《整式地加减》知识点归纳及典型例题分析报告
- 格式:doc
- 大小:577.50 KB
- 文档页数:9
整式的加减知识点归纳及典型例题分析一、认识单项式、多项式1、下列各式中,书写格式正确的是 ( )A .4·21 B.3÷2y C.xy ·3 D.ab 2、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 3、在整式5abc ,-7x 2+1,-52x ,2131,24y x -中,单项式共有 ( ) A.1个 B.2个 C.3个 D.4个4、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、65、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
6、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 二、整式列式.1、一个梯形教室内第1排有n 个座位,以后每排比前一排多2个座位,共10排.(1)写出表示教室座位总数的式子,并化简;(2)当第1排座位数是A 时,即n =A ,座位总数是140;当第1排座位数是B ,即n =B 时,座位总数是160,求A 2+B 2的值.2、若长方形长是2a +3b ,宽为a +b ,则其周长是( ) A.6a +8b B.12a +16b C.3a +8b D.6a +4b3、a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( )A.b+aB.10b+aC. 100b+aD. 1000b+a4、(1)某商品先提价20%,后又降价20%出售,现价为a 元,则原价为 元。
(2)香蕉每千克售价3元,m 千克售价____________元。
(3)温度由5℃上升t ℃后是__________℃。
(4)每台电脑售价x 元,降价10%后每台售价为____________元。
整式的加减知识点总结及例题1.同类项(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,几个常数项也是同类项.(2)注意:①两个单项式是不是同类项有两个“无关”,第一与单项式的系数无关(在系数不为零的前提下),第二与单项式中字母排列顺序无关.②同类项都是单项式.2.合并同类项(1)把多项式中的同类项合并成一项,叫做__________.(2)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数__________.(3)合并同类项的一般步骤:①找出同类项,当项数较多时,通常在同类项的下面作出相同的标记.②利用加法交换律把同类项放在一起,在交换位置时,连同项的符号一起交换.③利用合并同类项的法则合并同类项,系数相加,字母及其指数不变.④写出合并后的结果.(4)把一个多项式的各项按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的__________排列;把一个多项式的各项按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的__________排列.3.去括号(1)去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__________.(2)去括号时,要将括号连同它前面的符号一起去掉;在去括号时,首先要明确括号前是“+”还是“–”;需要变号时,括号里的各项都变号;不需要变号时,括号里的各项都不变号;去括号的依据是乘法分配律,当括号前面有非“±1”的数字因数时,应先利用分配律把括号前面的数字因数与括号内的每一项相乘去掉括号,切勿漏乘.(3)多层括号的去法:先观察式子的特点,再考虑去括号的顺序.一般由内向外,先去小括号,再去中括号,最后去大括号,但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.4.整式的加减(1)整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)应用整式的加减运算法则进行化简求值时,一般先去括号、合并同类项,再代入字母的值进行计算.在具体运算中,也可以先将同类项合并,再去括号,但要按运算顺序去做.(3)整式加减的结果要最简:①不能有同类项;②含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数;(4)不再含括号.K知识参考答案:2.(1)合并同类项;(2)不变;(4)降幂;升幂3.(1)相同;相反一、同类项同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.【例1】下列式子中是同类项的是A.62和x2B.11abc和9bcC.3m2n3和–n3m2D.0.2a2b和ab2【答案】CA.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2 D.a=4,b=3,c=4【答案】C二、合并同类项合并同类项法则实质为“一相加,两不变”,“一相加”指各同类项的系数相加,“两不变”指字母不变且字母的指数也不变.简单记为“只求系数和,字母指数不变样”.【例3】下列运算中结果正确的是A.4a+3b=7ab B.4xy–3xy=xyC.–2x+5x=7x D.2y–y=1【答案】B【解析】A、4a与3b不是同类项,不能直接合并,故本选项错误;B、4xy–3xy=xy,计算正确,故本选项正确;C、–2x+5x=3x,计算错误,故本选项错误;D、2y–y=y,计算错误,故本选项错误.故选B.【名师点睛】合并同类项是逆用乘法对加法的分配律,运用时应注意:(1)不是同类项的项不能合并;(2)同类项的系数相加,字母部分不变;(3)确定好每一项系数的符号.