人教版八年级上册 第十二章 全等三角形题型练习 讲义设计(无答案)
- 格式:doc
- 大小:615.00 KB
- 文档页数:6
第十二章全等三角形讲义题型一、全等三角形的概念和性质例1、下列说法一定正确的是( )A.所有的等边三角形都是全等三角形B.全等三角形是指形状相同的两个三角形C.全等三角形是指面积相等的两个三角形D.全等三角形的周长和面积分别相等变式1、下列各组图形中,全等的一组是()A.(A) B.(B) C.(C) D.(D)变式2、下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等题型二、全等三角形的判定(SSS)例1、如图,AB=AC,AD=AE,CD=BE.求证:∠DAB=∠EAC.变式1、如图,AB DE =,AC DF =,BE CF =,求证:ABC DEF △≌△.变式2、如图,已知AB.ED.BC=DF.AF=EC.求证:(1.△ABC ≌△EDF..2.BC ∥DF.例1、已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).变式1、如图,点E 在CD 上,BC 与AE 交于点F ,AB=CB ,BE=BD ,∠1=∠2.(1)求证:△ABE ≌△CBD ;(2)证明:∠1=∠3.变式2、 如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,若∠B =20°,则∠C =_______.例1、如图,点B,C,E,F在同一直线上,BE=CF,AB∥DE,AC∥DF,求证:AC=DF .变式1、如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O (1)求证:△AEC≌△BED;(2)若∠1=38°,求∠BDE的度数.变式2、如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.题型五、全等三角形的判定(AAS)例1、如图,AF=CE,AD∥CB,∠B=∠D,求证:△ADF≌△CBE.若∠D=20°,∠C=25°,求∠AEB的度数.变式1、如图,AB CB ⊥,DC CB ⊥,E 、F 在BC 上,A D ∠=∠,BE CF =,求证:AF DE =.变式2、如图,已知∠1=∠2.∠3=∠4,求证:BC=BD.题型六、全等三角形的判定(HL )例1、如图,∠A=∠D=90°.AC=DB.AC.DB 相交于点O .求证:OB=OC.变式1、已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.变式2、已知:如图,AC与BD相交于点O,AC⊥BC,AD⊥BD,垂足分别为点C、D,且AC=BD.求证:OA =OB.题型七、角平分线的性质与判定例1、已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.变式1、如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.变式2、如图,在⊥ABC中,⊥C=90°,AD平分⊥CAB,交CB于点D,过点D作DE⊥AB,于点E (1)求证:⊥ACD⊥⊥AED;(2)若⊥B=30°,CD=1,求BD的长.题型八、角平分线的性质的应用例1、 如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和38,则△EDF 的面积为( )A .8B .12C .4D .6变式1、到三角形三边距离相等的点是( )A.三角形三条高线的交点B.三角形三条中线的交点C .三角形三边垂直平分线的交点 D.三角形三条内角平分线的交点变式2、已知在△ABC 中,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,若AB=6,AC=8,ABC 28S ∆=,则DE=_______________题型九、全等三角形性质的应用例1、如图,在△ABC 中,D 是边BC 上的一点,AB =DB ,BE 平分∠ABC ,交AC 边于点E ,连接DE .(1)求证:∠AEB =∠DEB ;(2)若∠A =100°,∠C =50°,求∠AEB 的度数.变式1、如图,在△ABC中,AB=AC,∠BAC=80°,点D为△ABC内一点,∠ABD=∠ACD=20°,E为BD延长线上的一点,且AB=AE.(1)求∠BAD的度数;(2)求证:DE平分∠ADC;(3)请判断AD,BD,DE之间的数量关系,并说明理由.变式2、王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.题型十、全等三角形综合问题=,例1、如图,要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使BC CD 再作出BF的垂线DE,使点A,C,E在同一条直线上(如图所示),可以说明ABC≌EDC,得=,因此测得DE的长就是AB的长,判定ABC≌EDC,最恰当的理由是()AB DEA.边角边 B.角边角 C.边边边 D.边边角例2、如图,∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE;(2)若OM平分∠EOF,求证:OM⊥EF.变式1、在四边形ABCD中,E为BC边中点.已知:如图,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;变式2、如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是( )A.带①和②去 B.只带②去 C.只带③去 D.都带去题型十一、多次证明全等例1、如图,AC OB ⊥于点C ,BD OA ⊥于点D ,AC 与BD 交于点E ,OA OB =,求证:AE BE =.变式1、如图,已知B 、E 是线段AC 、AD 上的点,且AB AE =,AC AD =,BD与CE 相交于点F .求证:AF 是CAD ∠的角平分线.题型十二、全等三角形提升题(选讲)例1、如图,点C 是AB 的中点,点E 是CD 上一点,AEC D ∠=∠,求证:AE BD =.变式1、如图,90ACB ︒∠=,AC BC =,过点C 作CF AE ⊥于F ,过点B 作BD BC ⊥交CF 延长线于点D .求证:AE CD =.变式2、如图,2B C ∠=∠,AD 是BAC ∠的角平分线.求证:AC AB BD =+.变式3、如图,ABC △中,点D 是BC 的中点,延长BA 至E ,连接ED 交AC 于F ,若BE FC =.求证:AE AF =.。
第12章全等三角形一、单选题1.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS2.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.如图,已知OA=OB,OC=OD,AD和BC相交于点E,则图中共有全等三角形的对数()A.2对B.3对C.4对D.5对6.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.AM=CN B.AB=CD C.AM∥CN D.∠M=∠N7.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC8.如图,AC⊥BE于点C,DF⊥BE于点F,且BC=EF,如果添上一个条件后,可以直接利用“HL”来证明△ABC≌△DEF,则这个条件应该是()A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A9.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ10.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF二、填空题11.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=度.12.如图,C、D点在BE上,∠1=∠2,BD=EC请补充一个条件:,使△ABC≌△FED.13.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)14.如图,在△ABC中,点D,E分别在AB,BC边上,若△ACE≌△ADE≌△BDE,则∠B的大小为.15.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题16.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.17.在△ABC中,∠ACB=2∠B,(1)如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD;(2)①如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C≠90°,AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明.18.如图,有一池塘,要测量池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?19.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)试说明:BD=CE;(2)试说明:∠M=∠N.20.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.21.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.求证:(1)∠D=∠B;(2)AE∥CF.22.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.23.已知△ABN和△ACM的位置如图所示,∠1=∠2,AB=AC,AM=AN,求证:∠M=∠N.参考答案与试题解析一、单选题1.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS【分析】利用作法得到OD=OC=OC′=OD′,CD=C′D′,于是可根据“SSS”判定△OCD≌△OC′D′,然后根据全等三角形的性质得到∠A′O′B′=∠AOB.【解答】解:由作法得OD=OC=OC′=OD′,CD=C′D′,则可根据“SSS”可判定△OCD≌△OC′D′,所以∠A′O′B′=∠AOB.故选:D.2.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:C.3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC ≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.5.如图,已知OA=OB,OC=OD,AD和BC相交于点E,则图中共有全等三角形的对数()A.2对B.3对C.4对D.5对【分析】由条件可证△AOD≌△BOC,可得∠A=∠B,则可证明△ACE≌△BDE,可得AE=BE,则可证明△AOE≌△BOE,可得∠COE=∠DOE,可证△COE≌△DOE,可求得答案.【解答】解:在△AOD和△BOC中∴△AOD≌△BOC(SAS),∴∠A=∠B,∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中∴△ACE≌△BDE(AAS),∴AE=BE,在△AOE和△BOE中∴△AOE≌△BOE(SAS),∴∠COE=∠DOE,在△COE和△DOE中∴△COE≌△DOE(SAS),故全等的三角形有4对,故选:C.6.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.AM=CN B.AB=CD C.AM∥CN D.∠M=∠N【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;故选:A.7.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC【分析】根据余角的性质得到∠C=∠ABE,推出△ABF≌△ADF,根据全等三角形的性质得到BF=DF,故A正确;∠ABE=∠ADF,等量代换得到∠ADF=∠C,根据平行线的判定得到DF∥BC,故D正确;根据直角三角形的性质得到DF>EF,等量代换得到BF>EF;故C正确;根据平行线的性质得到∠EFD=∠DBC=∠BAC=2∠1,故B错误.【解答】解:∵AB⊥BC,BE⊥AC,∴∠C+∠BAC=∠ABE+∠BAC=90°,∴∠C=∠ABE,在△ABF与△ADF中,,∴△ABF≌△ADF,∴BF=DF,故A正确,∴∠ABE=∠ADF,∴∠ADF=∠C,∴DF∥BC,故D正确;∵∠FED=90°,∴DF>EF,∴BF>EF;故C正确;∵∠EFD=∠DBC=∠BAC=2∠1,故B错误.故选:B.8.如图,AC⊥BE于点C,DF⊥BE于点F,且BC=EF,如果添上一个条件后,可以直接利用“HL”来证明△ABC≌△DEF,则这个条件应该是()A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A【分析】根据全等三角形的判定,利用HL即可得答案.