2018版高考数学(江苏专用理科)专题复习:专题专题2 函数概念与基本初等函数I 第11练
- 格式:doc
- 大小:252.54 KB
- 文档页数:5
(江苏专用)2018版高考数学专题温习 专题2 函数概念与大体初等函数 第14练函数模型及其应用练习 文1.(2016·扬州模拟)为了爱惜环境,进展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采纳了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每一个月的处置量最少为400吨,最多为600吨,月处置本钱y (元)与月处置量x (吨)之间的函数关系可近似地表示为:y =12x 2-200x +80 000,且每处置一吨二氧化碳取得可利用的化工产品价值为100元.该单位每一个月可否获利?若是获利,求出最大利润;若是不获利,则国家至少需要补助多少元才能使该单位不亏损?2.(2016·广东江门一般高中调研测试)某农户建造一间背面靠墙的小房,已知墙面与地面垂直,衡宇所占地面是面积为12 m 2的矩形,衡宇正面每平方米的造价为1 200元,衡宇侧面每平方米的造价为800元,屋顶的造价为5 200元.若是墙高为3 m ,且不计衡宇背面和地面的费用,问如何设计衡宇能使总造价最低?最低总造价是多少?3.(2016·镇江模拟)经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价钱f (t )(元)与时刻t (天)的函数关系近似知足f (t )=100(1+k t)(k 为正常数),日销售量g (t )(件)与时刻t (天)的函数关系近似知足g (t )=125-|t -25|,且第25天的销售金额为13 000元.(1)求实数k 的值;(2)试写出该商品的日销售金额w (t )关于时刻t (1≤t ≤30,t ∈N )的函数关系式;(3)该商品的日销售金额w (t )的最小值是多少?4.某公司研制出了一种新产品,试制了一批样品别离在国内和国外上市销售,而且价钱依照销售情形不断进行调整,结果40天内全数销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)别离是国外和国内市场的日销售量与上市时刻的关系,图③是每件样品的销售利润与上市时刻的关系.(1)别离写出国外市场的日销售量f (t )与上市时刻t 的关系及国内市场的日销售量g (t )与上市时刻t 的关系;(2)国外和国内的日销售利润之和有无可能恰好等于6 300万元?如有,请说明是上市后的第几天;若没有,请说明理由.答案精析1.解 设该单位每一个月获利为S 元,则S =100x -y =100x-⎝ ⎛⎭⎪⎫12x 2-200x +80 000 =-12x 2+300x -80 000=-12(x -300)2-35 000, 因为400≤x ≤600,因此当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每一个月至少补助40 000元,才能不亏损.2.解 设衡宇地面长为y m ,宽为x m ,总造价为z 元(x ,y ,z >0),则xy =12,z =3y ×1 200+2×3x ×800+5 200.∵y =12x, ∴z =12×3 600x+4 800x +5 200. ∵x >0,y >0,∴z ≥212×3 600x ×4 800x +5 200=34 000. 当12×3 600x=4 800x ,即x =3时,z 取最小值,最小值为34 000元. 答 当衡宇地面长为4 m ,宽为3 m 时,总造价最低,最低总造价为34 000元.3.解 (1)由题意得f (25)·g (25)=13 000,即100(1+k 25)·125=13 000,解得k =1. (2)w (t )=f (t )·g (t )=100(1+1t)(125-|t -25|) =⎩⎪⎨⎪⎧ 100t +100t +101,1≤t <25,t ∈N ,100149+150t -t ,25≤t ≤30,t ∈N .(3)①当1≤t <25时,因为t +100t≥20, 因此当t =10时,w (t )有最小值12 100;②当25≤t ≤30时,因为150t-t 在[25,30]上单调递减, 因此当t =30时,w (t )有最小值12 400.因为12 100<12 400,因此当t =10时,该商品的日销售金额w (t )取得最小值为12 100元.4.解 (1)图①是两条线段,由一次函数及待定系数法,得f (t )=⎩⎪⎨⎪⎧ 2t ,0≤t ≤30,-6t +240,30<t ≤40.图②是一个二次函数的部份图象,故g (t )=-320t 2+6t (0≤t ≤40).(2)每件样品的销售利润h (t )与上市时刻t 的关系为h (t )=⎩⎪⎨⎪⎧ 3t ,0≤t ≤20,60,20<t ≤40.故国外和国内的日销售利润之和F (t )与上市时刻t 的关系为F (t )=⎩⎪⎨⎪⎧ 3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,0≤t ≤20,60⎝ ⎛⎭⎪⎫-320t 2+8t ,20<t ≤30,60⎝ ⎛⎭⎪⎫-320t 2+240,30<t ≤40.当0≤t ≤20时,F (t )=3t ⎝ ⎛⎭⎪⎫-320t 2+8t =-920t 3+24t 2, ∴F ′(t )=-2720t 2+48t =t ⎝⎛⎭⎪⎫48-2720t ≥0, ∴F (t )在[0,20]上是增函数,∴F (t )在此区间上的最大值为F (20)=6 000<6 300.当20<t ≤30时,F (t )=60⎝ ⎛⎭⎪⎫-320t 2+8t . 由F (t )=6 300,得3t 2-160t +2 100=0,解得t =703(舍去)或t =30. 当30<t ≤40时,F (t )=60⎝ ⎛⎭⎪⎫-320t 2+240. 由F (t )在(30,40]上是减函数,得F (t )<F (30)=6 300.故国外和国内的日销售利润之和能够恰好等于6 300万元,为上市后的第30天.。
第二章函数概念与基本初等函数I 2.5 指数与指数函数教师用书理苏教版1.分数指数幂(1)我们规定正数的正分数指数幂的意义是mna=na m(a>0,m,n∈N*,且n>1).正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定mna =1mna(a>0,m,n∈N*,且n>1).0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a s a t=a s+t,(a s)t=a st,(ab)t=a t b t,其中s,t∈Q,a>0,b>0.2.指数函数的图象与性质y=a x a>10<a<1图象定义域(1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1; 当x <0时,0<y <1(5)当x >0时,0<y <1; 当x <0时,y >1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数1.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),(-1,1a).2.指数函数的图象与底数大小的比较如图是指数函数(1)y =a x,(2)y =b x,(3)y =c x,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x(a >0,a ≠1)的图象越高,底数越大. