几种防滑差速器的结构
- 格式:doc
- 大小:1.40 MB
- 文档页数:41
齿轮泵限滑差速器的结构设计齿轮泵限滑差速器目前我的设想有几种结构,下面我先介绍两种。
一、最较简单的结构:图1是半轴齿轮,半轴齿轮中间封闭。
图2是中间密封架中间有管道把啮合形成的腔体两两相连。
图3是差速器壳的一边,可以看到差速器壳刻有凹槽,与半轴齿轮贴合后形成管道,可以润滑差速器壳与半轴齿轮,同时可以平衡半轴齿轮旋转时产生的压力,中间的凹槽与半轴齿轮和行星齿轮啮合的中间位置相通,在产生高压时压力润滑油脂泄漏到中间凹槽后可以回流到压力较低的空间。
图4是组装图,上下斜的蓝色可以调节限滑的能力,也可以省去,左右两侧蓝色用来添加压力润滑油并封闭差速器。
这是目前最简单的结构,在半轴齿轮转动时,一侧差速器壳的的管道形成高压,另一侧形成低压,通过调节压力,润滑油在高低压区的流动可以调节限滑差速器的限滑能力,在设计好限滑以后这个也可以省去。
二、优化设计结构图1半轴齿轮。
图2中间密封架中间有管道连通,可以少去两条管道。
图3差速器壳管道布置图,绿色的部分在差速器壳上面镂空。
图4图5是管道与差速器装配的位置图。
最后的图是组装图。
这种结构大绿色圈是高压区,小绿色圈是低压区,齿轮旋转产生的高压和低压区通过图4、图5中所示蓝色高低压连通开关来转换,这种结构在半轴齿轮背面就变成了压力润滑,半轴齿轮旋转时背面始终处于高压状态。
图中紫色部分为储存压力润滑油部分,与低压管道相通,可以应对压力润滑油的热胀冷缩。
三、以上两种是较好的结构形式,通过高低压连通开关的形式,润滑效果会更好,也可以用其他的开关形式,还可以通过压力开关的形式来达到更好的限滑与差速效果。
齿轮泵限滑差速器与目前的普通差速器同样安装垫片也不影响。
差速器的结构及工作原理一、引言差速器是汽车传动系统中的重要部件之一,它在车辆转弯时起到关键作用。
本文将详细介绍差速器的结构和工作原理。
二、差速器的结构差速器主要由以下几个部分组成:1. 主齿轮主齿轮是差速器的核心部件之一,它由一组齿轮组成,通常是一对大小相等的齿轮。
主齿轮直接与车辆的传动轴相连,负责传递动力。
2. 左右半轴差速器的左右半轴分别与左右车轮相连,它们通过差速器的齿轮系统与主齿轮相连。
左右半轴负责传递主齿轮传递过来的动力到车轮。
3. 行星齿轮差速器中的行星齿轮组件是一个重要的结构,它由多个行星齿轮和一个太阳齿轮组成。
行星齿轮通过齿轮的啮合与主齿轮相连,太阳齿轮则与左右半轴相连。
4. 差速器壳体差速器壳体是差速器的外部保护结构,它起到固定和保护差速器内部零部件的作用。
差速器壳体通常由铸铁制成,具有足够的强度和刚性。
三、差速器的工作原理差速器的工作原理可以简单概括为:在直线行驶时,左右车轮需以相同的速度旋转;在转弯时,左右车轮的旋转速度可以不同。
具体来说,差速器的工作原理如下:1. 直线行驶时当车辆直线行驶时,主齿轮将动力传递给左右半轴,而行星齿轮组件则起到传递动力的作用。
由于行星齿轮的特殊结构,左右半轴的旋转速度相等,左右车轮以相同的速度旋转。
2. 转弯时当车辆转弯时,内侧车轮需要行驶更短的路径,而外侧车轮需要行驶更长的路径。
为了实现这种差异,差速器的行星齿轮组件开始发挥作用。
当车辆转弯时,内侧车轮会遇到阻力,使得行星齿轮组件中的行星齿轮被阻止旋转。
而外侧车轮则没有受到阻力,行星齿轮组件中的行星齿轮可以自由旋转。
因此,行星齿轮组件的自由旋转导致左右半轴的旋转速度差异,使得内侧车轮旋转速度较低,而外侧车轮旋转速度较高。
这样,车辆可以顺利完成转弯动作。
四、差速器的优势与应用差速器在汽车传动系统中有着重要的优势和应用:1. 提高车辆操控性能差速器可以使车辆在转弯时更加稳定和灵活,提高操控性能。
差速器得结构及工作原理(图解)汽车差速器就是一个差速传动机构,用来保证各驱动轮在各种运动条件下得动力传递,避免轮胎与地面间打滑。
当汽车转弯行驶时,外侧车轮比内侧车轮所走过得路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过得曲线长短也不相等;即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受得载荷不同或充气压力不等,各个轮胎得滚动半径实际上不可能相等,若两侧车轮都固定在同一刚性转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动得现象。
