 对角线,先走折线AD-DB ,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC 中,由勾股定理AB=2222AC +BC =2+1=5;方法二:走一面折线AD-BD ,由勾股定理221+1=22+1;方法三折线AE-ED-DB 即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9,∴53, ∵2>1, ∴21>,∴222>,∴22+32+3>,∴()22+15>, ∴2+15>,蚂蚁爬行的最短距离是5.故选择:C .【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.6.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴222DN CN DN +=.222DM CM DM +,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴=.即.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN.∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴AC=12AB . ∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN .∴CN=AC+AN=AC+BM=CM .∴BC=BM+CM=AC+2BM .∵, ∴.∵AC=12AB , ∴12AB+BC .故此选项说法正确. 故选:B .【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.7.C解析:C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键8.B解析:B【分析】连接BP ,根据已知条件求出AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,CE=21-,证明△BDP ≌△EDP ,推出BP=EP ,当点P 与点D 重合时,即可求出PEC ∆的周长的最小值.【详解】连接BP ,在Rt ABC ∆中,90,45B BCA ︒∠=∠=︒,∴∠BAC=45BCA ∠=︒,AB=BC ,∴2222(2)2AB AC ===,∴AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,∴CE=21-,在△BDP 和△EDP 中, BD ED BDP EDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△EDP ,∴BP=EP ,∴当点P 与点D 重合时,PE+PC=PB+PC=BC 的值最小,此时PEC ∆的周长最小, PEC ∆的周长的最小值为BC+CE=1+21-=2,故选:B ..【点睛】此题考查翻折的性质,勾股定理,全等三角形的判定及性质,解题的关键是根据翻折的性质证得△BDP ≌△EDP ,由此推出当点P 与点D 重合时PEC ∆的周长最小,合情推理科学9.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.10.D解析:D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键. 11.A解析:A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=22(10)(30)10--+-=,故选A .【点睛】本题主要考查平面直角坐标系中,两点间的距离公式,掌握“若A(x 1,y 1),B(x 2,y 2),则AB=221212()()x x y y -+-”,是解题的关键.12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.15【分析】根据勾股定理计算得AB ;再根据折叠的性质分析得cm 从而得到BE ;设cm 则cm 根据勾股定理列方程并求解即可得到答案【详解】∵∴cm ∵点在边上现将直角边沿直线折叠使它落在斜边上且与重合∴cm 解析:15【分析】根据勾股定理计算得AB ;再根据折叠的性质分析,得18AE AC ==cm ,DE DC =,DEA C 90∠=∠=,从而得到BE ;设BD x =cm ,则()24DE DC x ==-cm ,根据勾股定理列方程并求解,即可得到答案.【详解】∵18cm AC =,24cm BC =,∴2222241830AB AC BC +=+=cm ,∵点D 在边BC 上,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,∴18AE AC ==cm ,DE DC =,DEA C 90∠=∠= ,∴12BE AB AE =-=cm ,∴设BD x =cm ,则()24DE DC x ==-cm , ∴12BE ==cm ,∴212x x +22(24-)=∴15x = ,故答案为:15.【点睛】本题考查了勾股定理与折叠问题,解题的关键是熟练掌握勾股定理、折叠问题、一元一次方程,从而完成求解.14.7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF 从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积【详解】解:∵∠BGC+∠FGJ=90°∠GFJ+∠FGJ=90解析:7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF ,从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积.【详解】解:∵∠BGC +∠FGJ =90°,∠GFJ +∠FGJ =90°∴∠BGC =∠GFJ∵∠BCG =∠GJF ,BG =GF∴△BCG ≌△GJF∴CG =FJ ,BC =GJ ,∴BG 2=BC 2+CG 2=BC 2+FJ 2∴正方形DEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积=4+3=7.【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.15.【分析】由图可知AC 的长根据勾股定理可以求得PAPC 的长再利用勾股定理的逆定理可以判断△PAC 的形状从而可以得到∠CPA 的度数然后即可得到∠BPC=∠CPA−∠APB 的度数【详解】设网格的长度为1则解析:90-α︒【分析】由图可知AC 的长,根据勾股定理可以求得PA 、PC 的长,再利用勾股定理的逆定理可以判断△PAC 的形状,从而可以得到∠CPA 的度数,然后即可得到∠BPC=∠CPA−∠APB 的度数.【详解】设网格的长度为1,则==,AC=6222AP PC AC+=∴△PAC为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠CPA−∠APB=90-α︒故答案为:90-α︒【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.16.3【分析】作DG⊥AC于GEH⊥AC于H则∠DGM=∠MHE=90°DG∥BC由勾股定理得出BC=6证出DG是△ABC的中位线得出DG=BC=3AG=CG=AC=4证明△MDG≌△EMH(ASA)得解析:3【分析】作DG⊥AC于G,EH⊥AC于H,则∠DGM=∠MHE=90°,DG∥BC,由勾股定理得出BC=6,证出DG是△ABC的中位线,得出DG=12BC=3,AG=CG=12AC=4,证明△MDG≌△EMH(ASA),得出MG=EH,由三角形面积关系得出DG=2EH=3,得出MG=EH=32,再证明∆DGF~∆EHF,从而求出GF,进而即可得出答案.