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)na n=(na )n=a .( × )(2)分数指数幂m na 可以理解为m n个a 相乘.( × ) (3)24(1)-=12(1)-=-1.( × ) (4)函数y =a -x是R 上的增函数.( × ) (5)函数y =21x a +(a >1)的值域是(0,+∞).( × )(6)函数y =2x -1是指数函数.( × )1.(教材改编)若函数f (x )=a x(a >0且a ≠1)的图象经过点P (2,12),则f (-1)=________.答案2解析 由题意知12=a 2,所以a =22,所以f (x )=(22)x ,所以f (-1)=(22)-1= 2. 2.(2016·苏州模拟)已知函数f (x )=a x -2+2的图象恒过定点A ,则A 的坐标为________.答案 (2,3)解析 由a 0=1知,当x -2=0,即x =2时,f (2)=3,即图象必过定点(2,3).3.已知113344333(),(),()552a b c ---===,则a ,b ,c 的大小关系是______________.答案 c <b <a解析 ∵y =(35)x是减函数,11034333()()(),555--∴>>即a >b >1,又c =343()2-<(32)0=1,∴c <b <a .4.计算:133()2-×⎝ ⎛⎭⎪⎫-760+148×42________.答案 2解析 原式=132()3×1+131344222()3⨯-=2.5.若函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.题型一 指数幂的运算 例1 化简下列各式:(1)122.553[(0.064)]--3338-π0;(2)41233322338(4a a b ab a--÷-+.解 (1)原式=121553326427{[()]}()110008---1521()33523343[()][()]1102⨯-⨯=--=52-32-1=0. (2)原式=11111213333333321111111223333352[()(2)]2()()(2)(2)()a a b a b a a aa ab b a a --⋅÷⨯+⋅+⋅ 51116333111336(2)2a a a a b a ba=-⨯⨯-12233.a a a a =⨯⨯=思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.化简132113321()4(0.1)()a b ---⋅⋅⋅=________. 答案 85解析 原式=2×333223322210a b a b--⋅⋅⋅⋅=21+3×10-1=85.题型二 指数函数的图象及应用 例2 已知f (x )=|2x-1|. (1)求f (x )的单调区间; (2)比较f (x +1)与f (x )的大小;(3)试确定函数g (x )=f (x )-x 2的零点的个数.解 (1)由f (x )=|2x-1|=⎩⎪⎨⎪⎧2x -1,x ≥0,1-2x,x <0可作出函数的图象如图所示.因此函数f (x )在(-∞,0)上递减,在(0,+∞)上递增.(2)在同一坐标系中,分别作出函数f (x )、f (x +1)的图象如图所示.由图象知,当0012112x x +-=-,即x 0=log 223时,两图象相交,由图象可知,当x <log 223时,f (x )>f (x +1);当x =log 223时,f (x )=f (x +1);当x >log 223时,f (x )<f (x +1).(3)将g (x )=f (x )-x 2的零点个数问题转化为函数f (x )与y =x 2的图象的交点个数问题,在同一坐标系中,分别作出函数f (x )=|2x-1|和y =x 2的图象(图略),有四个交点,故g (x )有四个零点.思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论. (3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.已知函数f (x )=⎩⎪⎨⎪⎧x +10≤x <1,2x -12x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是______. 答案 [34,2)解析 函数的图象如图所示.因为a >b ≥0,f (a )=f (b ),所以0.5≤b <1且1.5≤f (a )<2.所以0.75≤bf (a )<2.题型三 指数函数的性质及应用 命题点1 指数函数单调性的应用例3 (1)(2016·徐州模拟)下列各式比较大小正确的是________. ①1.72.5>1.73;②0.6-1>0.62; ③0.8-0.1>1.250.2;④1.70.3<0.93.1.(2)设函数f (x )=⎩⎪⎨⎪⎧12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________.答案 (1)② (2)(-3,1)解析 (1)②中,∵y =0.6x是减函数, ∴0.6-1>0.62.(2)当a <0时,不等式f (a )<1可化为(12)a-7<1,即(12)a <8,即(12)a <(12)-3, 所以a >-3.又a <0,∴-3<a <0. 当a ≥0时,不等式f (a )<1可化为a <1. 所以0≤a <1,综上,a 的取值范围为(-3,1). 命题点2 复合函数的单调性 例4 (1)已知函数f (x )=|2|2x m -(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________. (2)函数2211()()2xx f x -++=的单调减区间为________________________________________________________________________. 答案 (1)(-∞,4] (2)(-∞,1]解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].(2)设u =-x 2+2x +1,∵y =⎝ ⎛⎭⎪⎫12u 在R 上为减函数,∴函数f (x )=2211()2x x -++的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 引申探究 函数f (x )=4x-2x +1的单调增区间是________.答案 [0,+∞)解析 设t =2x,则y =t 2-2t 的单调增区间为[1,+∞),令2x≥1,得x ≥0, ∴函数f (x )=4x-2x +1的单调增区间是[0,+∞).命题点3 函数的值域(或最值)例5 (1)函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.(2)如果函数y =a 2x+2a x-1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.答案 (1)⎣⎢⎡⎦⎥⎤34,57 (2)13或3 解析 (1)因为x ∈[-3,2],所以若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.故所求函数的值域为⎣⎢⎡⎦⎥⎤34,57.(2)令a x =t ,则y =a 2x +2a x -1=t 2+2t -1 =(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈[1a,a ],又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a <1时,因为x ∈[-1,1],所以t ∈[a ,1a],又函数y =(t +1)2-2在[a ,1a]上单调递增,则y max =(1a +1)2-2=14,解得a =13(负值舍去).