差速器得作用车轮对路面得滑动不仅会加速轮胎磨损,增加汽车得动力消耗,而且可能导致转向与制动性能得恶化。
若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样得转速转动。
为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴与车轮,使它们可用不同角速度旋转。
这种装在同一驱动桥两侧驱动轮之间得差速器称为轮间差速器。
在多轴驱动汽车得各驱动桥之间,也存在类似问题。
为了适应各驱动桥所处得不同路面情况,使各驱动桥有可能具有不同得输入角速度,可以在各驱动桥之间装设轴间差速器。
布置在前驱动桥(前驱汽车)与后驱动桥(后驱汽车)得差速器,可分别称为前差速器与后差速器,如安装在四驱汽车得中间传动轴上,来调节前后轮得转速,则称为中央差速器。
差速器可分为普通差速器与防滑差速器两大类。
普通差速器得结构及工作原理目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。
对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)与差速器壳等组成12-13(见图D-C5-6)。
(从前向后瞧)左半差速器壳2与右半差速器壳8用螺栓固紧在一起。
主减速器得从动齿轮7用螺栓(或铆钉)固定在差速器壳右半部8得凸缘上。
十字形行星齿轮轴9安装在差速器壳接合面处所对出得园孔内,每个轴颈上套有一个带有滑动轴承(衬套)得直齿圆锥行星齿轮6,四个行星齿轮得左右两侧各与一个直齿圆锥半轴齿轮4相啮合。
差速器的结构及工作原理(图解)汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。
当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等;即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的实际上不可能相等,若两侧车轮都固定在同一转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。
差速器的作用车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。
若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。
为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。
这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。
在多轴驱动汽车的各驱动桥之间,也存在类似问题。
为了适应各所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。
布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。
差速器可分为普通差速器和两大类。
普通差速器的结构及工作原理目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。
对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。
(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。
主减速器的从动齿轮7用螺栓(或)固定在差速器壳右半部8的上。
十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。
简述防滑差速器的分类及作用
防滑差速器,这玩意儿真的挺重要的,它就像是汽车的“大脑”,指挥着轮子怎么转。
你知道它有几种类型吗?
