第10讲 数列求和与数列的简单应用
- 格式:pptx
- 大小:4.41 MB
- 文档页数:44
数列的求和与推导数列在数学中起着重要的作用,它们可以描述各种现象、规律和模式。
在数列中,我们常常需要求解数列的和以及推导数列的表达式。
本文将介绍数列求和的方法和数列推导的技巧,以帮助读者更好地理解和应用数列。
一、数列的求和求解数列的和是数学中常见且重要的问题,下面将介绍几种常用的数列求和方法。
1.1 等差数列求和等差数列是指数列中的每个数与它前面的数之差都相等的数列。
设等差数列的首项为a1,公差为d,它的第n项为an,则等差数列的前n 项和Sn可以通过以下公式求解:Sn = (n/2)(2a1 + (n-1)d)其中,n为项数,a1为首项,d为公差。
通过这个公式,我们可以轻松求解等差数列的前n项和。
1.2 等比数列求和等比数列是指数列中的每个数与它前面的数之比都相等的数列。
设等比数列的首项为a1,公比为q,它的第n项为an,则等比数列的前n 项和Sn可以通过以下公式求解:Sn = (a1 * (1 - q^n))/(1 - q)其中,n为项数,a1为首项,q为公比。
利用这个公式,我们可以迅速计算等比数列的前n项和。
1.3 其他数列求和方法除了等差数列和等比数列外,还存在其他类型的数列,它们的求和方法可能需要根据具体情况进行推导。
例如,斐波那契数列的求和方法就需要通过递推的方式来实现。
二、数列的推导数列的推导是指从已知的数列中找出其中的规律,进而推导出数列的表达式。
推导数列的表达式可以帮助我们更好地理解数列的性质和规律。
2.1 等差数列的推导对于等差数列,如果已知数列的首项a1和公差d,可以通过如下方式推导数列的表达式:an = a1 + (n-1)d其中,an表示等差数列的第n项。
通过这个推导公式,我们可以根据已知条件轻松地推导出等差数列的表达式。
2.2 等比数列的推导对于等比数列,如果已知数列的首项a1和公比q,可以通过如下方式推导数列的表达式:an = a1 * q^(n-1)其中,an表示等比数列的第n项。
数列与数列求和数列,是数学中一个非常重要的概念。
它指的是按一定规律排列在一起的一系列数,比如1, 3, 5, 7, 9……就是一个数列,其中的每个数都比前面的数大2。
数列的一个重要应用,是在计算机科学和工程学的领域中,常常用来模拟各种现实世界中的问题,例如模拟电路、物理系统、金融市场等等。
因此对于每一个数学学习者来说,理解数列是非常重要的。
数列求和,就是将数列中每个数相加的结果。
以1, 2, 3, 4, 5为例,这个数列的求和结果就是1+2+3+4+5=15。
这个概念在数学中也非常重要,因为在很多问题中,我们需要将一个数列的所有数加起来,以得到一个总和,这个总和经常可以揭示数列的某些性质,例如递推公式、平均数等等。
对于一些规律简单的数列,我们很容易使用求和公式求出它们的和。
例如1, 2, 3, ……n这个数列,其求和公式为n(n+1)/2。
当n=5时,这个数列的求和结果为5×6/2=15。
又比如说1, 3,5, ……2n-1这个数列的求和公式为n²,当n=3时,这个数列的求和结果为3²=9+7+5=19。
除了这些规律简单的数列,还有很多数列需要通过复杂的推导才能得到它们的求和公式。
例如我们要求1²+2²+3²+……+n²这个数列的和。
最简单的方法是把每一个数的平方单独求出来,再把它们相加得到总和。
但是如果n很大,这个方法就显得非常麻烦。
因此我们需要一种更为高效的方法来求出这个数列的和。
一个非常巧妙的方法,就是利用等差数列和等比数列的求和公式来得出1²+2²+3²+……+n²的求和公式。
具体来说,我们可以通过计算(2n+1)×(n+1)×n/6来得到这个数列的求和公式。
当n=5时,这个数列的求和结果就是(2×5+1)×(5+1)×5/6=55。
第十讲数列与数表兴趣篇1.观察数组(1,2,3),(2,3,4),(3,4,5),…的规律。
求:(1)第10组中三个数的和;(2)前10组中所有数的和。
2.请观察下列数列的规律:1,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3, (100)问:(1)这个数列一共有多少项?(2)这个数列所有数的总和是多少?3.一个数列的第一项是1,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍。
请问:(1)第100项是多少?(2)前100项的和是多少?出“?”处的数。
5.如图,数阵中的数是按一定规律排列的。
请问:(1)100在第几行、第几列?(2)第20行第3列的数是多少?第1列第2列第3列第4列第5列第6列第1行 1 2 3 4第2行 5 6 7 8第3行9 10 11 12第4行13 14 15 16第5行17 ……………………6. 如图,从4开始的自然数是按某种规律排列的。