【解答】解:AB=DE,可以直接利用“HL”来证明△ABC≌△DEF.∵AC⊥BE,DF⊥BE,∴∠ACB=∠DFE=90°,在Rt△ACB和Rt△DFE中,,∴Rt△ACB≌Rt△DFE(HL),故选:B.9.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选:B.10.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.二、填空题11.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=45度.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.12.如图,C、D点在BE上,∠1=∠2,BD=EC请补充一个条件:AC=DF,使△ABC ≌△FED.【分析】条件是AC=DF,求出BC=DE,根据SAS推出即可.【解答】解:条件是AC=DF,理由是:∵BD=CE,∴BD﹣CD=CE﹣CD,∴BC=DE,在△ABC和△FED中,,∴△ABC≌△FED(SAS),故答案为:AC=DF.13.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF.(只需写一个,不添加辅助线)【分析】求出BC=EF,∠ACB=∠DFE,根据SAS推出两三角形全等即可.【解答】解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:AC=DF.14.如图,在△ABC中,点D,E分别在AB,BC边上,若△ACE≌△ADE≌△BDE,则∠B的大小为30°.【分析】运用全等三角形的性质可得出∠C=∠EDA=∠EDB=90°和∠B=∠BAE=∠CAE,从而求出∠B.【解答】解:∵△ADE≌△BDE则∠ADE=∠BDE又∵∠ADE+∠BDE=180°∴∠ADE=∠BDE=90°∵△ACE≌△ADE∴∠C=∠ADE=90°∴∠CAB+∠B=90°又∵△ACE≌△ADE≌△BDE∴∠CAE=∠EAD=∠B=×90°=30°故答案为:30°.15.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.三、解答题16.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.17.在△ABC中,∠ACB=2∠B,(1)如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD;(2)①如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C≠90°,AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明.【分析】(1)首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE=45°,求出BE =DE=CD,进而得出答案;(2)①首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE,求出BE=DE=CD,进而得出答案;②首先得出△AED≌△ACD(SAS),即可得出∠B=∠EDC,求出BE=DE=CD,进而得出答案.【解答】(1)证明:∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED=90°,∵∠ACB=2∠B,∠C=90°,∴∠B=45°,∴∠BDE=45°,∴BE=ED=CD,∴AB=AE+BE=AC+CD;(2)①AB=AC+CD理由:在AB上截取AE=AC,连接DE,∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠B+∠BDE=∠AED,∴∠B=∠BDE,∴BE=ED=CD,∴AB=AE+BE=AC+CD;②AC+AB=CD.理由:在射线BA上截取AE=AC,连接DE,∵AD为∠EAC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD(SAS),∴ED=CD,∠ACD=∠AED,∵∠ACB=2∠B,∴设∠B=x,则∠ACB=2x,∴∠EAC=3x,∴∠EAD=∠CAD=1.5x,∵∠ADC+∠CAD=∠ACB=2x,∴∠ADC=0.5x,∴∠EDC=x,∴∠B=∠EDC,∴BE=ED=CD,∴AB+AE=BE=AC+AB=CD.18.如图,有一池塘,要测量池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?【分析】连接AB,由题意知AC=DC,BD=EC,根据∠1=∠2即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:连接AB,由题意知AC=DC,BD=EC,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),∴DE=AB故量出DE的长,就是A,B两点间的距离.19.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)试说明:BD=CE;(2)试说明:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.20.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.【分析】(1)要证△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】证明:(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS).(2)BD=CE,BD⊥CE,理由如下:由(1)知,△BAD≌△CAE,∴BD=CE;∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE.21.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.求证:(1)∠D=∠B;(2)AE∥CF.【分析】(1)根据SSS推出△ADE≌△CBF,根据全等三角形的性质推出即可.(2)根据全等三角形的性质推出∠AED=∠CFB,求出∠AEO=∠CFO,根据平行线的判定推出即可.【解答】解:(1)∵在△ADE和△CBF中,,∴△ADE≌△CBF(SSS),∴∠D=∠B.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∵∠AED+∠AEO=180°,∠CFB+∠CFO=180°,∴∠AEO=∠CFO,∴AE∥CF.22.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.【分析】(1)根据Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,∠ACB=∠AED,∠BAC=∠DAE,从而推出∠CAD=∠EAB,△ACD≌△AEB,△CDF≌△EBF;(2)由△CDF≌△EBF,得到CF=EF.【解答】(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AED.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.证法二:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB,∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.证法三:连接AF,∵Rt△ABC≌Rt△ADE,∴AB=AD.又∵AF=AF,∴Rt△ABF≌Rt△ADF(HL).∴BF=DF.又∵BC=DE,∴BC﹣BF=DE﹣DF.即CF=EF.23.已知△ABN和△ACM的位置如图所示,∠1=∠2,AB=AC,AM=AN,求证:∠M=∠N.【分析】由∠1=∠2可得出∠BAN=∠CAM,结合AB=AC,AN=AM,即可证出△BAN ≌△CAM(SAS),再利用全等三角形的性质可证出∠M=∠N.【解答】证明:∵∠1=∠2,∴∠BAN=∠CAM.在△BAN和△CAM中,,∴△BAN≌△CAM(SAS),∴∠M=∠N.。
人教版八年级数学上册考点与题型归纳第十二章全等三角形12.2 全等三角形的判定一:考点归纳考点一、三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
考点二、直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).考点三、证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.二:【题型归纳】题型一:直角三角形全等的判定1.如图,已知,,AE BD AC BC DF EF =⊥⊥,垂足分别为点,C F ,且BC EF =.求证:ABC DEF ∆≅∆题型二:SAS的判定2.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=48°,求∠BDE的度数.题型三:全等三角形判定与性质的综合3.如图,∆ABC中,AC=CB,∠ACB=90°,D为AC延长线上的一点,E在BC边上,连接AE,DE,BD,AE=BD,∆≅∆(1)求证:ACE BCD(2)若∠CAE=15°,求∠EDB的度数.4.如图,AD为ABC的高,AD=BD,E为AC上一点,BE交AD于F,且FD=CD.(1)求证:BFD≌ACD;(2)判断BE与AC的位置关系,并说明理由.三:基础巩固和培优一、单选题1.如图,∠ABD =∠EBC ,BC =BD ,再添加一个条件,使得△ABC ≌△EBD ,所添加的条件不正确的是( )A .∠A =∠EB .BA =BEC .∠C =∠D D .AC =DE2.如图,下列条件中,不能证明ABD ≌ACD 的是( )A .BD DC =,AB AC =B .ADB ADC ∠∠=,BD DC =C .B C ∠=∠,BAD CAD ∠=∠D .B C ∠=∠,BD DC =3.如图,下列条件不能证明ABC DCB △≌△的是( )A .AB =DC ,AC =DB B .AB =DC ,∠ABC =∠DCBC .BO =CO ,∠A =∠D D .AB =DC ,∠ACB =∠DBC4.如图,BE=CF ,AB=DE ,添加下列哪一个条件可以推证△ABC ≌△DEF ()A .BC=EFB .∠A=∠DC .AC//DFD .∠B=∠DEF5.如图,∆ABC 的面积为102cm ,BP 平分∠ABC ,AP 垂直于BP 于P .连接CP ,若∆ACP 的面积为22cm ,则∆ABP 的面积为( )A .12cmB .22cmC .32cmD .42cm6.如图,已知AD 是ABC 的角平分线,增加以下条件:①AB =AC ;②∠B =∠C ;③AD ⊥BC ;④ABD ACD S S ,其中能使BD =CD 的条件有 ( )A .①B .①②C .①②③D .①②③④7.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠B=∠DB .BE=DFC .AD=CBD .AD ∥BC8.如图,在△ABC 和△DEC 中,已知CB CE =,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( ).A .AB DE =,B E ∠=∠ B .AB DE =,AC DC =C .AB DE =,AD ∠=∠ D .A D ∠=∠,BE ∠=∠9.如图,90ACB ∠=︒,AC=BC .AD CE ⊥,BE CE ⊥,垂足分别是点D 、E .若AD=6,BE=2,则DE 的长是( )A .2B .3C .4D .510.如图,△ABC 的面积为1cm 2, AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .0.4 cm 2B .0.5 cm 2C .13 cm 2D .0.6 cm 2二、填空题 11.如图所示,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 上,且BE =BD ,连接AE 、DE 、DC .若∠CAE =25°,则∠BDC =_____.12.在△ABC 和△A ′B ′C ′中,若∠A =∠A ′,AB =A ′B ′,请你补充一个条件_____,使得△ABC ≌△A ′B ′C ′.13.如图,在ABC中,点D、E、F分别是BC,AB,AC上的点,若∠B=∠C,BF=CD,BD=CE,∠EDF =56°,则∠A=_____°.14.如图,已知在ABC中,PR⊥AB于R,PS⊥AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;≌;④BP=CP中,正确的是________.③BPR CPS15.如图,在△ABC 中,AB=AC=12,BC=8,D 为AB 的中点,点P 在线段BC 上以每秒2 个单位的速度由B 点向C 点运动,同时,点Q 在线段CA 上以每秒x 个单位的速度由C 点向A 点运动.