综上,a =3或a =13.思维升华 (1)在利用指数函数性质解决相关综合问题时,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,要化归于指数函数来解.(1)已知函数f (x )=⎩⎪⎨⎪⎧-12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f x ,x ≥0,f -x ,x <0,则函数g (x )的最小值是________.答案 (1)[-3,0) (2)0解析 (1)当0≤x ≤4时,f (x )∈[-8,1], 当a ≤x <0时,f (x )∈[-(12)a,-1),所以[-12a ,-1)[-8,1],即-8≤-12a <-1,即-3≤a <0,所以实数a 的取值范围是[-3,0).(2)当x ≥0时,g (x )=f (x )=2x-12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x-12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.2.指数函数底数的讨论典例 (2016·南京模拟)已知函数22xxy b a +=+(a ,b 为常数,且a >0,a ≠1)在区间[-32,0]上有最大值3,最小值52, 则a ,b 的值分别为________.错解展示解析 令t =x 2+2x =(x +1)2-1,∵-32≤x ≤0,∴-1≤t ≤0.∵1a ≤a t ≤1,∴b +1a ≤b +a t ≤b +1,由⎩⎪⎨⎪⎧ b +1a =52,b +1=3,得⎩⎪⎨⎪⎧ a =2,b =2.答案 2,2现场纠错解析 令t =x 2+2x =(x +1)2-1,∵x ∈[-32,0],∴t ∈[-1,0].①若a >1,函数f (x )=a t 在[-1,0]上为增函数,∴a t ∈[1a ,1],22x x b a ++∈[b +1a ,b +1],依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧ a =2,b =2.②若0<a <1,函数f (x )=a t 在[-1,0]上为减函数,∴a t ∈[1,1a ],则22x x b a ++∈[b +1,b +1a ],依题意得⎩⎪⎨⎪⎧ b +1a=3,b +1=52,解得⎩⎪⎨⎪⎧ a =23,b =32.综上①②,所求a ,b 的值为⎩⎪⎨⎪⎧ a =2,b =2或⎩⎪⎨⎪⎧a =23,b =32.答案 2,2或23,32纠错心得 与指数函数、对数函数的单调性有关的问题,要对底数进行讨论.1.(2016·苏州模拟)设2x =8y +1,9y =3x -9,则x +y 的值为________.答案 27解析 ∵2x =8y +1=23(y +1),∴x =3y +3,∵9y =3x -9=32y ,∴x -9=2y ,解得x =21,y =6,∴x +y =27.2.函数f (x )=2|x -1|的图象是________.答案 ②解析 ∵|x -1|≥0,∴f (x )≥1,排除③、④.又x =1时,|f (x )|min =1,排除①.3.已知a =40.2,b =0.40.2,c =0.40.8,则a ,b ,c 的大小关系为__________.答案 a >b >c解析 由0.2<0.8,底数0.4<1知,y =0.4x 在R 上为减函数,所以0.40.2>0.40.8,即b >c . 又a =40.2>40=1,b =0.40.2<1,所以a >b ,综上,a >b >c .4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为__________. 答案 [1,9]解析 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9.5.(2015·山东改编)若函数f (x )=2x +12x -a是奇函数,则使f (x )>3成立的x 的取值范围为__________.答案 (0,1)解析 ∵f (x )为奇函数,∴f (-x )=-f (x ),即2-x +12-x -a =-2x+12x -a,整理得(a -1)(2x +1)=0, ∴a =1,∴f (x )>3即为2x +12x -1>3, 当x >0时,2x -1>0,∴2x +1>3·2x -3,解得0<x <1;当x <0时,2x -1<0,∴2x +1<3·2x -3,无解.∴x 的取值范围为(0,1).6.(2016·浙江改编)已知函数f (x )满足f (x )≥2x ,x ∈R .若f (a )≤2b,则a ,b 的大小关系为________.答案 a ≤b解析 依题意得f (a )≥2a ,若f (a )≤2b ,则2a ≤f (a )≤2b ,∴2a ≤2b ,又y =2x 是R 上的增函数,∴a ≤b . 7.设函数f (x )=⎩⎪⎨⎪⎧ e x -1,x <1,13x ,x ≥1,则使得f (x )≤2成立的x 的取值范围是________. 答案 (-∞,8]解析 当x <1时,由ex -1≤2得x ≤1+ln 2,∴x <1时恒成立; 当x ≥1时,由13x ≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.8.若直线y =2a 与函数y =|a x-1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.答案 (0,12) 解析 (数形结合法)由图象可知0<2a <1,∴0<a <12.9.(2016·镇江模拟)已知y =f (x )是定义在R 上的奇函数且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.答案 [-14,14]解析 设t =12x ,当x ≥0时,2x≥1,∴0<t ≤1,f (t )=-t 2+t =-(t -12)2+14.∴0≤f (t )≤14,故当x ≥0时,f (x )∈[0,14].∵y =f (x )是定义在R 上的奇函数,∴当x ≤0时,f (x )∈[-14,0].故函数的值域为[-14,14].10.已知函数f (x )=2ax +2(a 为常数),(1)求函数f (x )的定义域;(2)若a >0,试证明函数f (x )在R 上是增函数;(3)当a =1时,求函数y =f (x ),x ∈(-1,3]的值域.(1)解 函数f (x )=2ax +2对任意实数都有意义,所以定义域为实数集R .(2)证明 任取x 1,x 2∈R ,且x 1<x 2,由a >0,得ax 1+2<ax 2+2.因为y =2x 在R 上是增函数,所以有122222ax ax ++,即f (x 1)<f (x 2).所以函数f (x )在R 上是增函数.(3)解 由(2)知,当a =1时,f (x )=2x +2在(-1,3]上是增函数.所以f (-1)<f (x )≤f (3),即2<f (x )≤32.所以函数f (x )的值域为(2,32].11.已知函数f (x )=(23)|x |-a.(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求a 的值.解 (1)令t =|x |-a ,则f (x )=(23)t,不论a 取何值,t 在(-∞,0]上单调递减,在[0,+∞)上单调递增,又y =(23)t 是单调递减的, 因此f (x )的单调递增区间是(-∞,0],单调递减区间是[0,+∞).