请问:(1)100在第几行第几列?(2)第5行第20列的数是多少?7. 如图,把偶数2,4,6,8…排成5列,各列从左到右一次为第1列、第2列、第3列、第4列和第5列。
请问:(1)100在第几行第几列? (2)第20行第2列的数是多少?8.如图,从1开始的连续奇数按某种方式排列起来。
请问:(1)第10行左起第3个数是多 少?(2)99在第几行左起第几个数?9.如图。
从1开始的自然数按某种方式排列起来。
请问:(1)100在第几行?100是这一行左起第几个数?(2)第25行左起第5个数是多少?1 2 3 6 5 4 7 8 9 10 15 14 13 12 11 … … … … … … … … …4 11 12 19 20 ... 5 13 ... 6 10 14 18 ... 7 15 ... 8 9 16 17 ... 2 4 6 8 14 12 10 16 18 20 22 28 26 24 ... ... (1)3 5 79 11 13 15 1719 21 23 25 27 29 31… … …10.如图。
数列与数列求和等比数列求和公式及应用数列与数列求和等比数列求和公式及应用数列是一组按特定规律排列的数的集合,而数列求和则是计算数列中所有数之和的过程。
在数学中,等比数列是一种特殊的数列,它的每一项都是前一项与相同的常数(称为公比)相乘得到的。
在本文中,我们将介绍等比数列的求和公式以及其应用。
一、等比数列求和公式设等比数列的首项为a₁,公比为r,项数为n。
我们需要求解等比数列的前n项之和Sn。
1. 当公比r不等于1时,等比数列求和公式为:Sn = a₁ * (1 - r^n) / (1 - r)2. 当公比r等于1时,等比数列求和的结果就是其首项与项数的乘积,即:Sn = a₁ * n二、应用实例等比数列求和公式在实际问题中有广泛的应用,以下是一些常见的例子。
1. 财务应用:假设你每天存款的利率是0.03,第一天存入100元,第二天存入100 * 0.03 = 103元,以此类推。
问存了10天后,一共存入了多少钱?第一项a₁ = 100,公比r = 0.03,项数n = 10。
代入等比数列求和公式可得:Sn = 100 * (1 - 0.03^10) / (1 - 0.03) ≈ 1038.55元因此,存了10天后,一共存入了约1038.55元。
2. 物理应用:在物理学中,速度、加速度等与时间有关的量常常构成等比数列。
例如,一个物体以每秒钟减速50m/s²的速度匀减速运动,从初始速度200m/s开始,问经过5秒钟后,物体的总位移是多少?第一项a₁ = 200,公比r = -50/200 = -0.25,项数n = 5。
代入等比数列求和公式可得:Sn = 200 * (1 - (-0.25)^5) / (1 - (-0.25)) ≈ 268.75m因此,经过5秒钟后,物体的总位移约为268.75m。
3. 经济应用:在经济学中,利润、市场份额等指标常常构成等比数列。
例如,某公司的利润在第一年为1万美元,每年增长20%。
数列求和与数列的综合应用 一、分组求和法:若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减。
1、已知数列{}n a 的前n 项和*∈+=N n nn S n ,22.(1)求数列{}n a 的通项公式;(2)设()n na n ab n 12-+=,求数列{}n b 的前n 2项和T 2n .2、已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和S n .二、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
(2)常见的裂项技巧①1n (n +1)=1n -1n +1②1n(n+2)=12(1n−1n +2) ③1(2n −1)(2n+1)=12(12n−1−12n +1)④1n +n +1=n +1-n 3、设数列{}n a 满足123(21)2n a a n a n +++-= .(1)求{}n a 的通项公式;n .4、已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .三、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的。