当△BPD 与以C、Q、P 为顶点的三角形全等时,x 的值为_____.三、解答题16.如图所示,在四边形ABCD中,CD∥AB,∠ABC的平分线与∠BC D的平分线相交于点F,BF与CD的延长线交于点E,连接CE.求证:(1)△BCE是等腰三角形.(2)BC=AB+CD17.如图,点B,E,C,F在一条直线上,AB=DE,AC =DF,BE=CF.求证:△ABC ≌△DEF;18.如图,D为△ABC外一点,∠DAB=∠B,CD⊥AD,∠1=∠2,若AC=7,BC=4,求AD的长.19.如图,在△ABC中,AB<AC,边BC的垂直平分线DE交△ABC的外角∠CAM平分线于点D,垂足为E,DF⊥AC于点F,DG⊥AM于点G,连接CD.(1)求证:BG=CF;(2)若AB=10cm,AC=14cm,求AG的长.20.在ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.10 / 26参考答案题型归纳1.证明:,AC BC DF EF ⊥⊥ 90C F ︒∴∠=∠=AE BD =AB DE ∴=在Rt ABC ∆和Rt DEF ∆中AB DEBC EF =⎧⎨=⎩()Rt ABC Rt DEF HL ∴∆≅∆ 2.解:(1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE .在△AOD 和△BOE 中,∠A =∠B ,∴∠BEO =∠2. 又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC =∠BED .在△AEC 和△BED 中,A BAE BE AEC BED∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEC ≌△BED (ASA ).(2)∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE .在△EDC 中,∵EC =ED ,∠1=48°,∴∠C =∠EDC =66°,∴∠BDE =∠C =66°.3.(1)证明:在Rt △ACE 和Rt △BCD 中,AC BCAE BD =⎧⎨=⎩,∴△ACE ≌△BCD (HL );(2)∵△ACE ≌△BCD ,∠CAE=15°,∴CE=CD,∠CBD=∠CAE=15°∴∠CDE=∠CED ,∵∠ACB=90°,∴∠CED=45°,∵∠CED 为△BDE 的外角,∴∠EDB=∠CED-∠CBD=45°-15°=30°.4.证明:(1)在△BDF 和△ADC 中,90ADBD ADCBDF CD DF , ∴△BDF≌△ADC(SAS );(2)BE⊥AC,理由如下:∵△BDF≌△ADC,∴∠DAC=∠DBF,∵∠DAC+∠C=90°,∴∠DBF+∠C=90°,∴∠BEC=90°,∴BE⊥AC.三:基础巩固和培优1.D解:∵∠ABD =∠EBC ,BC=BD ,∴∠ABC=∠EBD ,A.当添加∠A=∠E 时,可根据“AAS”判断△ABC ≌△EBD ,故正确;B.当添加BA=BE 时,可根据“SAS”判断△ABC ≌△EBD ,故正确;C.当添加∠C=∠D 时,可根据“ASA”判断△ABC ≌△EBD ,故正确;D.当添加AC =DE 时,无法判断△ABC ≌△EBD ,故错误;故选:D .2.D解:A 、因为BD DC =,AB AC =,又因为AD=AD ,所以ABD ≌ACD (SSS ),故本选项不符合题意; B 、因为ADB ADC ∠∠=,BD DC =,又因为AD=AD ,所以ABD ≌ACD (SAS ),故本选项不符合题意;C 、因为B C ∠=∠,BAD CAD ∠=∠,又因为AD=AD ,所以ABD ≌ACD (AAS ),故本选项不符合题意;D 、因为B C ∠=∠,BD DC =,AD=AD ,这是边边角,不能证明ABD ≌ACD ,故本选项符合题意. 故选:D .3.D解:AB =DC ,AC =DB ,BC =BC ,符合全等三角形的判定定理“SSS”,能推出ABC DCB △≌△ ,故A 选项错误;AB =DC ,ABC DCB ∠=∠,BC =CB符合全等三角形的判定定理“SAS”,能推出ABC DCB △≌△ ,故B 选项错误;在△AOB 和△DOC 中,AOB DOCA D OB OC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△ (AAS ),∴AB =DC ,∠ABO =∠DCO ,∵OB =OC ,∴∠OBC =∠OCB ,∴∠ABC =∠DCB ,在△ABC 和△DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DCB △≌△(SAS ),能推出ABC DCB △≌△,故C 选项错误;BC =CB ,AB =DC ,∠ACB =∠DBC ,SSA 不符合全等三角形的判定定理,即不能推出ABC DCB △≌△,故D 选项正确.故选D .4.D解:∵BE =CF ,∴BC =EF ,又∵AB=DE ,A 、添加BC =EF 不能证明△ABC ≌△DEF ,故此选项错误;B 、添加∠A =∠D 不能证明△ABC ≌△DEF ,故此选项错误;C 、添加AC ∥DF 可得∠ACB =∠F ,不能证明△ABC ≌△DEF ,故此选项错误;D 、添加∠B=∠DEF 可利用SAS 判定△ABC ≌△DEF ,故此选项正确;故选:D .5.C解:延长AP 交BC 于D ,∵BP 平分∠ABC ,AP ⊥BP ,∴∠ABP=∠DBP ,∠APB=∠DPB=90°,在△ABP 与△DBP 中,ABP DBPPB PB APB DPB∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABP ≌△DBP (ASA ),∴AP=PD ,S △PBD =S △ABP∴2ACP PCD S S ∆∆==2cm∴S △ABD =10-4=62cm ,∴△ABP 的面积=3cm 2,故选:C .6.D解:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,∵AB=AC ,AD=AD ,∴△BAD ≌△CAD (SAS ),∴BD=CD ,故①符合题意;∵∠B=∠C ,AD=AD ,∴△BAD ≌△CAD (AAS ),∴BD=CD ,故②符合题意;∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∵AD=AD ,∴△BAD ≌△CAD (ASA ),∴BD=DC ,故③符合题意;∵ABD ACD S S ,∴BD=DC ,故④符合题意;∴①②③④都可以得到BD=CD ;故选D .7.C解:∵AE=CF ,∴AE+EF=CF+EF ,∴AF=CE ,A 、∠B=∠D ,∠AFD=∠CEB ,AF=CE ,满足AAS ,能判定△ADF ≌△CBE ;B 、BE=DF ,∠AFD=∠CEB ,AF=CE ,满足SAS ,能判定△ADF ≌△CBE ;C 、AD=CB ,AF=CE ,∠AFD=∠CEB ,满足SSA ,不能判定△ADF ≌△CBE ;D 、AD ∥BC ,则∠A=∠C ,又AF=CE ,∠AFD=∠CEB ,满足ASA ,能判定△ADF ≌△CBE ; 故选:C .8.C解:∵CB=CE.∴当AB DE =,B E ∠=∠时,满足SAS ,可证△ABC ≌△DEC ,故A 不符合题意; 当AB DE =,AC DC =时,满足SSS ,可证△ABC ≌△DEC ,故B 不符合题意;当AB DE =,A D ∠=∠时,满足是ASS ,不能证明△ABC ≌△DEC ,故C 符合题意; 当A D ∠=∠,B E ∠=∠时,满足AAS ,可证△ABC ≌△DEC ,故D 不符合题意. 故选C .9.C解:∵90ACB ∠=︒,∴∠ACD+∠ECB=90º,∵AD CE ⊥,BE CE ⊥,∴∠ADC=∠CEB=90º,∴∠ECB+∠CBE=90º,∴∠ACD=∠CBE ,在△ACD 和△CBE 中,∵∠ADC=∠CEB=90º,∠ACD=∠CBE ,AC=BC ,∴△ACD ≌△CBE (AAS ),∴AD=CE=6,CD=BE=2,∴ED=EC-CD=6-2=4.故选择:C .10.B解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA =∠BPT =90°,∵BP =BP ,∠PBA =∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA =PT ,∴S △BPA =S △BPT ,S △CAP =S △CPT ,∴S △PBC =12S △ABC =12=0.5,故选:B .11.70°解: ∵∠ABC=90°,∴∠CBD=∠ABC =90°,在Rt △ABE 与Rt △CBD 中,BE BDCBD ABC AB BC=⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBD ,∴∠AEB=∠BDC ,∵AB=BC ,∴∠BAC=∠ACB=45°,∵∠AEB 为△AEC 的外角,∠CAE=25°,∴∠AEB=∠ACB+∠CAE=45°+25°=70°,∴∠BDC=70°.故答案为:70°.12.∠B =∠B ′或∠C =∠C ′或AC =A ′C ′.解:在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠A =∠A ′, 当添加∠B =∠B ′可利用“ASA ”判断△ABC ≌△A ′B ′C ′; 当添加∠C =∠C ′可利用“AAS ”判断△ABC ≌△A ′B ′C ′; 当添加AC =∠A ′C ′可利用“SAS ”判断△ABC ≌△A ′B ′C ′. 故答案为:∠B =∠B ′或∠C =∠C ′或AC =A ′C ′. 13.68°.解:在△BDF和△CED中∵BF=CD ,∠B=∠C ,BD =CE ,∴△BDF ≌△CED (SAS ),∴∠BFD=∠CDE ,∠BDF=∠CED ,∴∠BDF+∠CDE=180º-∠EDF=180º-56º=124º,∴∠BFD+∠BDF=∠BDF+∠CDE=124º,∴∠C=∠B=180º-∠BFD-∠BDF=56º,∴∠A=180º-∠B-∠C=180º-56º-56º=68º.故答案为:68º.14.①② 解:在Rt APR ∆和Rt APS ∆中,PS PR AP AP =⎧⎨=⎩, Rt APR Rt APS ∴∆≅∆,()HLAR AS ∴=,①正确,∴1BAP ∠=∠,12∠=∠,2BAP ∴∠=∠,//QP AB ∴,②正确,BRP ∆和QSP ∆中,只有一个条件PR PS =,再没有其余条件可以证明 BRP QSP ∆≅∆,故③④错误; 故答案是:①②.15.2 或 3解:设经过 t 秒后,使△BPD 与△CQP 全等. ∵AB =AC =12,点 D 为 AB 的中点.∴BD =6.∵∠ABC =∠ACB .∴要使△BPD 与△CQP 全等,必须 BD =CP 或 BP =CP . 即 6=8﹣2t 或 2t =8﹣2t .1t =1,2t =2.当t =1 时,BP =CQ =2,2÷1=2. 当t =2 时,BD =CQ =6,6÷2=3. 即点 Q 的运动速度是 2 或 3,故答案为:2 或 3.16.解:(1)∵BF 平分∠ABC , ∴12ABF CBF ABC ∠=∠=∠,∵CD ∥AB ,∴ABF E ∠=∠,∴E CBF ∠=∠,∴BC=CE ,∴△BCE 是等腰三角形.(2)∵CF 平分∠BCE , ∴12BCF BCE ∠=,∵CD ∥AB ,∴180ABC BCE ∠+∠=︒,∴90CBF BCF ∠+∠=︒,∴90BFC ∠=︒,即 CF ⊥BE ,又BC=CE ,∴BF=EF ,在△ABF 和△DEF 中,∵ABF EAFB DFE BF EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEF ;∴AB=DE ,∴BC=CE=DE+CD=AB+CD ,因此 BC=AB+CD .17.解:证明:∵BE =CF ,∴BE +EC =CF +EC ,∴BC =EF ,在△ABC 和△DEF 中,∵AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS ).18.解:证明:延长AD ,BC 交于点E .∵CD ⊥AD ,∴∠ADC =∠EDC =90°.在△ADC 和△EDC 中12ADC EDCCD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△EDC(ASA).∴∠DAC=∠DEC,AC=EC,AD=ED.∵AC=7,∴EC=7.∵BC=4∴BE=11∵∠DAB=∠B,∴AE=BE=11.∴AD=5.5.答:AD的长为5.5.19.解:(1)证明:如图所示,连接DB.∵AD是△ABC的外角平分线,DG⊥AB,DF⊥CA,∴DF=DG .∵DE 垂直平分BC ,∴DC=DB ,在Rt △CDF 与Rt △BDG 中DF DG DC DB=⎧⎨=⎩ ∴Rt △CDF ≌Rt △BDG (HL ),∴BG=CF .(2)解:∵∠GAD=∠FAD ,∠AGD=∠AFD ,AD=AD , ∴在△ADG 与△ADF 中GAD FAD AGD AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADF (AAS ),∴AG=AF ,∵BG=CF∴AG=()()111410222AC AB -=-=(cm). 20.解:(1)证明:∵AD ⊥MN ,BE ⊥MN , ∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD =90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB ,ADC CEBDAC ECB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ), ∴CD =BE ,AD =CE ,∴DE =CE+CD =AD+BE ;(2)证明:∵AD ⊥MN ,BE ⊥MN , ∴∠ADC =∠CEB =90°, ∴∠DAC+∠ACD =90°, ∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,∵AC=BC ,∴△ADC ≌△CEB ,∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ;(3)解:DE =BE ﹣AD ,理由如下:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°, ∴∠DAC+∠ACD =90°, ∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC=∠BCE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=BE﹣AD.。