(2)由于f (x )的最大值是94且94=(23)-2, 所以g (x )=|x |-a 应该有最小值-2,即g (0)=-2,从而a =2.12.已知函数f (x )=2431()3ax x -+.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解 (1)当a =-1时,f (x )=2431()3xx --+,令t =-x 2-4x +3, 由于函数t =-x 2-4x +3在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,则f (x )=⎝ ⎛⎭⎪⎫13g (x ), 由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧ a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.*13.已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2). (1)若λ=32,求函数f (x )的值域; (2)若函数f (x )的最小值是1,求实数λ的值.解 (1)f (x )=14x -λ2x -1+3=(12)2x -2λ·(12)x+3(-1≤x ≤2).设t =(12)x ,得g (t )=t 2-2λt +3(14≤t ≤2).当λ=32时,g (t )=t 2-3t +3=(t -32)2+34(14≤t ≤2).所以g (t )max =g (14)=3716,g (t )min =g (32)=34.所以f (x )max =3716,f (x )min =34,故函数f (x )的值域为[34,3716].(2)由(1)得g (t )=t 2-2λt +3=(t -λ)2+3-λ2(14≤t ≤2),①当λ≤14时,g (t )min =g (14)=-λ2+4916,令-λ2+4916=1,得λ=338>14,不符合舍去;②当14<λ≤2时,g (t )min =g (λ)=-λ2+3,令-λ2+3=1,得λ=2(λ=-2<14,不符合舍去);③当λ>2时,g (t )min =g (2)=-4λ+7,令-4λ+7=1,得λ=32<2,不符合舍去.综上所述,实数λ的值为 2.14.(2017·江苏淮阴中学月考)已知f (x )=23x +1+m ,m 是实常数.(1)当m =1时,写出函数f (x )的值域;(2)当m =0时,判断函数f (x )的奇偶性,并给出证明;(3)若f (x )是奇函数,不等式f (f (x ))+f (a )<0有解,求a 的取值范围.解 (1)当m =1时,f (x )=23x +1+1,定义域为R ,3x +1∈(1,+∞),则23x +1∈(0,2), 所以f (x )=23x +1+1∈(1,3), 即当m =1时,函数f (x )的值域为(1,3).(2)当m =0时,f (x )为非奇非偶函数.证明如下 :当m =0时,f (x )=23x +1,f (1)=24=12, f (-1)=213+1=32, 因为f (-1)≠f (1),所以f (x )不是偶函数;又因为f (-1)≠-f (1),所以f (x )不是奇函数.故f (x )为非奇非偶函数.(3)因为f (x )是奇函数,所以f (-x )=-f (x )恒成立,即23-x+1+m =-23x +1-m 对x ∈R 恒成立, 化简整理得-2m =2×3x1+3x +23x +1,即-2m =2,所以m =-1. 下面用定义法研究f (x )=23x +1-1的单调性. 任取x 1,x 2∈R 且x 1<x 2, f (x 1)-f (x 2)=1222113131x x --+++ 21212(33)0(31)(31)x x x x -=++>, 所以f (x 1)>f (x 2),所以函数f (x )在R 上单调递减.所以f (f (x ))+f (a )<0有解,且函数f (x )为奇函数,所以f (f (x ))<-f (a )=f (-a ),又因为函数f (x )在R 上单调递减,所以f (x )>-a 有解,又易求函数f (x )=23x +1-1的值域为(-1,1),所以-a <1,即a >-1.。
2.8 函数与方程(1)函数零点的定义对于函数y=f(x)(x∈D),把使函数y=f(x)的值为0的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数210【知识拓展】有关函数零点的结论(1)假设连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.【思考辨析】判断以下结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)假设函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数f (x )=12x -(12)x的零点个数为____________.答案 1解析 f (x )是增函数,又f (0)=-1,f (1)=12,∴f (0)f (1)<0,∴f (x )有且只有一个零点.2.(教材改编)已知f (x )=ax 2+bx +c 的零点为1,3,则函数y =ax 2+bx +c 的对称轴是________. 答案 x =2解析 ∵y =a (x -1)(x -3)=a (x -2)2-a , ∴对称轴为x =2.3.(2016·长春检测)函数f (x )=12ln x +x -1x -2的零点所在的区间是________.①(1e ,1); ②(1,2); ③(2,e); ④(e,3).答案 ③解析 因为f (1e )=-12+1e -e -2<0,f (1)=-2<0,f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0,所以f (2)f (e)<0,所以函数f (x )=12ln x +x -1x-2的零点所在区间是(2,e).f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫13,1 解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1. 5.(教材改编)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是__________.答案 (-2,0)解析 结合二次函数f (x )=x 2+x +a 的图象知⎩⎪⎨⎪⎧f 0<0f1>0,故⎩⎪⎨⎪⎧a <01+1+a >0,所以-2<a <0.题型一 函数零点确实定 命题点1 确定函数零点所在区间例1 (1)(2016·盐城调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是________.(填序号) ①(0,1); ②(1,2); ③(2,3);④(3,4).(2)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),假设x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是______. 答案 (1)③ (2)(1,2)解析 (1)∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)为增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3).(2)令f (x )=x 3-(12)x -2,则f (x 0)=0,易知f (x )为增函数,且f (1)<0,f (2)>0,∴x 0所在的区间是(1,2).