5、已知 a n 是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3(1)求数列 a n 通项公式;(2) b n 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列 b na n 的前n 项和T n .6、已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和T n *()n ∈N .四、分奇数、偶数求和(课后作业)7、设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且(1)证明:23n n a a +=;(2)求n S8、已知数列{}n a 的前n 项和为n S ,若a 1=2,a n +1+a n =2n −1(1) 求数列{}n a 的通项公式(2) 求n S。
第10讲 数列求和:并项求和法参考答案与试题解析一.选择题(共7小题)1.(2021春•吉安县期中)数列满足,则前40项和为 A .940B .820C .1830D .1880【解答】解:由,可得为奇数时,;为偶数时,.设,则,,,,,,,,所以前40项和为.故选:.2.(2021秋•麒麟区校级月考)已知数列的前项和,数列满足,记数列的前项和为,则 A .2021B .2021C .2018D .2021【解答】解:由数列的前项和为,当时,;当时,,上式对时也成立,,,函数的周期,.故选:.3.(2021•未央区校级模拟)数列满足,,若,且数列的前项和为,则 {}n a 1(1)21n n n a a n ++-=-{}n a ()1(1)21n n n a a n ++-=-n 121n n a a n +-=-n 121n n a a n ++=-1a t =21a t =+32a t =-47a t =-5a t =69a t =+72a t =-815a t =-...{}n a 1234567837383940()()...()a a a a a a a a a a a a ++++++++++++1102642...15410(10154)8202=++++=⨯⨯+=B {}n a n 2n S n n =-{}n b 1sin 2n n n b a π+={}n b n n T 2017(T =){}n a n 2n S n n =-1n =11110a S ==-=2n …221[(1)(1)]22n n n a S S n n n n n -=-=-----=-1n =22n a n ∴=-∴cos2(1)cos22n n n n b a n ππ==- cos2n y π=242T ππ==2017152013262143720154820162017()()()()T b b b b b b b b b b b b b ∴=++⋯++++⋯++++⋯++++⋯++201702(152013)02(372015)4032cos450420162π=-++⋯+++++⋯++=⨯=A {}n a 11a =1(1)(1)n n na n a n n +=+++2cos 3n n n b a π={}n b n n S 11(S =)A .64B .80C .D .【解答】解:数列满足,,则,可得数列是首项为1、公差为1的等差数列,即有,即为,则,则.故选:.4.(2021秋•南昌月考)已知数列满足,则的前20项和 A .B .C .D .【解答】解:数列满足,则的前20项和.故选:.5.(2021秋•内蒙古期末)已知数列是首项为,公比的等比数列,且.若数列的前项和为,则 A .B .C .D .【解答】解:数列是首项为,公比的等比数列,可得,,64-80-{}n a 11a =1(1)(1)n n na n a n n +=+++111n na a n n+=++{}n anna n n=2n a n =222coscos33n n n n b a n ππ==22222222222111(1245781011)(369)2S =-++++++++++222222222222221(1233456678991011)2=-+--++---+--++1(5234159)642=-⨯+++=-C {}n a *22()n n n a a n N ++=∈{}n a 20(S =)20215-20225-21215-21225-{}n a *22()n n n a a n N ++=∈{}n a 2013192420()()S a a a a a a =++⋯++++⋯+5172618(222)(222)=++⋯++++⋯+45245442[(2)1]2[(2)1]2121--=+--21225-=D {}n a 12a =2q =1n n n b a a +=+{}n b n n S (n S =)323n -g 1323n +-g 32ng 1326n +-g {}n a 12a =2q =112232n n n n n n b a a ++=+=+=g 6(12)62612n n n S -==--g故选:.6.