原创百度文库VIP 专属文档,侵权必究!GEAC FB A BD C 全等三角形综合应用经典题解析1、已知:如图,四边形ABCD 中,AB=CD ,∠A=∠D ,求证:∠B=∠C.2、如图,AP 平分∠EAF ,PC ⊥AE 于点C ,PB ⊥AF 于点B ,AP 交BC 于点H . 求证:AP·BC=2AB·PB.3、已知:如图,DC ∥AB ,且DC=AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC . (2)除△EBC 外,请再写出两个与△AED 的面积相等的三角形.4、如图,在△ABC 中,BG=CG ,∠ACG=∠ABG ,求证:AG ⊥BC .5、如图,已知AB =DC ,AC =DB ,BP =CP ,求证:AP =DP.6、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
求证:(1)EC=BF ;(2)EC ⊥BF.7、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB. 求证:(1)AM=AN ;(2)AM ⊥AN.8、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.9、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠BAF=∠EAF.10、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C.AB CD AEC O B P C AD FA NEM BA BCPE H CF DABE ABC G原创百度文库VIP 专属文档,侵权必究!CA EB D F11、已知:AD 平分∠BAC ,CD=DE ,EF//AB ,求证:EF=AC.12、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE.13、如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上,求证:BC=AB+DC.14、已知△ABC 中,AB=AC ,∠A=100°,∠B 的平分线交AC 于D ,求证:AD+BD=BC.15、如图所示,AB ∥CD ,在AB 、CD 、BC 上各有一点E 、F 、P ,且BE =CF ,P 是BC的中点,试说明三点E 、F 、P 恰好在一条直线上.16、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC -AB=2BE.18、如图,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .19、已知:如图,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证:AE =AF.20、如图,在四边形ABCD 中,∠A=60º,AD+BC=AB=CD=2,求该四边形的面积.C AB D E B DC C B A DE DABCA FB E D C1 2 AB EC C F DP•A EB ••C原创百度文库VIP 专属文档,侵权必究!P DA CB21、如图,在四边形ABCD 中,AB=AC ,∠ABD=60°,∠ADB=75°,∠BDC=30°,求∠DBC的度数.22、P 是∠BAC 平分线AD 上一点,AC >AB ,求证:PC -PB <AC -AB.23、如图,P 是∠MAN 平分线上一点,PB ⊥AM 于点B ,点C 、D 分别在AM 、AN 上,∠ACP+∠ADP=180°,若AB=3cm ,求AC+AD 的长.24、如图在正方形ABCD 中,M 是AB 的中点,MN ⊥MD ,BN 平分∠CBE ,求证:MD=MN.25、如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F. 求证:(1)AE=BD ;(2)GF ∥BE.26、如图,△ABC 中,AB=AC ,点E 在AB 上,点F 在AC 延长线上,BE=CF ,连接EF ,交BC 于点D ,求证:DE=DF.27、如图,∠AOB=30°,OA=1,OB=3,点M 、N 分别为∠AOB 两边上的动点,求AN+NM+MB 的最小值.28、已知等边△ABC 内一点M ,AM=1,BM=3,CM=2,求∠AMC.29、如图,四边形ABCD 中AB ∥CD ,AB≠CD ,BD=AC ,求证:AD=BC.30、如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE .求证:(1)△AEF ≌△CEB ;(2)AF =2CD .A B D C AD ACMB AD BCEA M EAFA D EB CN A C MP B原创百度文库VIP 专属文档,侵权必究!M DC ENE A BM D CN31、在△ABC 中,∠ACB=90°,BC=AC,直线MN 经过点C,且AD ⊥MN 于D,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD+BE. (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请证明; 若不成立,说明理由.32、求证:等腰三角形底边上任意一点到两腰的距离之和等于腰上的高.33、如图,在△ABC 中,CA=CB ,∠ACB=90°,E 、F 分别是CA 、CB 边上的点且AE=2CE ,将BF=2CF ,△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN ,连接AM ,BN .(1)求证:AM=BN ;(2)当MA ∥CN 时,若AC=3,求AM 的长.34、如图,在长方形ABCD 中,AB=5,BC=7,点E 是AD 上一个动点,把△BAE 沿BE 向长方内部折叠,当点A 的对应点A1恰落在∠BCD 的平分线上时,求CA1的长.【提示:若a·b =0,则a =0或b =0】35、如图,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点 E ,与CD 相交于点F ,点H 是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF=AC ; (2)求证:CE=0.5BF ;(3)CE 与BG 存在怎样的数量关系?试证明你的结论.36、如右图,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C′的位置上,(1)若AB=4,BC=8, 求重合部分△EBD 的面积;(2)若CD=2,∠ADB=30°,求DE 的长.37、正方形ABCD 和正方形AEFG 有公共顶点A ,将正方形AEFG 绕点A 按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF ,BF ,如图。
初中数学人教版八年级上册实用资料12.2三角形全等的判定基础巩固1.(题型三)如图12-2-1,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )______A.带①去B.带②去C.带③去D.带①和②去图12-2-12.(题型一)如图12-2-2,在∆ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )图12-2-2A.∆ABD≌∆ACDB.∆BDE≌∆CDEC.∆ABE≌∆ACED.以上都不对3.(题型一、四)如图12-2-3,∆BDC′是将长方形纸片ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )图12-2-3A.1对B.2对C.3对D.4对4.(题型三)如图12-2-4,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE,AD=8,则AC= .图12-2-45.(题型二、三、四、五)如图12-2-5,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请你添加一个适当的条件,使∆ABC≌∆DEF.添加的条件是.图12-2-56.(题型三)如图12-2-6,AB∥CD,AD,BC交于点O,EF过点O分别交AB,CD于点E,F,且AE=DF.求证:O是EF的中点.图12-2-67.(题型二)[福建泉州中考]如图12-2-7,∆ABC,∆CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:∆CDA≌∆CEB.图12-2-7能力提升8.(题型一、二)下列说法中,正确的是()A.两边及一组角对应相等的两个三角形全等B.有两边分别相等,且有一角为30°的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等9.(题型四)如图12-2-8,在∆ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,AD=3,则点D到BC的距离是( )图12-2-8A.3B.4C.5D.610.(题型二)如图12-2-9,在∆ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.图12-2-9(1)求证:∆ABE≌∆CBD.(2)若∠CAE=30°,求∠BDC的度数.11.(题型三)[湖北宜昌中考]杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图12-2-10,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.图12-2-1012.(题型四、五)如图12-2-11,CD⊥AB于点D,BE⊥AC于点E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.图12-2-1113.(题型二、三)如图12-2-12,AB∥CD,OA=OD,AE=DF.求证:EB∥CF.图12-2-1214.(题型四)在数学习题课后,老师布置了一道课后练习题:如图12-2-13,在Rt∆ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC 于点E.求证:∆BPO≌∆PDE.图12-2-13(1)理清思路,完成解答,本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论:若PB平分∠ABO,其余条件不变.求证:AP=CD.答案基础巩固1. C 解析:③保留了原来三角形的两个角和它们的夹边,可以根据“ASA”来配一块与原来一样的玻璃,所以应带③去.故选C.2. C 解析:∵AB=AC,EB=EC,AE=AE,∴△ABE≌△ACE(SSS).故选C.3. D 解析:∵△BDC′是将长方形纸片ABCD沿对角线BD折叠得到的,∴△C′DB≌△CDB.∵AB=DC,AD=BC,BD=BD,∴△ABD≌△CDB(SSS),∴△ABD≌△C′DB.在△ABO和△C′DO中,易知AB=C′D,∠A=∠C′=90°.又∵∠AOB=∠C′OD,∴△ABO≌△C′DO(AAS).故选D.4. 8 解析:∵∠CBE=∠DBE,∴∠ABC=∠ABD.