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)假设定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是________. 答案 (1)2 (2)4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点;当x >0时,f ′(x )=2+1x>0恒成立,所以f (xf (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2. (2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图,观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在以下区间中,包含f (x )零点的区间是________.(填序号) ①(0,1); ②(1,2); ③(2,4);④(4,+∞).(2)(教材改编)已知函数f (x )=2x-3x ,则函数f (x )的零点个数为________. 答案 (1)③ (2)2解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)令f (x )=0,则2x =3x ,在同一平面直角坐标系中分别作出y =2x和y =3x 的图象,如下图,由图知函数y =2x和y =3x 的图象有2个交点,所以函数f (x )的零点个数为2.题型二 函数零点的应用例 3 (1)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是__________.(2)已知函数f (x )=|x 2+3x |,x ∈R ,假设方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围是________________. 答案 (1)(0,3) (2)(0,1)∪(9,+∞)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.(2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|,在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如下图.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =a 1-x 有两组不同解,消去y 得x 2+(3-a )x +a =0有两个不等实根, 所以Δ=(3-a )2-4a >0,即a 2-10a +9>0, 解得a <1或a >9.又由图象得a >0,∴0<a <1或a >9. 引申探究本例(2)中,假设f (x )=a 恰有四个互异的实数根,则a 的取值范围是________________.答案 (0,94)解析 作出y 1=|x 2+3x |,y 2=a 的图象如下:当x =-32时,y 1=94;当x =0或x =-3时,y 1=0,由图象易知,当y 1=|x 2+3x |和y 2=a 的图象有四个交点时,0<a <94.思维升华 已知函数零点情况求参数的步骤及方法(1)步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (2)方法:常利用数形结合法.(1)已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________.(2)(2016·江苏前黄中学调研)假设函数f (x )=|x |x -1-kx 2有4个零点,则实数k 的取值范围是______________.答案 (1)(-2,0) (2)(-∞,-4) 解析 (1)∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0. (2)令f (x )=0,则方程|x |x -1=kx 2有4个不同的实数根,显然,x =0是方程的一个实数根. 当x ≠0时,方程可化为1k=|x |(x -1),设h (x )=1k,g (x )=|x |(x -1),由题意知h (x )与g (x )图象(如下图)有三个不同的交点,由g (x )=⎩⎪⎨⎪⎧x x -1,x >0,-x x -1,x <0,结合图象知-14<1k<0,所以k <-4.题型三 二次函数的零点问题例4 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1.方法二 函数图象大致如图,则有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1. 故实数a 的取值范围是(-2,1).思维升华 解决与二次函数有关的零点问题 (1)利用一元二次方程的求根公式.(2)利用一元二次方程的判别式及根与系数之间的关系. (3)利用二次函数的图象列不等式组.(2016·江苏泰州中学质检)关于x 的一元二次方程x 2+2(m +3)x +2m +14=0有两个不同的实根,且一根大于3,一根小于1,则m 的取值范围是______. 答案 (-∞,-214)解析 设f (x )=x 2+2(m +3)x +2m +14, 由题设可得⎩⎪⎨⎪⎧f 3<0,f1<0,所以m <-214.典例 (1)假设函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.(2)假设关于x 的方程22x+2xa +a +1=0有实根,则实数a 的取值范围为________. 思想方法指导 (1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围.(2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.解析 (1)函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,即方程a x-x -a =0有两个根,即函数y =a x与函数y =x +a 的图象有两个交点.当0<a <1时,图象如图(1)所示,此时只有一个交点. 当a >1时,图象如图(2)所示,此时有两个交点. ∴实数a 的取值范围为(1,+∞).(2)由方程,解得a =-22x+12x +1,设t =2x (t >0),则a =-t 2+1t +1=-(t +2t +1-1)=2-[(t +1)+2t +1],其中t +1>1, 由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 答案 (1)(1,+∞) (2)(-∞,2-22]1.(2016·江苏东海中学期中)假设函数f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为______________.答案 1+2或1解析 题目转化为求方程f (x )=x 的根,所以⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x ,解得x =1+2或x =1,所以g (x )的零点为1+2或1.f (x )=log 3x +x -3的零点所在的区间是(n ,n +1)(n ∈Z ),则n =________.答案 2解析 由f (2)=log 32-1<0,f (3)=1>0,知f (x )=0的根在区间(2,3)内,即n =2.f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为________. 