(2021春•万载县校级期末)若数列的通项公式是,则等于 A .60B .C .90D .【解答】解:由,可得.故选:.7.(2021春•成都期末)已知数列满足,为的前项和,则 A .300B .320C .340D .360【解答】解:因为,所以当为偶数时,有,,,;,,,.当为奇数时,有,,,,,,,,.故选:.二.解答题(共10小题)8.(2021•山东)在等差数列中,已知公差,是与的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)设,记,求.【解答】解:(Ⅰ)是与的等比中项,D {}n a (1)(32)n n a n =--1260a a a ++⋅⋅⋅+()60-90-(1)(32)n n a n =--1260(14)(710)(1316)...(175178)a a a ++⋅⋅⋅+=-++-++-+++-+33...333090=+++=⨯=C {}n a 1(1)31n n n a a n ++-=+n S {}n a n 20(S =)1(1)31n n n a a n ++-=+n 131n n a a n ++=+2134n n a a n ++∴-=+265n n a a n +∴+=+2462517a a ∴+=⨯+=6866541a a +=⨯+=⋯182********a a +=⨯+=∴24205(17113)3252a a a ⨯++++== n 131n n a a n +-=+2134n n a a n ++∴+=+23n n a a +∴+=133a a ∴+=573a a +=⋯17193a a +=13195315a a a ∴+++=⨯= 2012320S a a a a ∴=++++ 13192420()()a a a a a a =+++++++ 32515340=+=C {}n a 2d =2a 1a 4a {}n a (1)2n n n b a +=1234(1)n n n T b b b b b =-+-+-⋯+-n T 2a 1a 4a在等差数列中,公差,,即,化为,解得..(Ⅱ),.当时,.当时,.故.(也可以利用“错位相减法” 9.(2021•天津)已知是等比数列,前项和为,且,.(1)求的通项公式;(2)若对任意的,是和的等差中项,求数列的前项和.【解答】解:(1)设的公比为,则,即,解得或.若,则,与矛盾,不符合题意.,,.214 {}n a 2d =∴2111()(3)a d a a d +=+2111(2)(32)a a a +=+⨯2122a =12a =1(1)2(1)22n a a n d n n ∴=+-=+-⨯=(1)2(1)n n n b a n n +==+ 1234(1)1(11)2(21)(1)(1)n n n n T b b b b b n n ∴=-+-+-⋯+-=-⨯++⨯+-⋯+-+g *2()n k k N =∈2212(21)(21)(211)4k k b b k k k k k --=+---+=2143221()()()n k k T b b b b b b -=-+-+⋯+-(1)(2)4(12)42(1)22k k n n k k k ++=++⋯+=⨯=+=*21()n k k N =-∈2143222321()()()n k k k T b b b b b b b ---=-+-+⋯+--(1)(1)(1)2n n n n -+=-+2(1)2n +=-2(2),2(*)2(1),21(*)2n n n n k k N T n n k k N +⎧=∈⎪⎪=⎨+⎪-=-∈⎪⎩){}n a n *()n S n N ∈123112a a a -=663S ={}n a *n N ∈nb 2log n a 21log n a +2{(1)}n nb -2n {}n a q 2111112a a q a q -=2121q q -=2q =1q =-1q =-60S =663S =2q ∴=616(12)6312a S -∴==-11a ∴=(2)是和的等差中项,..是以为首项,以1为公差的等差数列.设的前项和为,则.10.(2021秋•东丽区校级月考)已知数列的各项均为正数,其前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)若,数列满足,求数列的前项和;(Ⅲ)数列满足为非零整数),都有恒成立,求实数的值.【解答】解:(Ⅰ)当时,,得或,(舍,当时,.则,即,,,即数列是公差为1的等差数列,则,.