三、去括号去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体. 【例4】下列去括号正确的是 A .–(a +b –c )=–a +b –c B .–2(a +b –3c )=–2a –2b +6c C .–(–a –b –c )=–a +b +cD .–(a –b –c )=–a +b –c【答案】B四、整式的加减1.整式加减的实质是去括号、合并同类项.2.应用整式的加减运算法则进行化简求值时的步骤:一化、二代、三计算. 3.进行整式的加减时,若遇到相同的多项式,可将相同的多项式分别作为一个整体进行合并.【例5】化简m –(m –n )的结果是 A .2m –nB .n –2mC .–nD .n【名师点睛】整式加减的结果要最简: (1)不能有同类项;(2)含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数.(3)不再含括号.。
整式的加减知识点总结与典型例题一、整式——单项式1、单项式的定义:由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.2、单项式的系数:单项式中的数字因数叫这个单项式的系数.说明:⑴单项式的系数可以是整数,也可能是分数或小数。
如23x 的系数是3;32ab 的系数是31;a 8.4的系数是; ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如24xy -的系数是4-;()y x 22-的系数是2-;⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如2ab -的系数是-1;2ab 的系数是1;⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2.3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 242的次数是字母z ,y ,x 的指数和,即4+3+1=8,而不是7次,应注意字母z 的指数是1而不是0;⑵单项式的指数只和字母的指数有关,与系数的指数无关。
如单项式43242z y x -的次数是2+3+4=9而不是13次;⑶单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;4、在含有字母的式子中如果出现乘号,通常将乘号写作“• ”或者省略不写。
例如:t ⨯100可以写成t •100或t 1005、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数. ※典型例题考向1:单项式1、代数式中,单项式的个数是( )A .1B .2C .3D .42、下列式子:中,单项式的个数是( )A .1B .2C .3D .43、下列式子:单项式的个数是( )A .4B .3C .2D .14、单项式y x 22-的系数为( )A .2B .-2C .3D .-3 5、单项式2ab 2π-的系数和次数分别是( )A .-2π、3B .-2、2C .-2、4D .-2π6、单项式z xy 2-的( )A .系数是0,次数是2B .系数是-1,次数是2C .系数是0,次数是4D .系数是-1,次数是47、单项式-2πy 的系数为( )A .-2πB .-2C .2D .2π8、下列各式中,次数为3的单项式是( )A.33y x +B.y x 2C.y x 3D.xy 3 9、单项式3224c ab -的系数与次数分别是( ) A .-2,6 B .2,7 C .32-,6 D. 32-,7 10、设a 是最小的自然数,b 是最大的负整数,c ,d 分别是单项式2xy -的系数和次数,则a ,b ,c ,d 四个数的和是( )A .-1B .0C .1D .3二、整式——多项式1、多项式的定义:几个单项式的和叫多项式.2、多项式的项:多项式中的每个单项式叫做多项式的项.3、多项式的次数:多项式里,次数最高项的次数叫多项式的次数.4、多项式的项数:多项式中所含单项式的个数就是多项式的项数.5、常数项:多项式里,不含字母的项叫做常数项.6、整式:单项式与多项式统称整式.※典型例题考向2:多项式1、多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式2、多项式321xy xy +-的次数是( )A .1B .2C .3D .43、多项式21xy xy -+的次数及最高次项的系数分别是( )A .2,1B .2,-1C .3,-1D .5,-14、下列说法正确的是( )A .-2不是单项式B .-a 的次数是0 C.53ab 的系数是3 D.324-x 是多项式 5、下列代数式其中整式有( )A .1个B .2个C .3个D .4个6、在整式有( )A .4个B .5个C .6个D .7个7、代数式中是整式的共有( )A .5个B .4个C .3个D .2个8、在代数式中有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同9、若m ,n 为自然数,则多项式n m n m y x +--4的次数应当是( )A .mB .nC .m+nD .m ,n 中较大的数10、如果整式252+--x x n 是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .611、多项式是关于x 的二次三项式,则m 的值是( )A .2B .-2C .2或-2D .3三、整式的加减——合并同类项1、同类项的概念:所含字母相同,并且相同字母的指数也相同的单项式是同类项.说明:⑴同类项必须具备两个条件:所含字母相同;相同字母的指数也分别相同。