答案 a <c <b解析 方法一 由于f (-1)=12-1=-12<0,f (0)=1>0且f (x )为R 上的递增函数.故f (x )=2x+x 的零点a ∈(-1,0). ∵g (2)=0,∴g (x )的零点b =2; ∵h ⎝ ⎛⎭⎪⎫12=-1+12=-12<0,h (1)=1>0,且h (x )为(0,+∞)上的增函数,∴h (x )的零点c ∈⎝ ⎛⎭⎪⎫12,1,因此a <c <b . 方法二 由f (x )=0得2x=-x ;由h (x )=0得log 2x =-x ,作出函数y =2x,y =log 2x 和y =-x 的图象(如图).由图象易知a <0,0<c <1,而b =2, 故a <c <b .4.方程|x 2-2x |=a 2+1(a >0)的解的个数是________. 答案 2解析 (数形结合法) ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.f (x )=⎩⎪⎨⎪⎧x 2-1x ≤0,x -2+ln xx >0的零点个数为______.答案 2解析 当x ≤0时,令f (x )=0,得x 2-1=0,∴x =-1,此时f (x )有一个零点;当x >0时,令f (x )=0,得x -2+ln x =0,在同一个坐标系中画出y =2-x 和y =ln x 的图象(图略),观察其图象可知函数y =2-x 和y =ln x 的图象在(0,+∞)上的交点个数是1,所以此时函数f (x )有一个零点,所以f (x )的零点个数为2.x ∈R ,符号[x ]表示不超过x 的最大整数,假设函数f (x )=[x ]x-a (x ≠0)有且仅有3个零点,则实数a 的取值范围是________________.答案 ⎝ ⎛⎦⎥⎤34,45∪[43,32)解析 当0<x <1时,f (x )=[x ]x-a =-a ;当1≤x <2时,f (x )=[x ]x -a =1x -a ;当2≤x <3时,f (x )=[x ]x-a =2x-a ;…f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x的图象,如下图,通过数形结合可知a ∈(34,45]∪[43,32).7.(2016·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为________.答案 x =0解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上,函数f (x )的零点只有0.f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,假设函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1)解析 画出函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点,结合图象得0<m <1,即m ∈(0,1).R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x+log 2 015x ,则在R 上,函数f (x )零点的个数为________.答案 3解析 函数f (x )为R 上的奇函数,因此f (0)=0,当x >0时,f (x )=2 015x +log 2 015x 在区间(0,12 015)内存在一个零点, 又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数f (x )在R 上的零点的个数为3. a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n 的最小值为________.答案 1解析 设F (x )=a x ,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称,所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2,所以m +nm >0,n >0,所以1m +1n =(1m +1n )·m +n 4=14(2+n m +m n )≥14(2+2 n m ×m n)=1. 当且仅当n m =m n ,即m =n =2时等号成立.所以1m +1n的最小值为1. 11.(2016·江苏淮阴中学期中)已知关于x 的一元二次方程x 2-2ax +a +2=0的两个实根是α,β,且有1<α<2<β<3,则实数a 的取值范围是________.答案 (2,115) 解析 设f (x )=x 2-2ax +a +2,结合二次函数的图象及一元二次方程根的分布情况可得 ⎩⎪⎨⎪⎧ f 1>0,f 2<0,f 3>0,即⎩⎪⎨⎪⎧ 1-2a +a +2>0,4-4a +a +2<0,9-6a +a +2>0,解得2<a <115,所以实数a 的取值范围为(2,115).x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 显然x =0不是方程x 2+(m -1)x +1=0的解,0<x ≤2时,方程可变形为1-m =x +1x ,又∵y =x +1x 在(0,1]上单调递减,[1,2]上单调递增, ∴y =x +1x 在(0,2]上的取值范围是[2,+∞),∴1-m ≥2,∴m ≤-1,故m 的取值范围是(-∞,-1].y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1)写出函数y =f (x )的解析式;(2)假设方程f (x )=a 恰有3个不同的解,求a 的取值范围.解 (1)设x <0,则-x >0,∴f (-x )=x 2+2x .又∵f (x )是奇函数,∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解.即y =f (x )与y =a 的图象有3个不同的交点,作出y =f (x )与y =a 的图象如下图,故假设方程f (x )=a 恰有3个不同的解只需-1<a <1,故a 的取值范围为(-1,1).。
1.已知二次函数f (x )=ax 2-4x +c +1(a ≠0)的值域是1,+∞),则1a +9c 的最小值是________.2.(2016·河北衡水故城高中开学检测)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________________.3.(2016·淮阴中学期中)下列幂函数:①y =x 12;②y =x -2;③y =x 43;④y =x 13,其中既是偶函数,又在区间(0,+∞)上单调递增的函数是________.(填相应函数的序号)4.(2016·泰州质检)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是________.(填序号)5.(2016·南京三模)已知函数f (x )=⎩⎨⎧x ,x ≥0,x 2,x <0,那么关于x 的不等式f (x 2)>f (3-2x )的解集是______________.6.若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是____________.7.(2016·苏州、无锡、常州、镇江三模)已知奇函数f (x )是定义在R 上的单调函数,若函数y =f (x 2)+f (k -x )只有一个零点,则实数k 的值是________.8.