(Ⅱ)当是奇数时,,当是偶数时,,则数列的前项和.n n b 2log n a 21log n a +221211(log log )(log 222n n n b a a +∴=+=12log 2n -+1)2n n =-11n n b b +∴-={}n b ∴122{(1)}n nb -2n n T 2222221234212()()()n n n T b b b b b b -=-++-++⋯+-+1234212n nb b b b b b -=+++⋯++12112222222n n b b n n +-+==g 22n ={}n a n n S 22nn n a S a =-2n n b ={}n c 22sin cos 22n n n n n c a b ππ=⋅-⋅{}n c 2n 2n T {}n d 1*3(1)2()(n a n n n d n N λλ-=+-⋅∈1n n d d +>λ1n =211112a a a a =-=11a =10a =)2n (2)1112n n n a S a +++=-22111122n n n n n n n n a a S a S a a a ++++-=--+=+111()()n n n n n n a a a a a a ++++-=+0n a > 11n n a a +∴-={}n a 11n a n n =+-=*n N ∈n 22sin cos 22n n n n n n c a b a n ππ=⋅-⋅==n 2n n n c b =-=-{}n c 2n 21221211(121)4(41)14424133n nnn n i i i i n n T c c n +-==+--=+=-=-⋅+-∑∑(Ⅲ),恒成立,当是奇数时,得,得,从而,当是偶数时,得,得,从而,为非零整数,.11.设是等比数列,是递增的等差数列,的前项和为,,,,.(Ⅰ)求与的通项公式;(Ⅱ)设,,求.【解答】解:(Ⅰ)设等比数列的公比为,递增的等差数列的公差为,由,,,,可得,,解得,(舍去)或,,所以,;(Ⅱ)当时,,,2,,,设;当时,,设,所以.12.(2021春•武清区校级期末)已知等比数列的各项均为正数,,,成等差数列,且满足,数列的前项和,,且.(1)求数列和的通项公式;11111113(1)23(1)23(1)23(1)2233(2)n n a a n n n n n n n n n n n n n n d d λλλλλ++-++-+-=+-⋅---⋅=+-⋅---⋅=⨯+-1n n d d +> ∴n 233(2)0n n λ⨯+->23320n n λ⨯->13(2n λ-<1λ<n 233(2)0n n λ⨯+->23320n n λ⨯+>13()2n λ->-32λ>-λ 1λ∴=-{}n a {}n b {}n b n (*)n S n N ∈12a =11b =413S a a =+213a b b =+{}n a {}n b 2(1),2(1)(24),21(1)(3)k k k n n nn b n kd b n k b b ⎧-=⎪=-+⎨=-⎪++⎩k N +∈41ni i d =∑{}n a q {}n b (0)d d >12a =11b =413S a a =+213a b b =+24622d q +=+2112q d =++1q =0d =2q =1d =2n n a =n b n =2()n k k N +=∈22(1)k n k d d k ==-1k =...2n 222222244...(12)(34)...[(21)(2)]1234...(21)2n A d d d n n n n =+++=-++-+++--+=+++++-+22(12)22n n n n +==+21()n k k N +=-∈21212121(1)(24)(1)(42)(1)(3)2(22)k k k n k k k b k d d b b k k -----+-+===+++121111(1)(1)()2(1)21k k k k k k k +=-⋅⋅=⋅-+++134111111111...(1...)(1)2223221221n B d d d n n n -=+++=--++-++=-++421112422ni i d A B n n n ==+=++-+∑{}n a 52a 4a 64a 2434a a ={}n b n (1)2n n n S b +=*n N ∈11b ={}n a {}n b(2)设,,数列的前项和为,求证:;(3)设,求的前项和.【解答】解:(1)设等比数列的公比为,,,成等差数列,且满足,,,解得:,..数列的前项和,,且.时,,化为:,可得.(2)证明:,数列的前项和为,单调递增,,.