开放式差速器,这是最基础的类型,平时开车时,轮子可以以
不同的速度转。
但遇到复杂路况,比如一个轮子打滑,它就没辙了,车辆很容易失去稳定。
限滑差速器,这种差速器就聪明多了。
它里面有装置,能在轮
子打滑时限制滑动。
这样,即使有一个轮子打滑,它也能保证其他
轮子有足够的动力,让车更稳定。
托森差速器,这个更厉害,简直是差速器里的“闪电侠”。
一
旦轮子打滑,它能瞬间锁死差速器,把所有动力都传给那个有抓地
力的轮子。
这样一来,车子在极端路况下也能稳稳当当的。
防滑差速器的作用可大了去了。
它能根据路况和轮子的抓地力,智能地分配动力,让车在各种路况下都能稳稳地开。
而且,它还能
防止轮子打滑,提高车的牵引力和加速性能。
最重要的是,它还能
减少轮胎磨损,让轮胎更耐用。
所以说啊,防滑差速器真的是汽车不可或缺的一部分,有了它,我们才能更安全、更稳定地开车。
国内外限滑差速器结构及性能对比一、国内外几种常用限滑差速器简介在发达国家,限滑差速器是一种非常常用的汽车零部件,比如在欧美国家,几乎所有的皮卡都装备有限滑差速器,但在国内,限滑差速器由于价格较贵,目前只有少数厂家采用,并且只作为选装件。
由于大多数限滑差速器的结构复杂,制造成本高,同时有些关键问题不能很好的解决,因此国内的限滑差速器绝大多数从国外进口。
根据结构类型限滑差速器可以分为以下几种:图1 限滑差速器结构分类根据工作原理亦可归纳为内摩擦式、超越式、与ABS刹车系统相结合的电子限滑差速系统、齿轮变传动比式等几种,分别简述如下:1.内摩擦式:具体结构可以分为无预压摩擦片式和弹簧预压摩擦片式限滑差速器。
图2无预压摩擦片式限滑差速器图3 弹簧预压摩擦片式限滑差速器其工作原理是利用摩擦片之间的摩擦力限制半轴轮相对于差速器壳体转动,使相对转动的阻力增大,从而限制打滑。
该类型差速器工作平稳,技术成熟,在国外的高级轿车、越野车和工程机械上应用较广。
该类型差速器缺点是:①易磨损,维修难;②锁紧系数大了转向难,小了限滑功能差;③这类差速器对润滑油有特殊要求,故在选用润滑油时要兼顾齿轮和摩擦片对油的不同要求;④该型差速器结构复杂,价格较高。
2.超越式差速器:工作原理是只允许一侧半轴转的比差速器壳快,不允许比差速器壳慢,否则就被锁在差速器壳上。
由此差速器壳快的车轮上没有任何牵引力,只能被拖着走,因此在超越和给合的转换过程中工作不太平稳,转向阻力和转向时对轮胎磨损较大。
3.与ABS刹车系统相结合的电子限滑差速系统:工作原理:该限滑——防抱死系统通过传感器监视两侧半轴的转速及方向盘的转角,并根据方向盘的转角计算两侧车轮的转速比例。
若两侧车轮的转速之比与计算值之差超过给定的误差范围,便通过ABS制动系统对转速相对偏高的车轮进行适度的制动,使两轮的转速之比保持在理论值附近。
这种限滑系统的优点是工作平稳,准确,对转向毫无影响。
几种防滑差速器的结构————————————————————————————————作者: ————————————————————————————————日期:论文题目:防滑差速器的应用研究学位类别:学历硕士学科专业:车辆工程作者姓名:胡星星导师姓名:胡光艳完成时间:防滑差速器的应用研究摘要防滑差速器是对普通差速器的革新与改进,它克服了普通差速器只能平均分配扭矩的缺点,可以使大部分甚至全部扭矩传给另外一个不滑转的驱动轮,以充分利用这一驱动轮的附着力而产生足够的牵引力,大大提高了汽车在双附着系数路面上的动力性和通过性,显著改善了汽车操纵稳定性。
有效地提高了汽车行驶安全性,是普通差速器的理想替代产品。
本文对汽车差速器与防滑差速器的优缺点作了较为详细的比较分析,介绍了国内外防滑差速器的应用发展现状。
在总结楣关资料的基础上,对防滑差速器的原理和分类情况作了分析,通过分析和比较各种防滑差速器的优缺点,最终选择了一种预压弹簧摩擦片式防滑差速器作为某SUV车型的后桥差速器。
建立了各种防滑差速器防滑性能的数学计算模型。
对该防滑差速器壳体在j种不同工况下进行了有限元分祈,分析结果表明,该防滑差速器壳体的强度和刚度是足够的。
根据现有的条件和实际情况,分析研究了防滑差速器的各种试验方案,从中确定了一种试验方案,并且对该试验方案进行了详细地设计分析。