在△ABC和△ABD中,,,, ABC ABDAB ABCAB DAB∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC≌△ABD(ASA),∴AC=AD=8.5. BC=EF(或BF=CE或AC=DF或∠A=∠D或∠C=∠F或AC∥DF,答案不唯一) 解析:∵AB⊥CF,DE⊥CF,∴△ABC和△DEF都是直角三角形.又∵AB=DE,∴可以添加的条件有:BC=EF(或BF=CE),△ABC≌△DEF(SAS);AC=DF,Rt△ABC≌Rt△DEF (HL);∠A=∠D,△ABC≌△DEF(ASA);∠C=∠F(或AC∥DF),△ABC≌△DEF(AAS).6. 证明:∵AB∥CD,∴∠EAO=∠FDO,∠AEO=∠DFO.在△AEO和△DFO中,,,, EAO FDOAE DFAEO DFO ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△AEO≌△DFO(ASA),∴OE=OF. ∴O是EF的中点.7.证明:∵△ABC,△CDE均为等腰直角三角形,且∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∠ACB-∠ACE=∠DCE-∠ACE, ∴∠ECB=∠DCA.在△CEB和△CDA中,,,,BC ACECB DCA EC DC=∠=∠=⎧⎪⎨⎪⎩∴△CEB≌△CDA(SAS).能力提升8. C 解析:选项A属于“SSA”,不是判定三角形全等的条件,错误;选项B,如图D12-2-1的两个等腰三角形的腰长相等,且有一角为30°,但这两个等腰三角形不全等,错误;选项C可利用“SSS”和“SAS”证明两个三角形全等,正确;选项D中的高有可能在三角形内部,也有可能在三角形外部,是不确定的,不符合全等的条件,D错误.故选C.图D12-2-1图D12-2-29. A 解析:如图D12-2-2,过点D作DE⊥BC,垂足为E,则DE的长即是点D到BC的距离.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,90,,,A DEBABD EBDBD BD∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△ABD≌△EBD(AAS),∴DE=AD=3,即点D到BC的距离是3.故选A.10.(1)证明:∵∠ABC=90°,D为AB的延长线上一点,∴∠ABE=∠CBD=90°.在△ABE和△CBD中,,,,AB CBABE CBD BE BD=∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△CBD(SAS).(2)解:∵AB=CB,∠ABC=90°,∴∠CAB=45°.∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°.∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.∴∠BDC=90°-∠BCD=90°-15°=75°.11. 解:∵AB∥CD,∴∠ABO=∠CDO.∵OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.∵相邻两平行线间的距离相等,∴OD=OB.在△ABO和△CDO中,,,,ABO CDOAOB COD OB OD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABO≌△CDO(ASA),∴CD=AB=20米.12. 证明:∵OD⊥AB,OE⊥AC,∴∠BDO=∠CEO=90°.在△BOD和△COE中,90,,,BDO CEOBOD COEBD CE∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△BOD≌△COE(AAS),∴OD=OE.在Rt△AOD和Rt△AOE中,OA=OA, OD=OE,∴Rt△AOD≌Rt△AOE(HL),∴∠DAO=∠EAO,即AO平分∠BAC.13. 证明:∵AB∥CD(已知),∴∠3=∠4(两直线平行,内错角相等).在△DCO和△ABO中,34(),,12, OD OA∠=∠=∠=∠⎧⎪⎨⎪⎩已证(已知)(对顶角相等)∴△DCO≌△ABO(ASA),∴OC=OB(全等三角形的对应边相等). ∵AE=DF,OA=OD,∴OD+DF=OA+AE,即OF=OE.在△COF和△BOE中,(),(),12, OC OBOF OE==∠=∠⎧⎪⎨⎪⎩已证已证(对顶角相等)∴△COF≌△BOE(SAS),∴∠F=∠E(全等三角形的对应角相等).∴EB∥CF(内错角相等,两直线平行).14. 证明:(1)∵PB=PD,∴∠2=∠PBD.∵AB=BC,∠ABC=90°,∴∠C=45°.∵BO⊥AC,∴∠1=45°.∴∠1=∠C=45°.∵∠3=∠PBC-∠1,∠4=∠2-∠C,∴∠3=∠4.∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°.在△BPO和△PDE中,34,,,BOP PED BP PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△BPO≌△PDE(AAS).(2)由(1)得,∠3=∠4.∵BP平分∠ABO,∴∠ABP=∠3.∴∠ABP=∠4.在△ABP和△CPD中,,4,,A CABPPB PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABP≌△CPD(AAS),∴AP=CD.。
⼈教版数学⼋年级上册第12章全等三⾓形证明经典题练习(含答案)全等三⾓形证明经典题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP ,BP∵DP=DC,DA=DB ∴ACBP 为平⾏四边形⼜∠ACB=90 ∴平⾏四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF ∴三⾓形BCF 全等于三⾓形EDF(边⾓边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三⾓形BEF 中,BF=EF ∴∠EBF=∠BEF 。
∵∠ABC=∠AED 。
∴∠ABE=∠AEB 。
∴ AB=AE 。
在三⾓形ABF 和三⾓形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三⾓形ABF 和三⾓形AEF 全等。
∴∠BAF=∠EAF(∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACBC ADBC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶⾓)∴△EFD≌△CGDEF =CG ∠CGD =∠EFD ⼜EF ∥AB ∴∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三⾓形,AC =CG ⼜ EF =CG∴EF =AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS )∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .1B解析:B【分析】 先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .4C解析:C【分析】 过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质得:OE =OF =OD 然后根据△ABC 的面积是12,周长是8,即可得出点O 到边BC 的距离.【详解】如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .∵点O 是∠ABC ,∠ACB 平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×OD×(AB +BC +AC )=12×OD×8=12 OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.3.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .9D解析:D【分析】求出DE的值,代入面积公式得出关于AB的方程,求出即可.【详解】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=12×AB×DE+12×AC×DF,∴24=AB×2+3×2,∴AB=9,故选:D.【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.4.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.5.如图,已知AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDCD .ED +AC >AD B解析:B【分析】 利用角平分线的性质定理判断A ;利用直角三角形两锐角互余判断B ;证明△AED ≌△ACD ,由此判断C ;利用三角形三边关系得到AC+CD>AD ,由此判断D .【详解】∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE=DC ,∠BAD=∠DAC ,∵BD+DC=BC ,∴BD+ED=BC ,故A 正确;∵∠C=90︒,∴∠B+∠BAC=90︒,∴∠B+2∠DAC=90︒,故B 错误;∵DE ⊥AB ,∴∠AED=∠C=90︒,又∵∠BAD=∠DAC ,DE=CD ,∴△AED ≌△ACD ,∴∠ADE=∠ADC ,∴AD 平分∠EDC ,故C 正确;在△ACD 中,AC+CD>AD ,∴ED +AC >AD ,故D 正确;故选:B .【点睛】此题考查三角形的三边关系,角平分线的性质定理,全等三角形的判定及性质,直角三角形两锐角互余的性质,熟记各知识点并应用解决问题是解题的关键.6.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ C解析:C【分析】 先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.7.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL D解析:D直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =, ∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.8.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γB解析:B【分析】 根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD ,根据∠ADC 是△BDC 的外角,得到∠ADC=∠B+∠BCD ,由三角形外角的性质得到∠MAC=∠B+∠ACB ,于是得到结果.【详解】解:∵EF ∥AB ,∠EFC=β,∴∠B=∠EFC=β,∵CD 平分∠BCA ,∴∠ACB=2∠BCD ,∵∠ADC 是△BDC 的外角,∴∠ADC=∠B+∠BCD ,∵∠ADC=γ,∴∠BCD=γ-β,∵∠MAC 是△ABC 的外角,∴∠MAC=∠B+∠ACB ,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B .本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.9.如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),当△ACP与△BPQ全等时,则点Q的运动速度为()cm/s.A.0.5 B.1 C.0.5或1.5 D.1或1.5D解析:D【分析】设点Q的运动速度是x cm/s,有两种情况:①AP=BP,AC=BQ,②AP=BQ,AC=BP,列出方程,求出方程的解即可.【详解】解:设点Q的运动速度是x cm/s,∵∠CAB=∠DBA,∴△ACP与△BPQ全等,有两种情况:①AP=BP,AC=BQ,则1×t=4-1×t,则3=2x,解得:t=2,x=1.5;②AP=BQ,AC=BP,则1×t=tx,4-1×t=3,解得:t=1,x=1,故选:D.【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.10.下列命题,真命题是()A.全等三角形的面积相等B.面积相等的两个三角形全等C.两个角对应相等的两个三角形全等D.两边和其中一边的对角对应相等的两个三角形全等A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键.二、填空题11.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.2【分析】根据垂线段最短及角平分线的性质定理求解【详解】解:如图由垂线段最短定理可知:当CE ⊥OB 时CE 的长度最小∵点C 在∠AOB 的平分线上CD ⊥OA ∴CE=CD=2故答案为2【点睛】本题是基础题目解析:2【分析】根据垂线段最短及角平分线的性质定理求解 .