整式的加减知识点归纳整式的加减是初中数学中的重要内容,它是进一步学习方程、函数等知识的基础。
下面我们来详细归纳一下整式加减的相关知识点。
一、整式的概念1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如,5x 是单项式,系数是 5,次数是 1;-3xy²是单项式,系数是-3,次数是 3。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
例如,x²+ 2x 1 是多项式,有三项,分别是 x²、2x、-1,其中-1 是常数项,最高次项是x²,次数是2,所以这个多项式的次数是2。
3、整式单项式和多项式统称为整式。
二、同类项1、定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,5x²y 和-3x²y 是同类项;2 和-5 是同类项。
2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如,计算 3x²+ 2x²=(3 + 2)x²= 5x²。
三、去括号法则1、括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
例如,a +(b c) = a + b c 。
2、括号前是“”号,把括号和它前面的“”号去掉后,原括号里各项的符号都要改变。
例如,a (b c) = a b + c 。
四、整式的加减运算1、一般步骤(1)如果有括号,先去括号。
(2)如果有同类项,再合并同类项。
2、注意事项(1)在进行整式加减运算时,要注意符号的变化。
(2)要准确找出同类项,并正确合并。
《整式的加减》主要知识点和题型汇总01、单项式1、单项式的定义由数与字母的 组成的代数式称为单项式。
单独一个数或一个 也是单项式。
2、判断代数式是单项式的方法:①单项式中不能含有 和 运算,②若有分母,分母中不能含有 ③单独的一个数字或字母都是 。
④在代数式 b a y x ba x y x n 2315,0,,4,3,2),(2,---+πππ中,单项式的个数为( )A 、7个B 、6个C 、5个D 、4个 3、单项式的系数①单项式中 因数叫做单项式的系数②只含有字母的单项式的系数为 , ③如x 的系数是 ,4ab -的系数是 4、单项式的次数①单项式中所有字母指数的 叫做单项式的次数,与数字的次数② a 的次数是 , 22ab -的次数是 ,c b 23)1(-的次数是 ,xy 25π的次数是 ,③填表 单项式x -y x 2y x 33π52ab -7)2(22abc - 系数 次数④写出系数是3,次数为5以a ,b 为字母的三个不同的单项式 。
02、多项式1、多项式的定义①几个 的和叫做多项式。
在多项式中,每个单项式叫做多项式的 。
其中,不含字母的项,叫做 。
②多项式y x xy xy -+++6473中的项分别是 ,常数项是 。
二次项是 ,最高项的系数是 2、多项式的次数①多项式里,次数最高项的 ,就是这个多项式的次数。
②多项式423342--+-mc n m n m 中,第一项的次数是 ,第二项的次数是 ,第三项的次数是 ,这个多项式的次数是 。
3、多项式的命名(几次几项式)如23+-y x 是 次 项式,432-+-y x x 是 次 项式。
4、升幂排列与降幂排列:①按字母x 的降幂排列:把多项式的各项按字母x 的 从大到小的顺序排列,叫做按字母x 的降幂排列;②按字母x 的升幂排列:把多项式的各项按字母x 的指数 的顺序排列,叫做按字母x 的升幂排列。
③重新排列多项式时,每一项一定要连同它的符号一起移动,原首项省略的“+”号交换到后面时要添上;④把多项式y x y x y xy 43252647++--按字母x 的降幂排列为 , 按字母y 的升幂排列为 。
6《整式及整式的加减》要点梳理及经典例题
一、整式的定义
整式是指只包含有限个加减乘次幂的代数式,且每一项的系数都是常数或者字母。
二、整式的加减法
1.同类项的加减
同类项是指含有相同字母或相同字母的相同次幂的项。
同类项的加减法可以利用结合律和分配律进行简化。
例如:(3x2+2x−5)+(2x2+3x+1)−(4x2+5x−3)
首先将同类项合并,并将系数相加:=(3+2−4)x2+(2+3−5)x+(−5+ 1+3)
结果为:x2+x−1
2.异类项的加减
异类项是指不属于同类的项。
异类项的加减需要先化为同类项,再进行合并。
例如:(5x2+3x−7)+(2x3−4x2+5x+2)
将两个式子中的同类项写在一起:=2x3+(5−4)x2+(3+5)x+(−7+2)结果为:2x3+x2+8x−5
三、经典例题
1.例题一
将两个多项式相加:4x3+3x2−2x+5和2x2+x+1。
解答:将两个多项式按同类项,写在一起,得到4x3+5x2−x+6。
2.例题二
将两个多项式相加:4x3+3x2−2x+5和−3x3+2x2+x−1。
解答:将两个多项式按同类项,写在一起,得到x3+5x2−x+4。
3.例题三
将多项式3x3+2x2−3x+7同−2x2+3x−5相减。
解答:将−2x2+3x−5变为−2x2+3x−5+0x3,将两个多项式按同类项写在一起。
得到3x3+4x2−6x+12。
综上所述,整式及整式的加减法是高中数学中的基本概念和运算,掌握了这些知识点,可以更好地完成高中数学课程的学习和考试。