关键词:防滑差速器有限元试验应用分析Study on ApplicationofLimitedSlip Differenti alAbstractLimited slip differential isimproved accordingtoco--ondifferential.Not having thecommon.differential’sdisadvantageof div idingthe torqueinto two equal parts,limitedslipdifferential Callgive most torque or even ailtorquetoanother driving wheelwhich isnotrevolving in order tomake use of the friction of thisdrivingwheel to produce enoughtraction.Thiswill greatly increase the dynamical capability,the passing capability,thestability andthe safetyofautomobilesOlldifferentfrictionroads.Solimitedslipdifferentialis substitute for conlnlon differential.In thispaper,th eadvantage and thedisadvantage ofthe diffe rentialand the limited slipdifferential arec ompared.The application of limited slipdifferentialin the world isintroduced.The principles and the typesof limited slip differentials are discussed.Compared with allkinds oflimited slip differential,the preload spring frict ion disc limitedslip differentialwhich isused as theaxlebridge differentialin acertainSUV isselectedatlast.Then the limited slip capabilityof themathematical model of all kin ds of thelimitedslip differential isput forward.The finite elementanalysis isused to analyzethe staticstructureofthe shall of the 1imKed slip diffe rential in three different working instances.Itshows thatthe strength andthestiffness of the shell ofthe limited slip differential aresatisfied.According to the fact。
from several kinds ofthelimitedslip differential’s tests,one testis decidedand theanalysisofthe testis expounded.Keywords:Limited slipdifferential Finite element TestApplicationAnalysis第一章绪论1.1差速器汽车行驶过程中,车轮与路面存在着两种相对运动状态:即车轮沿路面的滚动和滑动。
滑动将加速轮胎的磨损。
增加转向阻力,增加汽车的动力消耗。
因此,希望在汽车行驶过程中,尽量使车轮沿路面滚动而不是滑动,以减少车轮与路面之间的滑磨现象。
当汽车转弯行驶时,内外两侧车轮在同一时问内要移动不同的距离,外轮移动的距离比较大。
若两轮用一根轴刚性连接,即两轮只能以同一转速转动,则两轮要在同一时间内移动不同距离,必然是边滚动边滑动。
若两侧驱动轮用一根轴剐性连接,即使汽车在平路上直线行驶,也难以避免车轮与路面滑磨现象。
这是因为轮胎制造中的误差、轮胎气压的差别和磨损的不均匀等都可能引起两个车轮半径不相等。
两个半径不等而用一根轴驱动的车轮,要沿直线运动,即要求在同一时间内左右轮轴心移动相同距离,则必然两个车轮要边滚动边滑动。