(2016·无锡模拟)已知幂函数f(x)=(m-1)2xm2-4m+2在(0,+∞)上单调递增,函数g(x)=2x-k,当x∈1,2)时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,则实数k的取值范围是__________.9.若关于x的不等式x2+ax-2>0在区间1,5]上有解,则实数a的取值范围为________________.10.已知函数f(x)=x2+2mx+2m+3(m∈R),若关于x的方程f(x)=0有实数根,且两根分别为x1,x2,则(x1+x2)·x1x2的最大值为________.11.已知(0.71.3)m<(1.30.7)m,则实数m的取值范围是__________.12.(2016·惠州模拟)若方程x2+(k-2)x+2k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是____________.13.(2016·重庆部分中学一联)已知f(x)=x2+kx+5,g(x)=4x,设当x≤1时,函数y=4x-2x+1+2的值域为D,且当x∈D时,恒有f(x)≤g(x),则实数k的取值范围是____________.14.设f(x)与g(x)是定义在同一区间a,b]上的两个函数,若函数y=f(x)-g(x)在x ∈a,b]上有两个不同的零点,则称f(x)和g(x)在a,b]上是“关联函数”,区间a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在0,3]上是“关联函数”,则m的取值范围为________.答案精析1.3 2.⎣⎢⎡⎦⎥⎤-14,0 3.③ 4.④ 5.{x |x <-3或1<x <3}解析 若3-2x ≥0,原不等式化为x 2>3-2x ,解得x <-3或1<x ≤32;若3-2x<0,原不等式化为x 2>(3-2x )2,解得32<x <3.故原不等式的解集为{x |x <-3或1<x <3}.6.(-2,2]解析 当a -2=0,即a =2时,不等式为-4<0,恒成立.当a -2≠0时,⎩⎨⎧ a -2<0,Δ<0,解得-2<a <2.所以a 的取值范围是(-2,2].7.14解析 令f (x 2)+f (k -x )=0,即f (x 2)=-f (k -x ).因为f (x )为奇函数,所以f (x 2)=f (x -k ).又因为f (x )为单调函数,所以x 2=x -k ,若函数y =f (x 2)+f (k -x )只有一个零点,即方程x 2-x +k =0只有一个根,故Δ=1-4k =0,解得k =14.8.0,1]解析 ∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x -2,f (x )在(0,+∞)上单调递减,不满足条件;若m =0,则f (x )=x 2,f (x )在(0,+∞)上单调递增,满足条件,故f (x )=x 2.当x ∈1,2)时,f (x )∈1,4),g (x )∈2-k,4-k ),即A =1,4),B =2-k,4-k ),∵A ∪B =A ,∴B ⊆A ,则⎩⎨⎧2-k ≥1,4-k ≤4,解得0≤k ≤1. 9.⎝ ⎛⎭⎪⎫-235,+∞ 解析 方法一 由x 2+ax -2>0在x ∈1,5]上有解,令f (x )=x 2+ax -2,∵f (0)=-2<0,f (x )的图象开口向上,∴只需f (5)>0,即25+5a -2>0,解得a >-235.方法二 由x 2+ax -2>0在x ∈1,5]上有解,可得a >2-x 2x =2x -x 在x ∈1,5]上有解.又f (x )=2x -x 在x ∈1,5]上是减函数,∴⎝ ⎛⎭⎪⎫2x -x min =-235,只需a >-235.10.2解析 ∵x 1+x 2=-2m ,x 1x 2=2m +3,∴(x 1+x 2)·x 1x 2=-2m (2m +3)=-4⎝ ⎛⎭⎪⎫m +342+94.又Δ=4m 2-4(2m +3)≥0,∴m ≤-1或m ≥3.∵t =-4⎝ ⎛⎭⎪⎫m +342+94在m ∈(-∞,-1]上单调递增,m =-1时最大值为2;t =-4⎝ ⎛⎭⎪⎫m +342+94在m ∈3,+∞)上单调递减,m =3时最大值为-54,∴(x 1+x 2)·x 1x 2的最大值为2.11.(0,+∞)解析 因为0<0.71.3<1,1.30.7>1,所以0.71.3<1.30.7,又因为(0.71.3)m <(1.30.7)m ,所以幂函数y =x m 在(0,+∞)上单调递增,所以m >0.12.⎝ ⎛⎭⎪⎫12,23解析 设f (x )=x 2+(k -2)x +2k -1,由题意知⎩⎨⎧ f (0)>0,f (1)<0,f (2)>0,即⎩⎨⎧ 2k -1>0,3k -2<0,4k -1>0,解得12<k <23.13.(-∞,-2]解析 令t =2x ,由于x ≤1,则t ∈(0,2],则y =t 2-2t +2=(t -1)2+1∈1,2],即D =1,2].由题意f (x )=x 2+kx +5≤4x在x ∈D 时恒成立.方法一 ∵x 2+(k -4)x +5≤0在x ∈D 时恒成立,∴⎩⎨⎧ 1+(k -4)+5≤0,22+2(k -4)+5≤0,∴⎩⎪⎨⎪⎧ k ≤-2,k ≤-12,∴k ≤-2.方法二 k ≤-⎝ ⎛⎭⎪⎫x +5x +4 在x ∈D 时恒成立,故k ≤⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +5x +4min =-2. 14.(-94,-2]解析由题意知,y =f (x )-g (x )=x 2-5x +4-m 在0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈0,3])的大致图象如图所示. 结合图象可知,当x ∈2,3]时,y =x 2-5x +4∈-94,-2],故当m ∈(-94,-2]时,函数y =m 与y =x 2-5x +4(x ∈0,3])的图象有两个交点.即当m ∈(-94,-2]时,函数y =f (x )-g (x )在0,3]上有两个不同的零点.。
1.根式
3
a 72a -3÷
3a -3·a -1的化简结果为____________.
2.(2016·台州五校联考)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=1
9,则f (x )的单调递减区间是__________________.
3.(2016·泰州模拟)设函数f (x )=a -|x |(a >0且a ≠1),f (2)=4,则f (-2)与f (-1)的大小关系为__________.
4.函数f (x )=a x (0<a <1)在区间0,2]上的最大值比最小值大34,则a 的值为________. 5.(2016·南通模拟)已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件: ①f (x )=a x ·g (x )(a >0,且a ≠1);②g (x )≠0. 若
f (1)
g (1)+f (-1)g (-1)=5
2
,则实数a =________. 6.(2016·镇江模拟)已知函数f (x )=⎩⎨⎧
(a -1)x +4,x ≤7,
a x -6,x >7,
其中a >0且a ≠1.当a =1
2时,f (x )的值域为________________;若f (x )是(-∞,+∞)上的减函数,则实数a 的取值范围是____________. 7.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b
,则下列五个关系式:
①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不可能成立的关系式的个数为________.