整式的加减整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若 a、 b、 c、p、 q 是常数) ax2+bx+c 和 x2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:整式单项式. 多项式6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“ - ”号,括号里的各项都要变号 .9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列) . 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列 .11.列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等. 抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了 .12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值 .13.列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
整式的加减【本将教学内容】整式的基本概念、加减运算、代数式求值等 整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。
整式的加减知识点总结及题型汇总整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
整式的加减典型例题一、认识单项式、多项式1、下列各式中,书写格式正确的是 ( ) A .4·21 B.3÷2y C.xy ·3 D.ab2、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 3、在整式5abc ,-7x 2+1,-52x ,2131,24y x -中,单项式共有 ( ) A.1个 B.2个 C.3个 D.4个4、代数式,21a a +43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( )A 、3B 、4C 、5D 、65、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
6、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 二、整式列式.1、一个梯形教室内第1排有n 个座位,以后每排比前一排多2个座位,共10排.(1)写出表示教室座位总数的式子,并化简;(2)当第1排座位数是A 时,即n =A ,座位总数是140;当第1排座位数是B ,即n =B 时,座位总数是160,求A 2+B 2的值.2、若长方形长是2a +3b ,宽为a +b ,则其周长是( ) A.6a +8bB.12a +16bC.3a +8bD.6a +4b3、a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( ) A.b+a B.10b+a C. 100b+a D. 1000b+a4、(1)某商品先提价20%,后又降价20%出售,现价为a 元,则原价为 元。
(2)香蕉每千克售价3元,m 千克售价____________元。
(3)温度由5℃上升t ℃后是__________℃。
(4)每台电脑售价x 元,降价10%后每台售价为____________元。
(5)某人完成一项工程需要a 天,此人的工作效率为__________。
三、同类项的概念1、2275b a b a k m m k ++与为同类项,且k 为非负整数,则满足条件的k 值有( )A.1组B.2组C.3组D.无数组2、合并下列各题中的同类项,得下列结果:①4x +3y =7xy ;② 4xy -y =4x ;③ 7a -2a +1=5a +1;④ mn -3mn +2m =4mn ;⑤ -2x 2+12x 2-x 2=-52x 2; ⑥ p 2q -q 2p =0.其中结果正确的是( ) A.③⑤B.⑤⑥C.②③④D.②③④⑥3、已知yxxn m n m 2652与-是同类项,则( ) A.1,2==y x B.1,3==y x C.1,23==y x D.0,3==y x 4、下列各对单项式中,不是同类项的是( ) A .130与13B .-3x n+2y m 与2y m x n+2C .13x 2y 与25yx 2D .0.4a 2b 与0.3ab 25、下列各组中,不是同类项的一组是( )A.b a ab 2272.036.0与 B.222013yx y x 与 C.13241-和 D.n n n n x y yx 11++与四、去括号、添括号1、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
2、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
3、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x 4、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a -- 5、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 6、下列各式中去括号正确的是( ) A .()222222aa b b a a b b --+=--+B .()()222222x y x y x y x y -+--+=-++-C .()22235235x x x x --=-+D .()3232413413aa a a a a ⎡⎤---+-=-+-+⎣⎦五、单项式的次数和多项式的次数、项数1、≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