【详解】作DG⊥AC于G,EH⊥AC于H,如图所示:则∠DGM=∠MHE=90°,DG∥BC,∵∠ACB=90°,AB=10,AC=8,∴BC6=,∵DG∥BC,D是AB的中点,∴DG是△ABC的中位线,∴DG=12BC=3,AG=CG=12AC=4,∵△DME是等腰直角三角形,∴∠DME=90°,DM=ME,∵∠DMG+∠GDM=∠DMG+∠EMH=90°,∴∠GDM=∠EMH,在△MDG和△EMH中,DGM MHE DM MEGDM EMH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDG ≌△EMH (ASA ),∴MG =EH ,∵S △MDF =2S △MEF ,∴DG =2EH =3,∴MG =EH =32, ∵DG ∥EH ,∴∆DGF~∆EHF ,∴21DG GF EH HF ==, ∵GH=MH-MG=DG-MG=3-32=32, ∴GF=32×221+=1, ∴CF=AC-AG-GF=8-4-1=3,故答案是:3..【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.17.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.18.3≤h≤4【分析】先根据题意画出图形再根据勾股定理解答即可【详解】解:当牙刷与杯底垂直时h 最大h 最大=16-12=4cm 当牙刷与杯底及杯高构成直角三角形时h 最小如图所示:此时AB==13cm 故h=1解析:3≤h≤4【分析】先根据题意画出图形,再根据勾股定理解答即可.【详解】解:当牙刷与杯底垂直时h 最大,h 最大=16-12=4cm .当牙刷与杯底及杯高构成直角三角形时h 最小,如图所示:此时,2222125AC BC +=+=13cm ,故h=16-13=3cm .故h 的取值范围是3≤h≤4.故答案是:3≤h≤4.【点睛】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.19.2【分析】根据题意有两对全等的直角三角形设正方形的边长为x则BC=3+xAC=10+xAB=13根据勾股定理BC2+AC2=AB2列出方程解出x即可【详解】解:设DC=CE=x则BC=3+xAC=1解析:2【分析】根据题意,有两对全等的直角三角形,设正方形的边长为x,则BC=3+x,AC=10+x,AB=13,根据勾股定理,BC2+AC2=AB2,列出方程,解出x即可.【详解】解:设DC=CE=x,则BC=3+x,AC=10+x∵BC2+AC2=AB2∴(3+x)2+(10+x)2=132∴x=2故答案为:2.【点睛】本题主要考查了全等三角形的性质与勾股定理,熟悉全等三角形对应边相等,勾股定理的应用是解决本题的关键.20.5【分析】根据题意结合图形求出ab与a2+b2的值原式利用完全平方公式化简后代入计算即可求出值【详解】解:根据题意得:c2=a2+b2=134×ab=13-1=12即2ab=12则(a+b)2=a2解析:5【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【详解】解:根据题意得:c2=a2+b2=13,4×12ab=13-1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,则a+b=5故答案为:5.【点睛】本题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解题的关键.三、解答题21.101寸【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【详解】解:取AB 的中点O ,过D 作DE ⊥AB 于E ,如图2所示:由题意得:OA=OB=AD=BC ,设OA=OB=AD=BC=r 寸,则AB=2r (寸),DE=10寸,OE=12CD=1寸, ∴AE=(r -1)寸, 在Rt △ADE 中,AE 2+DE 2=AD 2,即(r -1)2+102=r 2,解得:r=50.5,∴2r=101(寸),∴AB=101寸.【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键. 22.(1)见解析;(2)见解析【分析】(1)根据22521=+,可以得到作图方法;(2)根据22221212452⨯+⨯+=可以得到一种作图方法. 【详解】(1)如图1;(2)如图2.【点睛】本题考查给定边长或面积的作图问题,解题关键是熟练掌握面积的计算公式以及勾股定理的应用.23.(1)13;(2)﹣7或5;(3)△ABC 为等腰三角形,理由见解析.【分析】(1)根据两点间距离公式求解即可.(2)根据与y 轴平行的线段的特点以及两点间距离公式求解即可.(3)根据两点间距离公式求该三角形的各边长,从而进行判断即可.【详解】(1)∵点()2,4A ,()3,8B --,∴13AB ==;(2)∵点A ,B 所在的直线平行于y 轴,点B 的纵坐标为﹣1,A ,B 两点间的距离等于6,∴点A 的纵坐标为﹣1﹣6=﹣7或﹣1+6=5;(3)∵10AB ==,10AC ==,BC ==∴△ABC 为等腰三角形.【点睛】本题考查了两点间的距离公式问题,掌握两点间距离公式、等腰三角形的性质是解题的关键.24.(1)2226(8)x x +=-;(2)DC =254,DE =154. 【分析】(1)由折叠的性质得出AD=CD ,AE=EC ,设BD=x ,则DC=AD=8-x ,由勾股定理可求出答案;(2)由勾股定理可求出答案.【详解】解:(1)∵将△DCE 沿DE 翻折,使点C 落在点A 处.∴AD=CD ,AE=EC ,设BD=x ,则DC=AD=8-x ,∵AB 2+BD 2=AD 2,∴62+x 2=(8-x )2,故答案为:62+x 2=(8-x )2;(2)由(1)得62+x 2=(8-x )2,解得x=74,∴BD=74, ∴DC=BC -BD=8-74=254. ∵AB=6,BC=8,∴AC=22226810AB BC +=+=, ∴CE=12AC=5, ∴DE=22222515()544DC CE -=-=. 【点睛】 本题考查了折叠的性质,勾股定理,熟练掌握折叠的性质是解题的关键.25.(1)见解析;(2)见解析;(3)72 【分析】(1)在数轴上1的位置向上垂直画一条长度为1的线段,接原点和另一端点,边长就是2然后用圆规,以原点为圆心,斜边为半径做圆,交数轴于一点,该点表示的数即为2;(2)由于22512,221013=+,221323=+,然后利用网格特征可得到AB 、BC 、AC ,从而得到△ABC ;(3)用矩形的面积分别减去三个直角三角形的面积即可算出△ABC 的面积.【详解】解:(1)在数轴上1的位置向上垂直画一条长度为1的线段,接原点和另一端点,边长就是2,然后用圆规,以原点为圆心,斜边为半径做圆,交数轴于一点,该点表示的数即为2;-1,2两个点的位置见数轴:(2)如图,△ABC 为所作,(3)△ABC 的面积1117333132212222=⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:72. 【点睛】 本题主要考查勾股定理与网格问题,解题的关键是熟知勾股定理.26.(1)证明见解析;(2)证明见解析;(3.【分析】(1)先根据垂直的定义可得BDE 和ADC 都是直角三角形,再利用HL 定理证明三角形全等即可;(2)先根据(1)中的全等三角形可得DBE DAC ∠=∠,再根据三角形全等的判定定理与性质可得DBE FCM ∠=∠,从而可得DAC FCM ∠=∠,然后根据角的和差、等量代换即可得证;(3)先根据(2)中的全等三角形可得BE CM =,从而可得CM AC m ==,再在Rt ACM △中,利用勾股定理即可得.