即使两轮半径可以认为是相等的,但沿凹凸不平的道路行驶,两轮在同一时间内其轴心移动的距离不一样,若用一根轴刚性连接左右两轮,则仍然要产生滑磨现象。
由上述可知,为了使车轮相对路面的滑磨尽可能地减少,同一驱动桥的左右两侧驱动轮不能由一根整轴直接驱动,而应由两根半轴分别驱动,使两轮有可能以不同转速旋转,尽可能地接近于纯滚动。
两根半轴则由主传动器通过差速器驱动。
在多轴驱动的越野汽车上,各驱动桥间由传动轴彼此相联系,各桥的驱动轮均以相同转速转动。
同样也会发生上述轮间无差速器时的类似现象。
并且除了上述由于车轮与路面滑磨引起的动力消耗增加、轮胎磨损加速之外,还在传动系中增加了附加载荷。
因此有些越野汽车在前后桥或各驱动桥之间装有差速器一一轴间差速器,使各桥驱动轮间有以不同转速旋转的可能。
差速器是汽车驱动桥中的重要部件,其主要功能是当汽车转弯行驶或在不平路面上行驶时,使左右驱动轮以不同的转速滚动,即保证两侧驱动轮作纯滚动运动,并将动力分配给左右驱动轮。
1.2防滑差速器当汽车在泥泞、砂地、冻结等路面上行驶,驱动轮与路面之间的附着条件相差较大时,驱动轮的一个轮子将不能从滑动中脱出,由于普通差速器的“差速不差扭”,即平均分配扭矩的特性,好路面上的车轮扭矩只得减小以与坏路面上的车轮扭矩相等,以至总的牵引力不足以克服汽车的行驶阻力,汽车出现打滑现象,从而严重影响了汽车的通过性。
而防滑差速器是对普通差速器的革新与改进,它克服了普通差速器只能平均分配扭矩的缺点,可以使大部分甚至全部扭矩传给另外一个不滑转的驱动轮,以充分利用这一驱动轮的附着力而产生足够的牵引力,大大提高了汽车在双附着系数路面上的动力性和通过性,显著改善了汽车的操纵稳定性,有效地提高了汽车的行驶安全性.是普通差速器的理想替代产品。
因此,舫滑差速器首先在越野汽车、中型和重型汽车、多功能汽车、工程机械以及拖拉机等车辆上得到广泛应用,近年轿车和商务车也有采用了。
1.3国外发展现状1.3.1近年来汽车防滑差速器的应用情况最初防滑差速器多用在越野车或工程机械上,但随着人们出行和运输的需要,人们对汽车性能的要求也越来越高,因此防滑差速器的应用也就日益广泛,装车率也迅速提高。
当前,越来越多的越野车、跑车、高级轿车及大货车,开始提供防滑差速器作为选装件。
在形式上,转矩感应式、转速感应式、主动控制式三种防滑差速器均有应用。
如兰伯基尼的魔鬼GT型车上装粘性式防滑差速器;保时捷911GT3型跑车、尼桑总统、尊爵、宝马M3跑车及国内生产的长丰猎豹V63000、开拓者SUV运动型多功能车均采用机械式或电子控制式防滑差速器。
这是因为随着人们对防滑差速器认识的深入,人们发现防滑差速器不仅可以改善汽车在坏路面上的通过性,而且防滑差速器对汽车的安全性、操纵稳定性及平顺性都有很大的改善作用。
防滑差速器技术正在成为人们提高汽车性能的一项薪技术。
作为汽车驱动防滑控制系统的一种重要实现方式,防滑差速器凭借其优越的性价比和广泛的市场前景而特别受到开发厂商的重视。
1.3.2防滑差速器国外研究现状国外对防滑差速器的研究开发比较早,早在20世纪60年代,为提高赛车的动力性和操纵稳定性,已有采用防滑差速器的例子。
从图1.1中可以看出,进入20世纪90年代以来,有关防滑差速器的专利数量有大幅度的提高,这说明国外对于防滑差速器的研究非常重视,也非常深入。
1.3.3国外防滑差速器目前,国外的防滑差速器种类品种多样,性能优良。
根据差动限制转矩的产生机理可以分为以下三种方式:转矩感应式、转速感应式和主动控制式。
(1)转矩感应式防滑差速器根据输入转矩决定差动限制转矩的方式,从实现机构上可分为外螺旋式防滑差速器和多片摩擦式防滑差速器。
多片摩擦式防滑差速器应用较广,它是依靠湿式多片离合器产生差动转矩,有转矩比例式、预压式及转矩比例式加预压式三种形式。
在日本,转矩比例加预压式的装车率最高,它是依靠小齿轮轴两端的凸轮机构使压圈扩张。
从而使设在半轴齿轮与差速器之间的湿式多片离合器产生摩擦力。
但是前述机构在单侧齿轮仍然滑转的情况下,对半轴齿轮的驱动转矩也明显减小,所以用碟形弹簧给湿式多片离合器施加预压。
典型产品有机械摩擦片式、锥盘式、蜗轮式等,如图1.2所示。
(2)转速感应式防滑差速器这是一种差动限制转矩随着转速差的增加而增加的防滑差速器,被广泛应用的是粘性装置的防滑差速器。
一旦产生转速差就可以依靠硅油的粘度、填充率、片的直径、件数等多种设计参数的不同而产生不同的防滑作用。