2、若m 、n 都是自然数,多项式222mn m n ab ++-的次数是( )A .mB .2nC .2m n +D .m 、2n 中较大的数3、已知单项式4312x y -的次数与多项式21228m a ab a b +++的次数相同,求m 的值。
4、若单项式2+m m b a 与单项式n b a 35的和是一个单项式,求mn5、A 是五次多项式,B 是四次多项式,则A+B 是( )A.九次多项式B.四次多项式C.五次多项式D.一次多项式 6、A 、B 、C 都是关于x 的三次多项式,则A +B -C 是关于x 的( ) A.三次多项式B.六次多项式C.不高于三次的多项式D.不高于三次的多项式或单项式7、已知,m n 是自然数,322341111712m n m n a b c a b c a b c --+--+是八次三项式,求,m n 8、8、若多项式x x a xa a +-+-)1()1(3,是关于x 的一次多项式,则a 的值为( )A. 0B. 1C. 0或1D.不能确定 9、若212112313n n n n x y z x y ----+-是六次四项式,则n=10、234233295327z y x z y x y xxy -+--是 次 项式, 其中最高次项是 ,最高次项的系数是 ,常数项是 ,是按字母 作 幂排列。
11、如果多项式1)1(3+--x n x m 是关于x 的二次二项式,试求m ,n 的值。
六、升幂、降幂排列1、将多项式3x 2y -xy 2+x 3y 3-x 4y 4-1按字母x 的降幂排列,所得结果是( ) A.-1-xy 2+3x 2y+x 3y 3-x 4y 4 B. -x 4y 4+ x 3y 3+3 x 2y -x y 2-1 C. -x 4y 4+ x 3y 3-xy 2+3x 2y -1 D. -1+3 x 2y -x y 2+x 3y 3-x 4y 42、把多项式34432252353xy xy x y x y y --+-按x 的降幂排列为3、把多项式2xy 2-x 2y -x 3y 3-7按x 的升幂排列是 七、多项式中不含项的问题 1、若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式234a -+22212(3)4b a b --的值3、已知多项式3(ax 2+2x -1)-(9x 2+6x -7)的值与x 无关,试求5a 2-2(a 2-3a +4)的值。
4、当a(x ≠0)为何值时,多项式3(ax 2+2x -1)-(9x 2+6x -7)的值恒等为4。
八、多项式中错值代换问题 1、李明在计算一个多项式减去2245x x -+时,误认为加上此式,计算出错误结果为221x x -+-,试求出正确答案。
3、有这样一道题“当22ab ==-,时,求多项式()()22233322a ab b a ab b -----+的值”,马小虎做题时把2a =错抄成2a=-时,王小明没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由。
九、整体代换问题 1、如果代数式535axbx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是2、已知:3=x y,则xy x -3等于( ) A.34 B. 1 C. 32D. 0 3、已知:x-y=5,xy=3,则3xy-7x+7y=4、已知:4,3=+=b a ab ,求]3)22(2[3+---b ab a ab 的值。
5、若)65(6)47(,3,5xy x y xy y x xy y x -+-++=-=-求的值。
6、已知:11=+x x ,则代数式51)1(2010-+++xx x x 的值是 。
7、已知32c a b =-,求代数式22523c a b a b c ----的值。
十、用字母表示的多项式中的加减 1已知两个多项式A 和B ,43344323,321,n n n A nxx x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?2、已知:A=3x+1,B=6x-3,则3A-B=3、已知:y x z y x A 54)(2-=-++,则A=4、已知:A=2244y xy x+- ,B=225y xy x -+,求(3A-2B )-(2A+B )的值。
5、已知:A =x 3+3x 2y-5xy 2+6y 3-1,B =y 3+2xy 2+x 2y-2x 3+2,C =x 3-4x 2y +3xy 2-7y 3+1.求证:A +B +C 的值与x 、y 无关.十一、整式的运算1、化简:(1){})]([])([222b b a -------- (2)21-]1)()72(7[9222-----y x y x x(3))109()7103(22n n n n x x x x x x----+++ (4)b a b a ab ab b a ab 22223]}4)214(3[{+-+--(5)]2)2(35[)223(2--+---x x x x x2、当23-=a 时,求代数式:}3]9)2(85[4{1522222a a a a a a a a -+---+--的值。
3、已知:0)31()1(222=-++++c b a ,求)]}4(3[2{5222b a ab abc b a abc ----的值。
4、已知:;)()(,,0553212=+-m x y x m 满足2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
5、如果a 的倒数就是它本身,负数b 的倒数的绝对值是31,c 的相反数是5,求代数式4a -[4a 2-(3b -4a+c )]的值。
6先化简再求值:42222222276)]3(2)25([5a b a b a a a a a a a --+---++,其中21-=a 。