【详解】(1)AD BC ⊥,90BDE ADC ∠∴∠==︒,∴BDE 和ADC 都是直角三角形,在BDE 和ADC 中,DE DC BE AC =⎧⎨=⎩, ()BDE ADC HL ∴≅;(2)BDE ADC ≅,DBE DAC ∠=∠∴,点F 为BC 的中点,BF CF ∴=,由对顶角相等得:BFE CFM ∠=∠, 在BEF 和CMF 中,BF CF BFE CFM EF MF =⎧⎪∠=∠⎨⎪=⎩,()BEF CMF SAS ∴≅,FBE FCM ∴∠=∠,即DBE FCM ∠=∠,DAC FCM ∠=∠∴, 又在Rt ACD △中,90DAC ACD ∠+∠=︒,90FCM ACD ∴∠+∠=︒,即90ACM ∠=︒,AC MC ∴⊥;(3)如图,连接AM ,≅,BEF CMF∴=,BE CM==,,BE AC AC m∴==,CM AC m⊥,AC MCACM∴是直角三角形,222∴+,AM AC CM m即点A、点M2m.【点睛】本题考查了直角三角形全等的判定定理与性质、直角三角形的性质、勾股定理等知识点,熟练掌握三角形全等的判定方法是解题关键.。
第一章勾股定理单元测试卷一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4C.2D.4(第1题) (第4题) (第5题) 2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:63.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+15.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,47.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里(第7题) (第9题) (第10题)8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.1011.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米(第11题) (第12题) 12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.(第13题) (第14题) (第15题)14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为cm.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.参考答案一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为()A.3B.4C.2D.4【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC 为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.http://www、czsx、com、cn4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+1【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,4【解答】解:A、12+12≠()2,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、52+102≠132,不能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项错误.故选B.7.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里【解答】解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故选:C.9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AB=,BC=2,∴AC==3,∴这个直角三角形的面积=AC•BC=3,故选A.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.10【解答】解:根据勾股定理可得a2+b2=17,四个直角三角形的面积是:ab×4=17﹣5=12,即:ab=6.故选:B.11.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【解答】解:由题意可知.BE=CD=1、5m,AE=AB﹣BE=4、5﹣1、5=3m,BD=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m【解答】解:在RT△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=0A+AB=20m,在RT△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD﹣OC=2m,故选:D.二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯 2 米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm.=24﹣12=12cm.【解答】解:当筷子与杯底垂直时h最大,h最大当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′==3,∠D′DA+∠ADC=90°由勾股定理得CD′==,∴BD=CD′=,故答案为:.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为 5 cm. 【解答】解:设矩形的相邻两边的长度分别为3acm,4acm,由题意3a+4a=7,a=1,所以矩形的相邻两边分别为3cm,4cm,所以对角线长==5cm,故答案为5.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴在Rt△ACB中,AC═==,∴在Rt△ACD中,AD===,在Rt△ADE中,AE===2.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.【解答】证明:∵如图,边BC的垂直平分线DE交AB于点E,∴CE=BE.∵在Rt△ABC中,∠A=90°,∴由勾股定理得到:CE2=AC2+AE2∴BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。