【详解】解:如图,由垂线段最短定理可知:当CE ⊥OB 时,CE 的长度最小,∵点C 在 ∠AOB 的平分线上,CD ⊥OA ,∴CE=CD=2,故答案为2 .【点睛】本题是基础题目,熟练掌握垂线段最短及角平分线的性质定理是解题关键.12.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.100°【分析】根据全等三角形对应角相等可得然后根据周角等于求出再根据三角形的内角和定理求出从而得解【详解】解:(对顶角相等)故答案为:【点睛】本题考查了全等三角形对应角相等的性质三角形的内角和定理解析:100°【分析】根据全等三角形对应角相等可得1BAE ∠=∠,ACB E ∠=∠,然后根据周角等于360︒求出2∠,再根据三角形的内角和定理求出2α∠=∠,从而得解.【详解】解:ABE ADC ABC ∆≅∆≅∆,1130BAE ∴∠=∠=︒,ACB E ∠=∠,23601360130130100BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,180DFE E α∴∠=︒-∠-∠,1802AFC ACD ∠=︒-∠-∠,DFE AFC ∠=∠(对顶角相等),1801802E ACD α∴︒-∠-∠=︒-∠-∠,2100α∴∠=∠=︒.故答案为:100︒.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,对顶角相等的性质,准确识图,找出对应角是解题的关键.13.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____1<AC <17【分析】作出图形延长AD 至E 使DE =AD 然后利用边角边证明△ABD 和△ECD 全等根据全等三角形对应边相等可得AB =CE 再利用三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边解析:1<AC <17【分析】作出图形,延长AD 至E ,使DE =AD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =CE ,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出AC 的取值范围.【详解】如图,延长AD 至E ,使DE =AD ,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ECD (SAS ),∴AB =CE ,∵AD =4,∴AE =4+4=8,∵AC +CE >AC >CE -AE ,∴9-8<AC <8+9,∴1<AC <17,故答案为:1<AC <17.【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.14.如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则点A 到直线CD 的距离是_____.4【分析】根据垂直的定义得到∠BCD=延长CD 到H使DH=CD 由线段中点的定义得到AD=BD 根据全等三角形的性质得到AH=BC=4【详解】∵DC ⊥BC ∴∠BCD=∵∠ACB=∴∠ACD=如图延长CD解析:4【分析】根据垂直的定义得到∠BCD=90︒,延长CD 到H 使DH=CD ,由线段中点的定义得到 AD=BD ,根据全等三角形的性质得到 AH=BC=4.【详解】∵ DC ⊥BC ,∴ ∠BCD=90︒,∵ ∠ACB=120︒,∴ ∠ACD=30︒,如图,延长 CD 到 H 使 DH=CD ,∵ D 为 AB 的中点,∴ AD=BD ,在 ΔADH 与 ΔBCD 中,CD DH ADH BDC AD BD =⎧⎪∠=∠⎨⎪=⎩,∴ ΔADH ≅ΔBCD(SAS),∴ AH=BC=4,∠AHD=∠BCD=90°,∴点A 到CD 的距离为4,故答案为:4.【点睛】本题考察全等三角形的判定与性质,正确作出辅助线是解题的关键.15.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ∠ACE =2∠DCE 再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ∠A =∠ACE ﹣∠ABC 即得出∠A =2∠D 即得出答案【详解】∵∠ABC 解析:40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ,∠ACE =2∠DCE .再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ,∠A =∠ACE ﹣∠ABC .即得出∠A =2∠D ,即得出答案.【详解】∵∠ABC 的平分线交∠ACE 的外角平分线∠ACE 的平分线于点D ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠DCE 是△BCD 的外角,∴∠D =∠DCE ﹣∠DBE ,∵∠ACE 是△ABC 的外角,∠A =∠ACE ﹣∠ABC =2∠DCE ﹣2∠DBE =2(∠DCE ﹣∠DBE ),∴∠A =2∠D =40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.16.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________【分析】过点作于作于利用平行线的性质可证得OM ⊥BD进而可证得MN 为AC 和BD 的距离根据角平分线的性质可知OE=OM=OE 即可求得MN 的长度【详解】解:如图过点作于作于∵分别平分和∴又∥∴又∴三点共解析:10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM ⊥BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .∵OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,∴OM OE ON 5===,又 AC ∥BD ,OM AC ⊥,∴OM BD ⊥,又ON BD ⊥,∴M ,O ,N 三点共线,∴ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.17.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.5【分析】根据角平分线的性质及垂线段最短解答【详解】根据垂线段最短可知:当PM ⊥OC 时PM 最小∵OP 平分PD=5∴PM=PD=5故答案为:5【点睛】此题考查角平分线的性质垂线段最短掌握点到直线的所有 解析:5【分析】根据角平分线的性质及垂线段最短解答.【详解】根据垂线段最短可知:当PM ⊥OC 时,PM 最小,∵OP 平分AOC ∠,PD OA ⊥,PD=5,∴PM=PD=5,故答案为:5.【点睛】此题考查角平分线的性质,垂线段最短,掌握点到直线的所有连线中垂线段最短是解题的18.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.ASA 【分析】根据全等三角形的判断方法解答【详解】解:由图可知带第4块去符合角边角可以配一块与原来大小一样的三角形玻璃故答案为:4;ASA 【点睛】本题考查了全等三角形的应用是基础题熟记三角形全等的判解析:ASA【分析】根据全等三角形的判断方法解答.【详解】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃. 故答案为:4;ASA【点睛】本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键. 19.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.或【分析】对点P 和点Q 是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或72【分析】对点P 和点Q 是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC ∆与QFC ∆全等,PC QC ,683∴-=-t t ,解得:1t =;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.如图,在△ABC中,AC=BC,∠ACB=90°,点D在边BC上(不与点B,C重合),过点C作CE⊥AD,垂足为点E,交AB于点F,连接DF.(1)请直接写出∠CAD与∠BCF的数量关系;(2)若点D是BC中点,在图2中画出图形,猜想线段AD,CF,FD之间的数量关系,并证明你的猜想.解析:(1)∠BCF=∠CAD;(2)AD=CF+DF,证明见解析【分析】(1)由余角的性质可求解;(2)过点B作BG∥AC交CF的延长线于G,由“ASA”可证△ACD≌△CBG,可得CD=BG,AD=CG,由“SAS”可证△BDF≌△BGF,可得DF=GF,可得结论.【详解】解:(1)∠BCF=∠CAD,理由如下:∵CE⊥AD,∴∠CED=∠ACD=90°,∴∠CAD+∠ADC=90°=∠ADC+∠BCF,∴∠CAD=∠BCF;(2)如图所示:猜想:AD =CF +DF ,理由如下:过点B 作BG ∥AC 交CF 的延长线于G ,则∠ACB +∠CBG =180°,∴∠CBG =∠ACD =90°,在△ACD 和△CBG 中,∵CAD BCF AC BC ACD CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△CBG (ASA ),∴CD =BG ,AD =CG ,∵D 是BC 的中点,∴CD =BG =BD ,∵AC =BC ,∠ACB =90°,∴∠CBA =∠CAB ,∴∠CBA =45°,∴∠FBG =∠CBG ﹣∠CBA =90°﹣45°=45°,∴∠FBG =∠FBD ,在△BDF 和△BGF 中,BF BF FBD FBG BD BG =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△BGF (SAS ),∴DF =GF ,∵AD =CG =CF +FG ,∴AD =CF +DF .【点睛】本题主要考查余角的性质,全等三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.22.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.解析:(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP =⎧⎨=⎩∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.23.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形;②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形.解析:(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6, 故答案为:6;(2)①如图,'A BC 即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.24.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求: (1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .解析:(1)40︒;(2)1402BED n ∠=︒+︒;(3)1()αβ+n 【分析】(1)根据平行线的性质及角平分线的性质即可得解;(2)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,由AB ∥CD ,BE 平分∠ABC ,推出12BEF ABE n ∠=∠=︒,利用EF ∥CD ,求得∠FED =∠EDC =40°,即可得到 1402BED n ∠=︒+︒;(3)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,利用AB ∥CD 推出∠ABC =∠BCD =β,∠ADC =∠BAD =α,求得1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=,利用EF ∥AB ,求出1BEF ABE n β∠=∠=,即可得到1()BED n αβ∠=+. 【详解】解:(1)∵AB ∥CD ,∴∠ADC =∠BAD =80°,又∵DE 平分∠ADC ,∴1402EDC ADC ∠=∠=︒;(2)如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =n °,又∵BE 平分∠ABC ,∴12ABE n ∠=︒, ∵EF ∥AB , ∴12BEF ABE n ∠=∠=︒, ∵EF ∥CD ,∴∠FED =∠EDC =40°,∴1402BED n ∠=︒+︒. (3)1()αβ+n.