(3)设,设数列的前项和为,221223n n n n b c b b +++=*n N ∈{}n c n n A 51364n A <…2(1)[(1)(1)]n n n n n d b a b =-+++{}n d n n T {}n a 0q >52a 4a 64a 2434a a =2444224a a q a q ∴=+22333144a q a a a q ==12q =112a =1()2n n a ∴={}n b n (1)2n n n S b +=*n N ∈11b =2n ∴…11(1)22n n n n n n nb S S b b --+=-=-1211121n n b b b bn n -==⋯===-n b n =22222212232311(1)(2)(1)(2)n n n n n c b b n n n n ++++===-⋅++++∴{}n c n 2222222111111112334(1)(2)4(2)n A n n n =-+-+⋯+-=-+++n A 114n A A ∴<…∴51364n A < (221)(1)[(1)(1)](1)((1)(1)()2n n n n n n n d b a b n n =-+++=-+++⨯-1{(1)()}2n n +⨯-n n H则,,,.时,,的前项和.时,,的前项和.为偶数时,数列的前项和.为奇数时,数列的前项和.13.(2021春•温州期中)设等差数列的前项和为,公差为,已知,.(1)求数列的通项公式;(2)若,求数列的前项和.【解答】解:(1)由题意得,解得,数列的通项公式为.(2),当为奇数时,;231111112()3()4(()(1)()22222n n n H n n -=⨯-+⨯-+⨯-+⋯+⨯-++⨯-23411111112()3()4()()(1)()222222n n n H n n +-=⨯-+⨯-+⨯-+⋯+⨯-++⨯-∴2341111[1()]31111111221(()()()(1)()(1)(1222222221()2n n n n n H n n ++---=-+-+-+-+⋯+--+⨯-=-+-+⨯---5351()992n n n H +∴=-+⨯-2n k =*k N ∈2{(1)((1)}n n -+n 222222(21)(3)3254(1)23122n n n n n B n n n n +++=-+-++-=++⋯+++==21n k =-*k N ∈2{(1)((1)}n n -+n 2221(1)(4)34(2)(2)22n n n n n n B B n n +++++=-+=-+=-n ∴{}n d n (3)5351(2992n n n n n T ++=-+⨯-n {}n d n 2345351()2992n n n n n T +++=--+⨯-{}n a n n S d 11a =39S ={}n a 2(1)n n n b a =-⋅{}n b n n T 3133339S a d d =+=+=2d ={}n a 12(1)21n a n n =+-=-2222(21),(1)(1)(21)(21),nnn nn n n b a b n n n ⎧--=-⋅==--=⎨-⎩为奇数为偶数n 222222222(1)(123)13579(23)(21)2(135723)(21)2(21)212n n n T n n n n n n -+-=-+-+-+⋯+---=++++⋯+---=⨯--=-+当为偶数时,,所以.14.(2021•福建模拟)记为等比数列的前项和,已知,.(1)求;(2)求数列的前项和.【解答】解:(1)当时,由可得,两式相减,可得,即,依题意,为等比数列,故.令,则由可得,即;(2)由(1)可知为首项等于1,公比等于2的等比数列,故;故为首项等于,公比等于的等比数列,故,故数列的前项和.15.(2021•天心区校级一模)已知等差数列的前项和为,且满足,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【解答】解:(1)设等差数列的公差为,则由题意可得,解得,,所以数列的通项公式为;(2)因为,n 2222222(121)13579(23)(21)2(13572321)222n n n T n n n n n +-=-+-+-+⋯--+-=++++⋯+-+-=⨯=2221,2,n n n T n n ⎧-+=⎨⎩为奇数为偶数n S {}n a n 11a =1n n S a t +=+t {(cos )}n n a π⋅n 2n …1n n S a t +=+1n n S a t -=+1n n n a a a +=-12n n a a +={}n a 22a =1n =1n n S a t +=+12S a t =+12121t S a a a =-=-=-{}n a 12n n a -={(cos )}n n a π⋅1-2-1(1)(2)n n a -=-⋅-{(cos )}n n a π⋅n 1(2)11(2)1(2)33n n n T -+-==⨯----{}n a n n S 38a =572S a ={}n a {}n b 1cos 2n n n b a n π+=+{}n b 2n 2n T {}n a d 111285452(6)2a d a d a d +=⎧⎪⎨⨯+=+⎪⎩12a =3d ={}n a *23(1)31,n a n n n N =+-=-∈11cos 2(1)2n n n n n n b a n a π++=+=-+所以.16.