中考数学试题分类汇编:北师版数学八年级上册第1章《勾股定理》考点一:勾股定理1.(•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦的平方为32+42=25,弦长为5.故选:A.2.(•模拟)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.3.(•模拟)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.4.(•模拟)如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=()A.3B.4C.5D.6【分析】先判定△ABC为等腰三角形,利用等腰三角形的性质可求得BD,在Rt△ABD中利用勾股定理可求得AD的长.【解答】解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=3,在Rt△ABD中,AB=5,BD=3,∴AD=4,故选:B.考点二:勾股定理得证明1.(•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.2.(•期中)如图是著名的赵爽弦图,它是由四个全等的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,请你用它验证勾股定理.【分析】通过图中小正方形面积证明勾股定理.【解答】解:S小正方形=(b﹣a)2=b2﹣2ab+a2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab,即b2﹣2ab+a2=c2﹣2ab,∴a2+b2=c2.3.(•期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.【分析】由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.【解答】证明:∵∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD,∵∠ABC+∠DBE=90°,∴∠ABE=90°,三个Rt△其面积分别为12ab,12ab和12c2.直角梯形的面积为12(a+b)(a+b).由图形可知:12(a+b)(a+b)=12ab+12ab+12c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.4.(•模拟)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a),∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b﹣a),∴12ab+12b2+12ab=12ab+12c2+12a(b﹣a),∴a2+b2=c2.考点三:勾股定理的逆定理1.(•南通)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.2.(•模拟)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD2=AC2+CD2=25,CD=5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.3.(•期中)下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25【分析】只要验证两小边的平方和等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【解答】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选:A.4.(•期末)满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:15【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:A.b2﹣c2=a2,则b2=a2+c2,△ABC是直角三角形;B.a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;C.∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;D.∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.5.(•期中)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【分析】因为△ABC的三边分别是6,8,10,根据勾股定理的逆定理可求出此三角形为直角三角形,根据三角形面积公式可求出面积.【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.6.(•期中)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.7.(•期末)观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:.【分析】勾股定理和了解数的规律变化是解题关键.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.8.(•期中)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【分析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD2=AC2-AD2=225,CD=15,∴S△ABC=12BC•AD=12(BD+CD)•AD=12×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.考点四:勾股定理的应用1.(•期末)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.2.(•模拟)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC=4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.3.(•模拟)如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【解答】解:∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC﹣FC=32﹣25=7cm,在直角△ADF中,AD=24(cm).故选:C.4.(•湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.5.(•包头)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:8 56.(•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2=A′D2+BD2=400,A′B=20(cm).故答案为20.7.(•期中)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理可得x2+(102)2=(x+1)2,再解答即可.【解答】解;设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:水池深12尺,芦苇长13尺.故答案是:12尺;13尺.8.(•期中)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5.11/ 11。
