锁相技术名词解释、简答题和计算公式
- 格式:doc
- 大小:318.03 KB
- 文档页数:6
机械原理锁相
机械原理:
机械原理是机械工程学的一个分支,主要研究机械的工作原理和设计,探讨机械的运动学、动力学、静力学、材料力学等方面的原理。
机械原理应用于机械工程领域,为机械的设计、制造、维护提供理论和技术支持。
锁相:
锁相是一种信号处理技术,用于提取和恢复信号的周期性特征。
锁相技术可以通过控制周期性信号的相位,使其与参考信号保持同步,从而准确地测量信号的频率、相位和幅值等参数。
锁相技术广泛应用于光电子学、通信、控制系统、测量仪器等领域。
锁相可以通过电路实现,也可以通过软件算法实现。
在锁相技术中,通常采用相位锁定环路(PLL)实现对周期性信号的同步。
PLL 由相位检测器、低通滤波器、振荡器和分频器等组成,可以自动跟踪信号相位的变化,保持参考信号和输入信号的同步。
锁相技术还可以应用于信号调制、频率合成、降噪等方面。
锁相技术原理及应用学号:0808224030姓名:吕社钦第一章 锁相环路的基本工作原理第一节 锁定与跟踪的概念 一、相位关系描述锁相环路(PLL)是一个相位跟踪系统,方框表示如图1-1(a)。
图1-1 相位跟踪系统框图设输入信号 (1-1) 式中U i 是输入信号的幅度;ωi 是载波角频率;θi(t)是以载波相位ωit 为参考的瞬时相位。
若输入信号是未调载波,θi(t) 即为常数,是ui(t)的初始相位;若输入信号是角调制信号(包括调频调相),θi(t)即为时间的函数。
设输出信号 (1-2) 式中Uo 是输出信号的幅度;ωo 是环内被控振荡器的自由振荡角频率,它是环路的一个重要参数;θo(t)是以自由振荡的载波相位ωot 为参考的瞬时相位,在未受控制以前它是常数,在输入信号的控制之下,θo(t)即为时间的函数。
(注: 锁相环路是一个相位反馈控制系统,输入信号ui(t)对环路起作用的是它的瞬时相位,幅度通常是固定的.输出信号u0(t)的幅度Uo 通常也是固定的,只是其瞬时相位受输入信号瞬时相位的控制.因此,我们希望直接建立输出信号瞬时相位与输入信号瞬时相位之间的控制关系.我们先讨论两个不同频率信号之间的相位关系.)图1-2 输入信号和输出信号的相位关系图1-2(a)所示。
从图上可以得到两个信号的瞬时相位之差 (1-3)前面已经说到,被控振荡器的自由振荡角频率ωo 是系统的一个重要参数,它的载波相位ωot 可以作为一个参考相位。
这样一来,输入信号的瞬时相位可以改写为(1-4)令 (1-5)()sin[()]i i i i u t U t t ωθ=+()cos[()]o oo o u t U t t ωθ=+()[()][()]()()()e i i o o i o i o t t t t t t t t θωθωθωωθθ=+-+=-+-()()()i i o i o i o i o t t t t t ωθωωωθωωω+=+-+∆=-为输入信号频率与环路自由振荡频率之差,称为环路的固有频差。
锁相鉴频的原理。
锁相鉴频(也称锁相技术)是一种利用两个信号之间的相位关系来稳定振荡器的频率的一种技术。
它的原理是当电路中有一个特定频率的振荡器,而另一个被锁定的振荡器则可以调节该振荡器的频率,使其保持与另一个振荡器的频率相同。
锁相鉴频的基本原理是,使用一个参考振荡器来稳定另一个待测振荡器的频率,这样另一个振荡器的频率就可以与参考振荡器的频率保持一致。
由于参考振荡器的频率已知,因此可以推测待测振荡器的频率。
两个振荡器之间的差分频率也可以得到,这就是锁相鉴频的基本原理。
锁相鉴频系统通常由一个锁相鉴频控制器、一个待测振荡器和一个参考振荡器组成。
锁相鉴频控制器用于比较两个振荡器之间的相位差,并给出该相位差和各自频率的偏差,以调整待测振荡器的频率,使其与参考振荡器的频率保持相等。
锁相鉴频技术在很多领域都有广泛应用,例如航空航天、汽车电子、航天测控、电信传输、电力系统、科学仪器仪表等。