(2021秋•运城期中)已知正项数列的前项和为,满足,.(1)求数列的通项公式;(2)设,求数列的前项和的表达式.【解答】解:(1)正项数列的前项和为,满足,所以,整理得:,由于数列为正项数列,(常数),所以是以1为首项,1为公差的等差数列,,故,所以(首项符合通项).由于,,当为奇数时,,为偶数时,,所以,,,,所以.17.(2021秋•郸城县校级月考)已知为数列前项和,.(Ⅰ)求和;(Ⅱ)若,求的值.23122143221()()()(222)n n n n T a a a a a a +-=-+-+⋯+-+++⋯+22222(12)332412n n n n +-=+=+--{}n a n n S 2,*)n a n n N =∈…11a ={}n a 1cos n n n nb n a a π+=g{}n b 2n 2n T {}n a n n S 2,*)n a n n N =+∈…1n n S S --=1)0-=1=11n n =+-=2n S n =121n n n a S S n -=-=-11111(22121n n a a n n +=--+111cos cos [()]22121n n n n n b n n a a n n ππ+==--+g n cos 1n π=-n cos 1n π=111(1)23b =--2211()235b =-3311()257b =--⋯21232121112121313141412111211((223232525272729243412414141nn n n n n Tb b b b b n n n n n --=+++⋯++=-+⨯+⨯-⨯-⨯+⨯+⨯-⨯+⋯+-+-=----++n S {}n a n (2sin )(2cos )2n n a n n ππ+=+4k a 41()k a k Z -∈24n S an bn =+a b -【解答】(Ⅰ)解:由已知:.,,又,.(Ⅱ)又由已知:,得:,,得:.所以,,解得:,,.(2sin )(2cos )2n n a n n ππ+=+4(2sin 2)4(2cos 4)()k a k k k k Z ππ∴+=+∈46()k a k k Z ∴=∈41[2sin(2)](41)[2cos(41)]2k a k k k πππ-+-=-+-4141k a k -∴=-42[2sin(2)](42)[2cos(42)]k a k k k πππ-+-=-+-4263k a k -=-433[2sin(2)](43)[2cos(43)]2k a k k k πππ-+-=-+-43413k k a -=-412348128133631542336971233S a b a a a a S a b a a a ⎧=+=+++=+++⎪⎪⎨⎪=+=++⋯+=+++++++⎪⎩263a =113b =5a b ∴-=。
等差数列的求和与应用等差数列是数学中常见的序列类型,其中每个数与它的前一个数之差相等,这个固定的差值称为公差。
在实际问题中,等差数列的求和公式被广泛应用,能够帮助我们快速计算出大量数字的总和。
本文将介绍等差数列的求和公式及其应用,并探讨其中的数学原理和推导过程。
一、等差数列的求和公式对于一个等差数列的求和问题,我们需要知道公差、首项和末项的值。
在示例中,我们假设公差为d,首项为a1,而最后一项为an。
等差数列的求和公式如下:S = (n/2)(a1+an)其中,n为项数,S表示等差数列的和。
这是一个常用的等差数列求和公式,它能够简化计算过程,尤其是在需要求和的数字较多时。
二、等差数列求和公式的应用等差数列求和公式的应用非常广泛,尤其在数学和物理学领域。
以下是一些常见的应用场景:1. 数字序列求和等差数列求和公式适用于求解某个连续数字序列的总和。
通过找到公差、首项和末项的值,我们可以直接代入公式求解,无需逐个相加。
这对于大量数据的求和问题非常实用,能够提高计算效率。
2. 平均数的计算在等差数列中,每一项都等于前一项加上公差。
因此,等差数列的平均数等于首项与末项的平均值。
这个结论在实际问题中非常有用,能够帮助我们快速计算出一组数字的平均值。
3. 生活中的应用等差数列的求和公式也用于解决日常生活中的一些实际问题。
例如,电影院的座位排列、楼梯的台阶数、音乐会的座位数等。
通过分析问题,我们能够将它们转化为等差数列的求和问题,从而便于解决。
三、等差数列求和公式的推导等差数列求和公式的推导可以通过数学归纳法来完成。