第1章勾股定理一、填空:(每空4分,共计28分)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方为__________.2.求如图中直角三角形中未知的长度:b=__________,c=__________.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为__________cm2.4.小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答:__________(填“能”、或“不能”)5.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为__________.6.如图,四边形ABCD中,CD∥AB,AD⊥DC,DC=5,CB=15,AB=17.则四边形ABCD的面积为__________.7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为__________dm.二、选择题(每题4分,共28分)8.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm9.观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )组.A.1 B.2 C.3 D.410.如图,正方形ABCD的边长为1,则正方形ACEF的面积为( )A.2 B.3 C.4 D.511.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米12.满足下列条件的△ABC中,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:513.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为( )A.12 cm B.10 cm C.8 cm D.6 cm14.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对三、解答题:(每题11分,共计44分)15.一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)16.小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?17.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;(1)求BD的长;(2)求四边形ABCD的面积.18.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.北师大新版八年级上册《第1章勾股定理》2015年单元测试卷(广东省深圳市观澜二中)一、填空:(每空4分,共计28分)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方为7或25.【考点】勾股定理.【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【解答】解:分两种情况:当3、4都为直角边时,第三边长的平方=32+42=25;当3为直角边,4为斜边时,第三边长的平方=42﹣32=7.故答案为:7或25.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.求如图中直角三角形中未知的长度:b=12,c=10.【考点】勾股定理.【分析】根据勾股定理进行计算即可.【解答】解:b==12;c==10,故答案为:12;10.【点评】本题考查的是勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.4.小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答:能(填“能”、或“不能”)【考点】勾股定理的应用.【分析】能,在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较即可.【解答】解:能,理由如下:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案为能.【点评】本题考查了勾股定理的应用,解题的关键是求出木箱内木棒的最大长度.5.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为2.4cm.【考点】勾股定理.【专题】计算题.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为3cm,4cm,∴斜边为=5cm,设斜边上的高为h,则直角三角形的面积为×3×4=×5h,h=2.4cm,这个直角三角形斜边上的高为2.4cm.故答案为:2.4cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.6.如图,四边形ABCD中,CD∥AB,AD⊥DC,DC=5,CB=15,AB=17.则四边形ABCD的面积为99.【考点】勾股定理;勾股定理的逆定理.【分析】作CE⊥AB于E,则四边形AECD是矩形,∠BEC=90°,得出AE=CD=5,BE=AB﹣AE=12,由勾股定理求出CE,即可求出四边形ABCD的面积.【解答】解:作CE⊥AB于E,如图所示:则四边形AECD是矩形,∠BEC=90°,∴AE=CD=5,∴BE=AB﹣AE=17﹣5=12,由勾股定理得:CE===9,∵CD∥AB,∴四边形ABCD的面积=(AB+CD)×CE=(17+5)×9=99;故答案为:99.【点评】本题考查了梯形的性质、勾股定理、矩形的判定与性质,熟练掌握梯形的性质,由勾股定理求出梯形的高是解决问题的关键.7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为25dm.【考点】平面展开-最短路径问题.【专题】计算题;压轴题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.二、选择题(每题4分,共28分)8.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm【考点】勾股定理;三角形中位线定理.【分析】利用勾股定理列式求出斜边,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【解答】解:∵Rt△ABC两直角边的长分别为6cm和8cm,∴斜边==10cm,∴连接这两条直角边中点的线段长为×10=5cm.故选D.【点评】本题考查了勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.9.观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )组.A.1 B.2 C.3 D.4【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:①82+152=172,根据勾股定理的逆定理是直角三角形,故正确;②72+122≠152,根据勾股定理的逆定理不是直角三角形,故错误;③122+152≠202,根据勾股定理的逆定理不是直角三角形,故错误;④72+242=252,根据勾股定理的逆定理是直角三角形,故正确.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.如图,正方形ABCD的边长为1,则正方形ACEF的面积为( )A.2 B.3 C.4 D.5【考点】算术平方根.【分析】根据勾股定理,可得AC的长,再根据乘方运算,可得答案.【解答】解:由勾股定理,得AC=,乘方,得()2=2,故选:A.【点评】本题考查了算术平方根,先求出AC的长,再求出正方形的面积.11.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】应用题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.12.满足下列条件的△ABC中,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】由勾股定理的逆定理得出A、C是直角三角形,D不是直角三角形;由三角形内角和定理得出B是直角三角形;即可得出结果.