8.(2016·扬州模拟)设函数f (x )=⎩⎨⎧
2x
+a ,x >2,
x +a 2
,x ≤2,
若f (x )的值域为R ,则实数a 的取值范围是________________.
9.(2016·苏州一模)函数f (x )=⎩⎨⎧
2x
,x ≤0,
-x 2+1,x >0
的值域为________.
10.已知函数f (x )=a 2x -4+n (a >0且a ≠1)的图象恒过定点P (m,2),则m +n =________.
11.定义区间x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的定义域为a ,b ],值域为1,9],则区间a ,b ]的长度的最大值为________,最小值为________.
12.设函数f (x )=lg ∑n -1
i =1
i x +n x a n
,其中a ∈R ,对于任意的正整数n (n ≥2),如果不等式
f (x )>(x -1)l
g n 在区间1,+∞)上有解,则实数a 的取值范围为________. 13.(2016·盐城期中)已知函数f (x )=10x ,对于实数m 、n 、p 有f (m +n )=f (m )+f (n ),f (m +n +p )=f (m )+f (n )+f (p ),则p 的最大值为______________.
14.(2016·皖南八校联考)对于给定的函数f (x )=a x -a -x (x ∈R ,a >0,a ≠1),下面给出五个命题,其中真命题是________.(只需写出所有真命题的编号) ①函数f (x )的图象关于原点对称; ②函数f (x )在R 上不具有单调性; ③函数f (|x |)的图象关于y 轴对称; ④当0<a <1时,函数f (|x |)的最大值是0; ⑤当a >1时,函数f (|x |)的最大值是0.
答案精析
1.a 43 2.2,+∞)3.f (-2)>f (-1) 4.12
5.2或1
2
解析 因为f (1)=a ·g (1), f (-1)=1a ·g (-1), 又
f (1)
g (1)+f (-1)g (-1)
=a +1a =5
2, 解得a =2或a =1
2. 6.(0,+∞) 1
2,1)
解析 当a =1
2时,
f (x )=⎩⎪⎨⎪⎧
-12x +4,x ≤7,
(12)x -6,x >7,
当x ≤7时,f (x )∈1
2,+∞), 当x >7时,f (x )=(1
2)x -6单调递减, ∴f (x )∈(0,1
2),
∴当a =1
2时,f (x )的值域为(0,+∞). 若f (x )是(-∞,+∞)上的减函数,
则⎩⎨⎧
a -1<0,0<a <1,
a ≤7(a -1)+4,
得1
2
≤a <1, ∴实数a 的取值范围是1
2,1).
7.2 解析
作出函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭
⎪⎫
13x 的图象如图所示.
由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b , 得a <b <0或0<b <a 或a =b =0. 故①②⑤可能成立,③④不可能成立. 8.(-∞,-1]∪2,+∞) 解析 因为x >2,2x +a >4+a , 所以2+a 2≥4+a ,所以a 2-a -2≥0, 解得a ≥2或a ≤-1, 故a ∈(-∞,-1]∪2,+∞). 9.(-∞,1]
解析 当x ≤0时,f (x )=2x ∈(0,1]; 当x >0时,f (x )=-x 2+1∈(-∞,1), 因此f (x )的值域为(0,1]∪(-∞,1) =(-∞,1]. 10.3
解析 当2x -4=0,即x =2时,y =1+n ,即函数图象恒过点(2,1+n ),又函数图象恒过定点P (m,2),所以m =2,1+n =2,即m =2,n =1,所以m +n =3. 11.4 2
解析 由3|x |=1,得x =0,由3|x |=9,得x =±2,故满足题意的定义域可以为-2,m ](0≤m ≤2)或n,2](-2≤n ≤0),故区间a ,b ]的最大长度为4,最小长度为2. 12.(1
2,+∞)
解析 因为f (x )>(x -1)lg n 在1,+∞)上有解,所以∑n -1
i =1i x +n x a n
>n x -1
,
即∑n -1
i =1
i x
+n x
a >n x
,即1x
+2x
+…+(n -1)x
>n x
(1-a )在1,+∞)上有解,所以(1n )x
+(2n )x +…+(n -1n )x >1-a 在1,+∞)上有解.由于g (x )=(1n )x +(2n )x
+…+(n -1n )x 在
1,+∞)上单调递减,所以g (x )max =g (1)>1-a ,即1+2+…+(n -1)n
=n -1
2>1-
a (其中n ≥2),所以12>1-a ,即a >1
2.
13.2lg2-lg3
解析由f(m+n)=f(m)+f(n),得10m+n=10m·10n=10m+10n,记M=10m,N=10n,即MN=M+N(M>0,N>0),同理,由f(m+n+p)=f(m)+f(n)+f(p),得MNP=M
+N+P(其中P=10p),于是P=M+N
MN-1
=1+
1
MN-1
,又MN=M+N≥2MN,所
以MN≥4,因此P≤1+
1
4-1
=
4
3(当且仅当M=N时等号成立),故P的最大值为
4
3,
p的最大值为lg 4
3=2lg2-lg3.
14.①③④
解析∵f(-x)=-f(x),∴f(x)为奇函数,f(x)的图象关于原点对称,①真;当a>1时,f(x)在R上为增函数,当0<a<1时,f(x)在R上为减函数,②假;y=f(|x|)是偶函数,其图象关于y轴对称,③真;当0<a<1时,y=f(|x|)在(-∞,0)上为增函数,在0,+∞)上为减函数,∴当x=0时,y=f(|x|)取最大值为0,④真;当a>1时,f(|x|)在(-∞,0)上为减函数,在0,+∞)上为增函数,
∴当x=0时,y=f(|x|)取最小值为0,⑤假.综上,真命题是①③④.。