如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =β,∠ADC =∠BAD =α,∴1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=, ∵EF ∥AB , ∴1BEF ABE n β∠=∠=, ∴1()BED nαβ∠=+. 故答案为:1()αβ+n .【点睛】此题考查平行线的性质,角平分线的性质,熟记平行线的性质并正确引出辅助线解决问题是解题的关键.25.已知ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =.直角顶点C 在x 轴上,锐角顶点B 在y 轴上,过点A 作AD x ⊥轴,垂足为点D .当点B 不动,点C 在x 轴上滑动的过程中.(1)如图1,当点C 的坐标是()1,0-,点A 的坐标是()3,1-时,请求出点B 的坐标; (2)如图2,当点C 的坐标是()1,0时,请写出点A 的坐标;(3)如图3,过点A 作直线AE y ⊥轴,交y 轴于点E ,交BC 延长线于点F .AC 与y 轴交于点G .当y 轴恰好平分ABC ∠时,请写出AE 与BG 的数量关系.解析:(1)(0,2);(2)(-1,-1);(3)BG=2AE ,理由见详解【分析】(1)先证明Rt∆ADC ≅Rt∆COB ,结合条件,即可得到答案; (2)先证明∆ADC ≅∆COB ,结合点B ,C 的坐标,求出AD ,OD 的长,即可得到答案; (3)先证明∆BGC ≅∆AFC ,再证明∆ABE ≅∆FBE ,进而即可得到答案. 【详解】(1)∵点C 的坐标是()1,0-,点A 的坐标是()3,1-,∴AD=OC ,又∵AC=BC ,∴Rt∆ADC ≅ Rt∆COB (HL ),∴OB=CD=2,∴点B 的坐标是(0,2);(2)∵AD ⊥x 轴,∴∠DAC+∠ACD=90°,又∵∠OCB+∠ACD=90°,∴∠DAC=∠OCB ,又∵∠ADC=∠COB=90°,AC=BC ,∴∆ADC ≅ ∆COB (AAS ),∵点C 的坐标是()1,0∴AD=OC=1,∵点B 的坐标是(0,2),∴CD=OB=2,∴OD=2-1=1,∴点A 的坐标是(-1,-1);(3)BG=2AE ,理由如下:∵ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =,AE y ⊥轴,∴∠BCA=∠ACF=90°,∠AEG=90°,∴∠GBC+∠BGC=90°,∠GAE+∠AGE=90°,又∵∠BGC=∠AGE ,∴∠GBC=∠FAC ,在∆BGC 和 ∆AFC 中,∵∠GBC=∠FAC ,BC AC =, ∠GBC=∠FAC ,∴∆BGC ≅∆AFC (ASA ),∴BG=AF ,∵BE ⊥AF ,y 轴恰好平分ABC ∠,∴∠ABE=∠FBE ,∠AEB=∠FEB=90°,BE=BE ,∴∆ABE ≅∆FBE ,∴AE=FE ,∴AF=2AE∴BG=2AE .【点睛】 本题主要考查等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握“一线三垂直”模型,是解题的关键.26.在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当 AB >AC 时,∠C >∠B .该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC 中,AD 是BC 边上的高线.①如图1,若AB =AC ,则∠BAD =∠CAD ;②如图2,若AB ≠AC ,当AB >AC 时,∠BAD ∠CAD .(填“>”,“<”,“=”)证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C .∵AB >AC ,∴ (在同一个三角形中,大边对大角).∴∠BAD ∠CAD .(2)在△ABC 中,AD 是BC 边上的中线.①如图1,若AB =AC ,则∠BAD =∠CAD ;②如图3,若AB ≠AC ,当AB >AC 时,∠BAD ∠CAD .(填“>”,“<”,“=”)证明:解析:(1)①见解析,②∠B<∠C ,>;(2)①见解析;②<【分析】(1)①由HL 证明Rt △ABD ≌Rt △ACD 可得结论;②由AB >AC 得∠C >∠B 即可得出结论;(2)①由SSS 证明△ABD ≌△ACD 可得结论;②作辅助线证明△BDE CDA ≅∆,得BE CA =,∠BED CAD =∠,证得∠BAD BED <∠,即可得到结论.【详解】解:(1)①证明:∵AD 是BC 边上的高线∴∠ADB=∠ADC=90°,在Rt △ADB 和Rt △ADC 中AB AC AD AD =⎧⎨=⎩∴Rt △ABD ≌Rt △ACD∴∠BAD =∠CAD ;②证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C .∵AB >AC , ∴ ∠B<∠C (在同一个三角形中,大边对大角).∴∠BAD > ∠CAD .故答案为:∠B<∠C ,>;(2)①证明:∵AD 是BC 边上的中线∴BD=CD在△ABD 和△ACD 中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD∴∠BAD=∠CAD②如图,延长AD 至点E ,使AD=ED ,连接BE ,∵AD 是△ABC 的BC 边上的中线,∴BD CD =在△BDE 和△CDA 中,BD CD BDE CDA ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE CDA ≅∆∴BE CA =,∠BED CAD =∠,又AB AC >,则AB BE >∴∠BAD BED <∠∴∠BAD CAD <∠.故答案为:<.【点睛】此题主要考查了全等三角形的判定与性质,作出辅助线构造全等三角形是解答此题的关键.27.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.求证:(1) AC DF =(2)FB CE =解析:(1)见解析;(2)见解析【分析】(1)根据平行线的性质求出∠B=∠E ,∠ACB=∠DFE ,根据AAS 证出△BAC ≌△EDF ,可得AC=DF ;.(2)由△BAC ≌△EDF ,可证BC=EF ,进而可得FB=CE .【详解】证明:(1)∵AB//ED ,AC//FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△BAC 和△EDF 中ACB DFE B EAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EDF (AAS ),∴AC=DF ;(2)∵△BAC ≌△EDF ,∴BC=EF ,∴BC-FC=EF-FC ,∴FB=CE .【点睛】本题考查了全等三角形的性质和判定,平行线的性质,注意:①全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,②全等三角形的对应边相等,对应角相等.28.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH 于点G .(1)若∠DBE =40°,∠EBC =35°,求∠BDE 的度数;(2)求证:∠EGH >∠ADE ;(3)若点E 是AC 和FG 的中点,△AFE 与△CEG 全等吗?请说明理由.解析:(1)∠BDE =105°;(2)见解析;(3)全等,理由见解析.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形的内角和定理即可得到结论;(2)根据三角形的外角性质得出∠EGH >∠ABC ,又根据平行线的性质得出∠ABC=∠ADE ,即可得出答案;(3)根据全等三角形判定的“SAS”定理即可得到结论.【详解】(1)解:∵DE//BC ,∠EBC =35°,∴∠DEB =∠EBC =35°,又∵∠BDE+∠DEB+∠DBE =180°,∠DBE =40°,∴∠BDE =105°;(2)证明:∵∠EGH 是△FBG 的外角,∴∠EGH >∠ABC ,又∵DE//BC ,∴∠ABC =∠ADE ,∴∠EGH >∠ADE ;(3)全等.证明:E 是AC 和FG 的中点,∴AE =CE ,FE =GE ,在△AFE 和△CEG 中,AE CE AEF CEG FE GE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△CGE (SAS ).【点睛】本题考查了三角形的外角性质,平行线的性质的应用,全等三角形的判定,三角形内角和定理,能运用三角形外角性质进行推理是解此题的关键.。
第十二章《全等三角形》专题练习专题1证明三角形全等的解题思路思路一:找边边相等呈现的方式:①公共边(包括全部公共和部分公共);②中点.类型1已知两边对应相等,找第三边相等1.如图,已知AB=DE,AD=EC,D是BC的中点,求证:△ABD≌△EDC.类型2已知两角对应相等,找夹边相等2.如图,∠ABD=∠CDB,∠ADB=∠DBC,求证:△ABD≌△CDB.类型3已知两角对应相等,找其中一角的对边相等3.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF 的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?类型4已知直角三角形的直角边(或斜边)相等,找斜边(或直角边)相等4.如图,∠A=∠D=90°,AB=DF,BE=CF.求证:△ABC≌△DFE.思路二:找角角相等呈现的方式:①公共角;②对顶角;③角平分线;④垂直;⑤平行.类型5已知两边对应相等,找夹角相等5.如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:△ABC≌△ADE.6.如图,已知AD=AE,AB=AC,求证:△ABE≌△ACD.7.如图,已知AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.类型6已知一边一角对应相等,找另一角相等8.如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:△ABC≌△DAE.9.如图,已知∠BDC=∠CEB=90°,BE,CD交于点O,且AO平分∠BAC,求证:(1)△ADO≌△AEO;(2)△BDO≌△CEO.专题2全等三角形的基本模型类型1平移模型1.如图,AC=DF,AD=BE,BC=EF.求证:(1)△ABC≌△DEF;(2)AC∥DF.类型2对称模型2.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F,求证:∠A=∠D.3.如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:BE=CD.4.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.类型3旋转模型5.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.求证:BC=DE.6.如图,四边形ABCD的对角线相交于点O,AB∥CD,O是BD的中点.(1)求证:△ABO≌△CDO;(2)若BC=AC=4,BD=6,求△BOC的周长.类型4一线三等角模型7.如图,AD⊥AB于点A,BE⊥AB于点B,点C在AB上,且CD⊥CE,CD=CE.求证:AD=CB.类型5综合模型平移+旋转模型:平移+对称模型:8.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.小专题3构造全等三角形的常用方法方法1利用“角平分线”构造全等三角形因角平分线本身已经具备全等的三个条件中的两个(角相等和公共边相等),故在处理角平分线问题时,常作以下辅助线构造全等三角形:(1)在角的两边截取两条相等的线段;(2)过角平分线上一点作角两边的垂线段.1.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,求证:PM=PN.【拓展1】OM+ON的值是否为定值?请说明理由.【拓展2】四边形PMON的面积是否为定值?请说明理由.方法2利用“截长补短法”构造全等三角形截长补短法的具体做法:在某一条线段上截取一条线段与特定线段相等,或将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种方法适用于证明线段的和、差、倍、分等题目.2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD.3.如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG.先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由.方法3利用“倍长中线法”构造全等三角形将中线延长一倍,然后利用“SAS”判定三角形全等.4.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.方法4利用“三垂直”构造全等三角形如图,若AB=AC,AB⊥AC,则可过斜边的两端点B,C向过A点的直线作垂线构造△ABD≌△CAE.