【解答】解:∵a:b:c=3:4:5,32+42=52,∴这个三角形是直角三角形,A是直角三角形;∵∠A:∠B:∠C=1:2:3,∴∠C=90°,B是直角三角形;∵a2:b2:c2=1:2:3,∴a2+b2=c2,∴三角形是直角三角形,C是直角三角形;∵a2:b2:c2=3:4:5,∴a2+b2≠c2,∴三角形不是直角三角形;故选:D【点评】本题考查了勾股定理的逆定理、三角形内角和定理;熟练掌握勾股定理的逆定理和三角形内角和定理,通过计算得出结果是解决问题的关键.13.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为( )A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出BD,然后在RT△ABD中,可根据勾股定理进行求解.【解答】解:如图:由题意得:AB=AC=10cm,BC=16cm,作AD⊥BC于点D,则有DB=BC=8cm,在Rt△ABD中,AD==6cm.故选D.【点评】本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理直角三角形的边长.14.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.三、解答题:(每题11分,共计44分)15.一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)【考点】勾股定理的应用.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.【解答】解:如图所示:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?【考点】勾股定理的应用.【分析】根据题意求出小东与哥哥各自行走的距离,根据勾股定理计算即可.【解答】解:由题意得,AC=6×=3km,BC=8×=4km,∠ACB=90°,则AB==5km.【点评】本题考查的是勾股定理的应用,正确构造直角三角形、灵活运用勾股定理是解题的关键.17.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;(1)求BD的长;(2)求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】(1)在Rt△ABD中,利用勾股定理可求出BD的长度;(2)利用勾股定理的逆定理判断出△BDC为直角三角形,根据S四边形ABCD=S△ABD+S△BDC,即可得出答案.【解答】解:(1)∵∠A=90°,∴△ABD为直角三角形,则BD2=AB2+AD2=25,解得:BD=5.(2)∵BC=13cm,CD=12cm,BD=5cm,∴BD2+CD2=BC2,∴BD⊥CD,故S四边形ABCD=S△ABD+S△BDC=AB×AD+BD×DC=6+30=36.【点评】本题考查了勾股定理及勾股定理的逆定理,在求不规则图形的面积时,我们可以利用分解法,将不规则图形的面积转化为几个规则图形的面积之和.18.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?【考点】翻折变换(折叠问题).【专题】应用题;操作型.【分析】由折叠的性质得到三角形BDC与三角形BDE全等,进而得到对应边相等,对应角相等,再由两直线平行内错角相等,等量代换及等角对等边得到FD=FB,设FD=FB=xcm,则AF=(8﹣x)cm,在直角三角形AFB中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出FD的长,进而求出三角形BDF面积.【解答】解:由折叠可得:△BDC≌△BDE,∴∠CBD=∠EBD,BC=BE=8cm,ED=DC=AB=6cm,∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴FD=FB,设FD=FB=xcm,则有AF=AD﹣FD=(8﹣x)cm,在Rt△ABF中,根据勾股定理得:x2=(8﹣x)2+62,解得:x=,即FD=cm,则S△BDF=FD•AB=cm2.【点评】此题考查了翻折变换(折叠问题),涉及的知识有:折叠的性质,全等三角形的性质,平行线的性质,等腰三角形的判定,以及勾股定理,熟练掌握性质及定理是解本题的关键.四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.【考点】勾股定理的应用;三角形的面积;勾股定理的逆定理.【专题】应用题.【分析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【解答】解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.【点评】解答此题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】(1)延长ED至点G,使得EG=DE,连接FG,CG,易证EF=FG和△BDE≌△CDG,可得BE=CG,∠DCG=∠DBE,即可求得∠FCG=90°,根据勾股定理即可解题;(2)连接AD,易证∠ADE=∠CDF,即可证明△ADE≌△CDF,可得AE=CF,BE=AF,S四边形AEDF=S△ABC,再根据△DEF的面积=S△ABC﹣S△AEF,即可解题.【解答】(1)证明:延长ED至点G,使得DG=DE,连接FG,CG,∵DE=DG,DF⊥DE,∴DF垂直平分DE,∴EF=FG,∵D是BC中点,∴BD=CD,在△BDE和△CDG中,,∴△BDE≌△CDG(SAS),∴BE=CG,∠DCG=∠DBE,∵∠ACB+∠DBE=90°,∴∠ACB+∠DCG=90°,即∠FCG=90°,∵CG2+CF2=FG2,∴BE2+CF2=EF2;(2)解:连接AD,∵AB=AC,D是BC中点,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,BE=AF,AB=AC=17,∴S四边形AEDF=S△ABC,∴S△AEF=×5×12=30,∴△DEF的面积=S△ABC﹣S△AEF=.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BDE≌△CDG和△ADE≌△CDF是解题的关键.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
八年级数学上册第一章勾股定理单元测试卷(北师版2024年秋)八年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.若a2=5,b2=12,则c2的值为()A.13B.17C.7D.1692.(2024重庆江津区期末)已知△ABC的三边分别是a,b,c,下列条件中不能判断△ABC为直角三角形的是()A.a2+b2=c2B.∠A∶∠B∶∠C=3∶4∶5C.∠A=∠C-∠B D.a=8,b=15,c=173.(教材P7习题T2变式)历史上对勾股定理的一种验证方法采用了如图所示的图形,其中两个全等直角三角形的边AE,EB在一条直线上,验证勾股定理用到的面积相等的关系式是()A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDE C.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD4.如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.85.(2023日照)已知直角三角形的三边a,b,c满足c>a>b,分别以a,b,c为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S1,均重叠部分的面积为S2,则()A.S1>S2B.S1<S2C.S1=S2D.S1,S2大小无法确定6.