以下是该推导的步骤:1. 首先考虑等差数列的前n项和Sn。
2. 使用数学归纳法证明Sn的表达式为Sn = (n/2)(a1 + an)。
3. 基本情况:当n = 1时,Sn = a1,与公式相符。
4. 假设等差数列前k项和的表达式为Sk = (k/2)(a1 + ak)。
5. 当n = k + 1时,将其分解为前k项和加上第k + 1项,即Sn+1 = Sk + (k + 1)。
数列的求和公式及其应用与推导数列是数学中常见的一种数学对象,它由一系列有序的数字组成。
在实际应用中,数列的求和公式是一种非常重要的工具,它可以帮助我们快速计算数列的和,并且在各种领域中有广泛的应用。
一、数列的定义和基本性质数列是由一系列有序的数字按照一定的规律排列而成的。
一般来说,数列可以用以下形式表示:{a₁, a₂, a₃, ...},其中a₁, a₂, a₃, ...表示数列中的各个元素。
数列的第一个元素a₁称为首项,数列的第n个元素aₙ称为第n项。
数列的求和公式是指将数列中的所有元素相加得到的和。
在数列的求和公式中,常见的有等差数列求和公式和等比数列求和公式。
二、等差数列的求和公式及其应用与推导等差数列是指数列中的各个元素之间的差值是一个常数。
例如,{1, 3, 5, 7,9, ...}就是一个等差数列,其中首项为1,公差为2。
对于等差数列,我们可以通过求和公式来快速计算其和。
等差数列的求和公式如下:Sn = (n/2)(a₁ + aₙ)其中,Sn表示等差数列的和,n表示数列的项数,a₁表示首项,aₙ表示末项。
应用举例:假设我们有一个等差数列{2, 5, 8, 11, 14, ...},我们想要计算前10项的和。
首先,我们可以确定数列的首项为2,公差为3。
然后,根据等差数列的求和公式,我们可以得到:S10 = (10/2)(2 + 2 + 9*3) = 55因此,前10项的和为55。
三、等比数列的求和公式及其应用与推导等比数列是指数列中的各个元素之间的比值是一个常数。
例如,{2, 4, 8, 16, 32, ...}就是一个等比数列,其中首项为2,公比为2。
对于等比数列,我们同样可以通过求和公式来计算其和。
等比数列的求和公式如下:Sn = a₁(1 - rⁿ)/(1 - r)其中,Sn表示等比数列的和,n表示数列的项数,a₁表示首项,r表示公比。
应用举例:假设我们有一个等比数列{3, 6, 12, 24, 48, ...},我们想要计算前5项的和。
数列求和公式的推导与应用数列是数学中常见的概念,它是由一系列按照特定规律排列的数所组成的序列。
在数列中,我们经常需要求解数列的和,这就需要用到数列求和公式。
本文将探讨数列求和公式的推导与应用。
一、等差数列求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以利用求和公式来计算其前n项和。
假设等差数列的首项为a1,公差为d,前n项和为Sn。
首先,我们将等差数列的前n项写出来:a1, a1+d, a1+2d, ..., a1+(n-1)d。
然后,我们将这n项分成两组,每组分别从首项和末项开始,逐项相加。
我们可以发现,每组的和都是相等的,并且和的值等于首项和末项之和。
第一组的和为:a1 + a1 + d + a1 + 2d + ... + a1 + (n-1)d第二组的和为:a1 + (a1 + (n-1)d) + a1 + (a1 + (n-2)d) + ... + a1 + d将两组的和相加,得到:2(a1 + a1 + d + a1 + 2d + ... + a1 + (n-1)d) = n(a1 + a1 + (n-1)d)化简上式,得到:2Sn = n(2a1 + (n-1)d)最后,将上式两边同时除以2,得到等差数列的求和公式:Sn = (n/2)(2a1 + (n-1)d)这就是等差数列求和公式的推导过程。
利用这个公式,我们可以方便地计算等差数列的前n项和。
二、等比数列求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以利用求和公式来计算其前n项和。
假设等比数列的首项为a1,公比为r,前n项和为Sn。
首先,我们将等比数列的前n项写出来:a1, a1*r, a1*r^2, ..., a1*r^(n-1)。
然后,我们将这n项相加,得到:Sn = a1 + a1*r + a1*r^2 + ... + a1*r^(n-1)接下来,我们将Sn乘以公比r,并将这两个式子相减,得到:Sn*r = a1*r +a1*r^2 + ... + a1*r^(n-1) + a1*r^n将上式两边相减,得到:Sn*(1-r) = a1*r^n - a1化简上式,得到等比数列的求和公式:Sn = (a1*(1-r^n))/(1-r)这就是等比数列求和公式的推导过程。