在平面直角坐标系中,过顶点A的直线常为x轴或y轴.5.已知在△ABC中,∠BAC=90°,AB=AC,将△ABC放在平面直角坐标系中,如图所示.(1)如图1,若A(1,0),B(0,3),求C点坐标;(2)如图2,若A(1,3),B(-1,0),求C点坐标;(3)如图3,若B(-4,0),C(0,-1),求A点坐标.参考答案专题1 证明三角形全等的解题思路1.证明:∵D 是BC 的中点,∴BD =CD.在△ABD 和△EDC 中,⎩⎪⎨⎪⎧AB =ED ,AD =EC ,BD =DC ,∴△ABD ≌△EDC(SSS ).2.证明:在△ABD 和△CDB 中,⎩⎪⎨⎪⎧∠ABD =∠CDB ,BD =DB ,∠ADB =∠CBD ,∴△ABD ≌△CDB(ASA ).3.解:全等.理由:∵两三角形纸板完全相同,∴BC =BF ,AB =BD ,∠A =∠D.∴AB -BF =BD -BC ,即AF =DC.在△AOF 和△DOC 中,⎩⎪⎨⎪⎧∠A =∠D ,∠AOF =∠DOC ,AF =DC ,∴△AOF ≌△DOC(AAS ).4.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF.在Rt △ABC 和Rt △DFE 中,⎩⎪⎨⎪⎧AB =DF ,BC =FE ,∴Rt △ABC ≌Rt △DFE(HL ).5.证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC.∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS ).6.证明:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△ABE ≌△ACD(SAS ).7.证明:∵AD 是△ABC 的中线,∴BD =CD.在△ACD 和△EBD 中,⎩⎪⎨⎪⎧CD =BD ,∠ADC =∠EDB ,DA =DE ,∴△ACD ≌△EBD(SAS ).8.证明:∵DE ∥AB ,∴∠CAB =∠EDA.在△ABC 和△DAE 中,⎩⎪⎨⎪⎧∠CAB =∠EDA ,AB =DA ,∠B =∠DAE ,∴△ABC ≌△DAE(ASA ).9.证明:(1)∵AO 平分∠BAC ,∴∠DAO =∠EAO.∵∠BDC =∠CEB =90°,∴∠ADO =∠AEO.在△ADO 和△AEO 中,⎩⎪⎨⎪⎧∠ADO =∠AEO ,∠DAO =∠EAO ,AO =AO ,∴△ADO ≌△AEO(AAS ).(2)∵△ADO ≌△AEO ,∴DO =EO.在△BDO 和△CEO 中,⎩⎪⎨⎪⎧∠BDO =∠CEO ,DO =EO ,∠DOB =∠EOC ,∴△BDO ≌△CEO(ASA ).小专题2 全等三角形的基本模型1.证明:(1)∵AD =BE ,∴AD +DB =BE +DB ,即AB =DE.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF(SSS ).(2)∵△ABC ≌△DEF ,∴∠A =∠EDF.∴AC ∥DF.2.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =FE.在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF ,∠B =∠F ,BC =FE ,∴△ABC ≌△DFE(SAS ).∴∠A =∠D.3.证明:在△AEB 和△ADC 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△AEB ≌△ADC(SAS ).∴BE =CD.4.解:添加∠BAC =∠DAC(答案不唯一),理由:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(AAS ).5.证明:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD.∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS ).∴BC =DE.6.解:(1)证明:∵AB ∥CD ,∴∠BAO =∠DCO ,∠ABO =∠CDO.∵O 是DB 的中点,∴BO =DO.在△ABO 和△CDO 中,⎩⎪⎨⎪⎧∠BAO =∠DCO ,∠ABO =∠CDO ,BO =DO ,∴△ABO ≌△CDO(AAS ).(2)∵△ABO ≌△CDO ,∴AO =CO =12AC =2. ∵BO =12BD =3, ∴△BOC 的周长为BC +BO +OC =4+3+2=9.7.证明:∵AD ⊥AB ,BE ⊥AB ,∴∠A =∠B =90°.∴∠D +∠ACD =90°.∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°.∴∠D =∠BCE.在△ACD 和△BEC 中,⎩⎪⎨⎪⎧∠A =∠B ,∠D =∠BCE ,CD =EC ,∴△ACD ≌△BEC(AAS ).∴AD =CB.8.解:(1)证明:在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF ,∠A =∠D ,AC =DE ,∴△ABC ≌△DFE(SAS ).∴∠ACB =∠DEF.∴AC ∥DE.(2)∵△ABC ≌△DFE ,∴BC =EF.∴BE =CF =12(BF -EC)=4.∴BC =BE +EC =9.专题3 构造全等三角形的常用方法1.证明:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∴∠PEO =∠PFO =90°.∴∠EPF +∠AOB =180°.∵∠MPN +∠AOB =180°,∴∠EPF =∠MPN.∴∠EPM =∠FPN.∵OP 平分∠AOB ,PE ⊥OA ,PF ⊥OB ,∴PE =PF.在△PEM 和△PFN 中,⎩⎪⎨⎪⎧∠EPM =∠FPN ,PE =PF ,∠PEM =∠PFN ,∴△PEM ≌△PFN(ASA ).∴PM =PN.【拓展1】 解:OM +ON 的值是定值.理由:∵△PEM ≌△PFN ,∴ME =NF.易证△EPO ≌△FPO ,∴OE =OF.∴OM +ON =OE +EM +ON =OE +NF +ON =OE +OF =2OE =定值.【拓展2】 解:四边形PMON 的面积是定值.理由:∵△PEM ≌△PFN ,∴S △PEM =S △PFN .∴S 四边形PMON =S 四边形PEOF =定值.2.证明:在BC 上截取BF =AB ,连接EF.∵BE 平分∠ABC ,CE 平分∠BCD ,∴∠ABE =∠FBE ,∠FCE =∠DCE.在△ABE 和△FBE 中,⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE(SAS ).∴∠A =∠BFE.∵AB ∥CD ,∴∠A +∠D =180°.∴∠BFE +∠D =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠D.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠D ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE(AAS ).∴CF =CD.∴BC =BF +CF =AB +CD.3.(1)EF =BE +DF ;(2)解:EF =BE +DF 仍然成立.理由:延长FD 到G ,使DG =BE ,连接AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎪⎨⎪⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ).∴AE =AG ,∠BAE =∠DAG.∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF.在△AEF 和△AGF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG.∵FG =DG +DF =BE +DF ,∴EF =BE +DF.4.证明:延长AM 至N ,使MN =AM ,连接BN.∵点M 为BC 的中点,∴BM =CM.在△AMC 和△NMB 中,⎩⎪⎨⎪⎧AM =NM ,∠CMA =∠BMN ,CM =BM ,∴△AMC ≌△NMB(SAS ).∴AC =BN =AD ,∠C =∠NBM ,∠ABN =∠ABC +∠NBM =∠ABC +∠C =180°-∠BAC =∠EAD.在△ABN 和△EAD 中,⎩⎪⎨⎪⎧AB =EA ,∠ABN =∠EAD ,BN =AD ,∴△ABN ≌△EAD(SAS ).∴DE =NA =2AM.5.解:(1)过点C 作CD ⊥x 轴,垂足为D.则∠CAD +∠ACD =90°.∵∠BAC =90°,∴∠BAO +∠CAD =90°.∴∠BAO =∠ACD.在△ABO 和△CAD 中,⎩⎪⎨⎪⎧∠AOB =∠CDA ,∠BAO =∠ACD ,AB =CA ,∴△ABO ≌△CAD(AAS ).∴BO =AD ,OA =CD.∵A(1,0),B(0,3),∴OA =1,OB =3.∴AD =3,CD =1.∴OD =OA +AD =4.∴C(4,1).(2)过点A 作AD ⊥x 轴,垂足为D ,过点C 作CE ⊥AD ,垂足为E.同(1)可证△ACE ≌△BAD , ∴AE =BD ,CE =AD.∵A(1,3),B(-1,0),∴BD =2,AD =3.∴CE =3,DE =AD -AE =1.∴C(4,1).(3)过点A 作AD ⊥x 轴,AE ⊥y 轴,垂足分别为D ,E. 同(1)可证△BAD ≌△CAE ,∴CE =BD ,AE =AD.∵B(-4,0),C(0,-1),∴OB =4,OC =1.∴AE =OB -BD =OB -CE =OB -(OC +OE)=3-AE.∴AE =32. ∴A(-32,32).。
第十二章全等三角形
全等三角形综合练习
题型一:在坐标系中构造全等三角形问题
例1、在平面直角坐标系中,△AOB的位置如图所示.已知∠AOB=90°,AO=BO,点A 的坐标为(-3,1).求点B的坐标,
总结:解决与坐标系相关的问题,注意过坐标系内的点向数轴作垂线,构造Rt△
1、
两点的坐标。
,求
轴距离是
到
且点
与原点重合,
顶点
系中
将其放在平面直角坐标
,
已知,等腰直角
B
A
y
B
BCD
C
BC
AC
ACB
ACB
,
3
2
,
30
,4
,
90
=
∠
=
=
=
∠
∆
2、已知,等腰直角系中,
将其放在平面直角坐标
,4
,
90
,0=
=
=
∠
∆BC
AC
ACB
ACB
顶点C在x轴上,且点B在y轴上,0
30
=
∠BCO,且点C到y轴距离3
2,求A,B两点坐标(两种情况)
3、如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(4,4)处,
点
两直角边与坐标轴交于
A和点
B
(1)求0A+0B的值;
(2)将直角三角形绕点P逆时针旋转,两直角边与y轴,x轴交于点B和点A,求OA-OB 的值。
题型二;通过辅助线构造全等三角形(倍长中线法和截长补短法)
例1、的取值范围。
,5=
ABC,3
∆
=
中,AD
AB
求中线
AC
例2,如图,已知在的延长线上,
G
AC
AB
ABC,
,=
∆GE交BC于F,
E
AB
在
上,
中AC
在
,求证
且
=:
EF
DF=
CE
BG
例3、如图,AD为△ABC的中线,DE、DF分别为△ADB,△ADC的角平分线,
求证:BE+CF>EF
总结:线段和差等量关系通常截长补短
线段和差大小关系通常转化一个三角形中利用三边关系
中点问题通常过线段端点向中点处的线段作垂线或者倍长法
角平分线通常作垂线构造角平分线定理或者在角两边截取相等的线段
1、边上的中线,
ABC
AD
∆,
中,
已知在BC
是
上一点,且
是延长
E=
BE
AD
AC
BE交AC于F,求证:AE=EF(提示:倍长中线)
2,如图,BAC
=
∆平分
中,
在,
2.
∠
AD
C
B
ABC∠
∠
求证:AB+BD=AC
3.E
AD
∠BC
,
//∠
,
,
求证:
=
AB+
BC
DAB
CBA
CD
BE
AE
如图,,
,
分别平分
AD经过点
题型三:动点动角问题,运动过程中三角形仍然全等。
例1、如图,以P为顶点的两个等腰三角形绕着点P在平面内旋转,连AD、BC交于点E。
(1)当两个等腰三角形的顶角∠APB=∠DPC=45°时,求证:AD=BC, AD与BC的夹角∠AEB=45°
(2)当两个等腰三角形的顶角∠APB=∠DPC=60°,90°,a°时,AD=BC吗? AD与BC 的夹角∠AEB分别为多少?
总结:注意运动问题中结论的不变性及证明方法的不变性
1. 8,90t 0===∠∆AC CB AC ACB ABC R ,中,如图,在等腰边上的中点,是AB E , ,,,CG AD BC AC G D =边上运动,且始终保持分别在点EG DG DE ,,连接.
(1),CGE ADE ∆≅∆求证:
(2),是等腰直角三角形试证明DGE ∆
(3)试说明理由。
的面积是否保持不变?,四边形在此运动变化的过程中CDEG。