(2023天津)如图,在△ABC中,分别以点A和点C为圆心,大于12AC的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线MN分别与边BC,AC相交于点D,E,连接A D.若BD=DC,AE=4,AD=5,则AB 的长为()A.9B.8C.7D.67.(2023泸州)《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数a,b,c的计算公式:a=12(m2-n2),b=mn,c=12(m2+n2),其中m>n>0,m,n是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是()A.3,4,5B.5,12,13C.6,8,10D.7,24,25 8.(新考向数学文化)《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,纵之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()A.2x2=(x-4)2+(x-2)2B.x2=(x-4)2+(x-2)2C.x2=(x-4)2+22D.x2=42+(x-2)29.如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,人只要移至该门口4m及4m以内时,门铃就会自动发出语音“欢迎光临”.一个身高1.5m的学生刚走到D处,门铃恰好自动响起,则该学生头顶C到门铃A的距离为()(第9题)A.7m B.6m C.5m D.4m10.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是()A.1.5B.1.8C.2D.2.5二、填空题(每题3分,共24分)11.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=________.12.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+|c-b|=0,则△ABC的形状为____________________.13.(2023东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为________km. 14.如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离的平方为________.(第14题)15.如图,在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径向外作半圆,半圆形的面积分别记为S1,S2,则S1+S2的值为________.(第15题)(第16题)16.如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE 沿AE折叠,点B恰好落在线段DE上的点F处,则BE的长为________.17.(新情境环境保护)如图,这是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条捷径A B.某学习实践小组通过测量可知,AC的长为6米,BC的长为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌,则提示牌上的“多行数步”是指多行________米.(第17题)18.“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边为边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为________.三、解答题(每题11分,共66分)19.(2024合肥蜀山区期末)如图所示,在每个小正方形的边长为单位1的网格中,△ABC是格点图形,求△ABC中AB边上的高.20.某消防部队进行消防演练.在模拟演练现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12m,如图,即AD=BC=12m,此时建筑物中距地面12.8m高的P处有一被困人员需要救援.已知消防车的车身高AB是3.8m,问此消防车的云梯至少应伸长多少米?21.(新视角新定义题)定义:如图,点M,N把线段AB分割成AM,MN,NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N把线段AB分割成AM,MN,NB,若AM=5,MN=13,BN=12,则点M,N是线段AB的勾股分割点吗?请说明理由.(2)已知点M,N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.22.(2024开封龙亭区期末)如图,一工厂位于点C,河边原有两个取水点A,B,其中AB=AC,由于某种原因从工厂C到取水点A的路受阻,为了取水更方便,工厂新建一个取水点H(点A,H,B在一条直线上),并新修一条路CH,测得CB=2.5km,CH=2km,BH=1.5km.(1)CH是否为从工厂C到河边最近的一条路(即CH与AB是否垂直)?请说明理由.(2)求AC的长.23.(教材P15习题T4变式)如图,长方体的底面(正方形)边长为3cm,高为5cm.若一只蚂蚁从点A开始经过四个侧面爬行一圈到达点B,求蚂蚁爬行的最短路径有多长.24.如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F.若△ABF的面积为30cm2,求△ADE的面积.答案一、1.B 2.B 3.D4.B点拨:如图,连接ED交AC于点F.因为四边形ABCD是正方形,所以点B与点D关于AC对称.所以BF=DF.所以△BFE的周长=BF+EF+BE=DE+BE,此时△BFE的周长最小.根据勾股定理易求得DE=5,所以△BFE的周长最小为DE+BE=5+1=6. 5.C点拨:因为直角三角形的三边a,b,c满足c>a>b,所以该直角三角形的斜边为c,所以c2=a2+b2,即c2-a2-b2=0.所以S1=c2-a2-b2+b(a+b-c)=ab+b2-bc,因为S2=b(a+b-c)=ab+b2-bc,所以S1=S2.6.D点拨:由题意得MN是AC的垂直平分线,所以AC=2AE=8,DA=DC,所以∠DAC=∠C.因为BD=CD,所以BD=AD,所以∠B=∠BAD,因为∠B+∠BAD+∠C +∠DAC=180°,所以2∠BAD+2∠DAC=180°.所以∠BAD+∠DAC=90°,即∠BAC=90°.在Rt△ABC中,BC=BD+CD=2AD=10,所以AB2=BC2-AC2=102-82=62,所以AB=6.7.C点拨:因为当m=3,n=1时,a=12(m2-n2)=12×(32-12)=4,b=mn=3×1=3,c=12(m2+n2)=12×(32+12)=5,所以选项A不符合题意;因为当m=5,n=1时,a=12(m2-n2)=12×(52-12)=12,b=mn=5×1=5,c=12(m2+n2)=12×(52+12)=13,所以选项B不符合题意;因为当m=7,n=1时,a=12(m2-n2)=12×(72-12)=24,b=mn=7×1=7,c=12(m2+n2)=12×(72+12)=25,所以选项D不符合题意;因为没有符合条件的m,n使a,b,c各为6,8,10,所以选项C符合题意,故选C.8.B9.C10.A点拨:如图,连接DF,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.所以AB2=AC2+BC2=32+42=52,所以AB=5.因为AD=AC=3,AF⊥CD,所以CE=DE,BD=AB-AD=2,所以CF=DF.在△ADF和△ACF中,=AC,=CF,=AF,所以△ADF≌△ACF(SSS),所以∠ADF=∠ACF=90°,所以∠BDF=90°.设CF=DF=x,则BF=4-x.在Rt△BDF中,由勾股定理得DF2+BD2=BF2,即x2+22=(4-x)2,解得x=1.5,所以CF=1.5.二、11.1212.等腰直角三角形13.5014.215.2π16.417.418.127点拨:因为第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),……所以第六代勾股树中正方形有1+2+22+23+24+25+26=127(个).三、19.解:设AB边上的高为h,因为AB2=32+42=52,所以AB=5,所以12×5h=12×3×3,解得h=9 5,即AB边上的高是9 5 .20.解:由题意知PC=12.8m,CD=AB=3.8m,所以PD=PC-CD=12.8-3.8=9(m).在Rt△ADP中,AP2=AD2+PD2,所以AP2=122+92.所以AP=15m.故此消防车的云梯至少应伸长15m.21.解:(1)是.理由如下:因为AM2+BN2=52+122=169,MN2=132=169,所以AM2+BN2=MN2.所以以AM,MN,NB为边的三角形是一个直角三角形.故点M,N是线段AB的勾股分割点.(2)设BN=x,则MN=AB-AM-BN=7-x,①当MN为最长线段时,MN2=AM2+BN2,即(7-x)2=x2+25,解得x=12 7;②当BN为最长线段时,BN2=AM2+MN2,即x2=25+(7-x)2,解得x=37 7 .综上所述,BN的长为127或377.22.解:(1)CH是从工厂C到河边最近的一条路.理由如下:在△CHB中,因为CH2+BH2=22+1.52=6.25,BC2=2.52=6.25,所以CH2+BH2=BC2,所以△CHB是直角三角形,且∠CHB=90°,所以CH与AB垂直,即CH是从工厂C到河边最近的一条路;(2)设AC=x km,则AB=AC=x km.因为∠CHB=90°,所以∠CHA=90°.在Rt△ACH中,AH=(x-1.5)km,CH=2km,由勾股定理得AC2=AH2+CH2,所以x2=(x-1.5)2+22,解这个方程,得x=25 12 .所以AC的长为2512km.23.解:将长方体的侧面展开如图所示,连接AB′.因为在Rt△AA′B′中,AA′=12cm,A′B′=5cm,所以AB′2=AA′2+A′B′2=169.所以AB′=13cm.所以蚂蚁爬行的最短路径长为13cm.24.解:由折叠可知AD=AF,DE=EF.由S△ABF=12BF·AB=30cm2,AB=DC=5cm,得BF=12cm.在Rt△ABF中,由勾股定理得AF2=AB2+BF2=52+122=169,所以AF=13cm.所以BC=AD=AF=13cm.设DE=x cm,则EC=(5-x)cm,EF=x cm.在Rt△ECF中,FC=13-12=1(cm),由勾股定理得EC2+FC2=EF2,即(5-x)2+12=x2,解得x=135.所以DE=135cm.所以△ADE的面积为12AD·DE=12×13×135=16.9(cm2).。
第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。
八年级(上)数学形成性评价(一)
(第一章 勾股定理 90分钟完卷)
学校 班级 姓名 学号 分数
一、选择题。
(每小题3分,满分24分)
1.如图1所示,电线杆AB 的中点C 处有一标志物,在地面D 点处测 得标志物的仰角为45︒,若点D 到电线杆底部B 的距离为a ,则电 杆AB 的长可表示为( )
A .a
B .2a
C .32
D .52
a
2.如图2所示,在一个由4×4个小正方形组成的正方形网格中,
阴影部分面积与正方形ABCD 面积的比是( ) A .3∶4
B .5∶8
C .9∶16
D .1∶2
3.分别以下列四组数据为一个三角形的三边长:①4,5,6;②1,2,3;③6,10,8;
④5,12,13.其中能构成直角三角形的有
( )
A .4组
B .3组
C .2组
D .1组
4.如图3所示,半圆Ⅰ和半圆Ⅱ的面积之和等于半圆Ⅲ的面积,
那么ABC ∆是( ) A .直角三角形 B .钝角三角形 C .锐角三角形
D .不能确定
5.如图4所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶
点A 要爬到顶点B ,那么这只昆虫爬行的最短路程为( ) A .3米
B .4米
C .5米
D .6米
6.有长度分别为9cm ,12cm ,15cm ,39cm ,36cm 的五根木棒,能搭成(首尾相接)
直角三角形的个数为
( )
A .1个
B .2个
C .3个
D .4个
7.如图5所示,有一块直角三角形纸片,两直角边6AB =,
8BC =,将ABC ∆折叠,使AB 落在斜边AC 上,折痕为AD , 则BD 的长为( ) A .3
B .4
C .5
D .6
8.如图6所示,直角三角形ABC 中,90ACB ∠=︒,CD AB ⊥于D .如果AC b =,
,,BC a AB c CD h ===,那么下列各式恒成立的是( )
A .2ab h =
B .
111
a b h +=
C .2222a b h +=
D .222111a b h +=
二、填空题。
(每小题3分,满分24分)
1.如图7所示,一棵大树折断后倒在地上,请按图中所标 的数据,计算大树没折断前的高度的结果是 .
2.如果直角三角形的斜边与一条直角边分别是13cm 和5cm ,那么这个直角三角形的面积是 cm 2.
3.如图8所示,校园内有两棵树,相距12m ,一棵树高13m , 另一棵树高8m ,一只鸟从一棵树的顶端飞到另一棵树的顶 端,小鸟至少要飞 m .
4.如图9所示的图形中,所有的四边形都是正方形,所有的三
角形都是直角三角形,其中最大的正方形边长为7cm ,则 正方形,,,A B C D 面积的和是 cm 2.
5.等腰三角形腰长为10,底边上的高为6,则底边长为 . 6.若直角三角形两条直角边长分别为8和15则斜边上的高为 . 7.如图10所示,一根长25米的梯子斜立在一竖直的墙上,
梯子的底端距离墙角7米,如果梯子的顶端沿墙下滑4米,
那么梯子的底端将滑动 .
8.在ABC ∆中,15,13,AC AB BC ==边上的高为12,则BC 的长为 . 三、解答题。
(第1,2,3小题每题10分;第4,5小题每题11分;满分52分) 1.如图11所示,4,3,13,12,AB BC CD AD AB BC ====⊥,求四边形ABCD 的
面积.
2.如图12所示,在ABC ∆中,8,6AC BC ==,在ABE ∆中,DE 为AB 边上的高,
12,60ABE DE S ∆==,求C ∠的度数.
3.如图13所示,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯至少需要多
少米?若楼梯宽2米,每平方米地毯需30元,那么这块地毯需花多少元?
4.如图14所示,有一个长0.5米,宽0.3米,高0.4米的长方体盒子,盒子的A 角处有一只蜘蛛,B 角处有一只苍蝇,被蛛丝缠住了,蜘蛛沿长方体表面A C B →→去捉苍蝇,它爬行的速度为每秒5厘米,那么蜘蛛最少要过多少秒才能把苍蝇捉住?
5.如图5①所示,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用
123,,S S S 表示.则不难得出123S S S =+.
(1)如图15②所示,分别以直角三角形ABC 三边为边向外作三个正方形,其面积
分别用123,,S S S 表示,那么123,,S S S 之间有什么关系?
(2)如图15③所示,分别以直角三角形ABC 三边为边向外作三个正三角形,其面
积分别用123,,S S S 表示,请你确定123,,S S S 之间的关系,并说明理由.。