它可以实现较高精度的频率稳定度,是集效率、精度和可靠性于一体的技术。
锁相技术--模拟调频调相的调制器通信工程(2)班一、模拟调频调相的原理1、调频与调相信号设幅度为1的单一频率Ω的调制信号)(1)t=tu)sin(Ω(ϕ+F则调频信号为[]{}t t u U t u F c c FM )(sin )(ωω∆+= (2)式中c ω为载频;c U 为载波幅度;ω∆为峰值频偏。
将(1)式带入(2)式得[]{}t t u U t u c c FM )sin(sin )(ϕωω+Ω∆+= 已调信号的幅度为常数,其瞬时频偏正比于调制信号。
调频信号也可以用频谱来表示。
单一频率Ω正弦信号调制的调频信号,其频谱不再像条幅信号那样是三条谱线,而是有无限多的谱线。
谱线的频率为Ω±Ω±Ω±n c c c ωωω,...,2,,其中n 为正整数。
第n 对谱线的幅度为(设1=c U ))()()(mf J J n A n n c =Ω∆=Ω±ωω 式中)(mf J n 是n 阶贝塞尔函数;mf 为调频指数。
调频信号可分为窄带和宽带两类。
所谓窄带调频信号是指峰值频偏ω∆远小于条调制频率Ω,即mf <<1.这时,只有n=0和n=1的内塞尔函数有值,调频信号只有三条谱线,其带宽为)(2Hz B FM πΩ±=。
所谓宽带调频信号是指mf >>1,有很多谱线。
作为一个粗略的近似,可以忽略mf n >的那些频谱,其带宽可近似为)(2Hz B FM πω∆±=。
2、调相信号调相信号的特征是其瞬时相位与调制信号成正比,可表示为)](sin[)(t u t U t u F c c PM ϕω∆+=(3) 式中ϕ∆为峰值相偏。
若调制信号仍同(1)式,则代入第(3)式得[])sin(sin )(ϕϕω+Ω∆+=t t U t u c c PM 它的频谱也包含有一组间隔为Ω的谱线。
频谱为Ω±n c ω的频谱幅度为(设1=c U ))()(ϕω∆=Ω±n c J n A 。
名词解释和简答题整理第一章锁相环路的基本工作原理:1.锁相环(PLL)---锁相环是一个能够跟踪输入信号相位的闭环自动控制系统。
2.捕获带:环路能通过捕获过程而进入同步状态所允许的最大固有频差|Δωo|max。
3.同步带:锁相环路能够保持锁定状态所允许的最大固有频差|Δωo|max。
4.快捕带:保证环路只有相位捕获一个过程的最大固有频差值|Δωo|max。
5.输入信号频率与环路自由振荡频率之差,称为环路的固有频率环路固有角频差:输入信号角频率ωi与环路自由振荡角频率ωo之差。
瞬时角频差:输入信号频率ωi与受控压控振荡器的频率ωv之差。
控制角频差:受控压控振荡器的频率ωv与自由振荡频率ωo之差。
三者之间的关系:瞬时频差=固有频差-控制频差。
6.鉴相器是一个相位比较装置,用来检测输入信号相位θ1(t)与反馈信号相位θ2(t)之间的相位差θe(t)。
输出的误差信号u d(t)是相差θe(t)的函数。
7.锁相环路由鉴相器、环路滤波器和压控振荡器三个主要部件构成;其独特的性能有载波跟踪特性、调制跟踪特性和低门限特性。
8.环路滤波器---即低通滤波器,滤除鉴相器输出电压中的高频分量,起平滑滤波的作用,提高环路的稳定性。
9.压控振荡器---压控振荡器是一个电压-频率变换装置,它的振荡频率应随输入控制电压u c(t)线性地变化。
10.环路的动态方程:pθe(t)= pθ1(t)-K o U d F(p)sin θ1(t)11.相平面:将瞬时频差与瞬时相差的关系在平面直角坐标系中所做的图。
相点:是相平面上相轨迹上的一个点,表示环路在某一时刻的状态。
12.如果锁相环路的起始状态处于不稳定平衡点时,环路自身没有能力摆脱这种状态,只有依靠外力(噪声或人为扰动)才能使环路偏离这个状态而进行捕获;所以一旦遇到这种情况就可能出现在不稳定平衡状态的滞留,致使捕获过程延长。
这种现象称为锁相环路的延滞现象。
13.环路固有频差Δωo大于环路增益K,锁相环路处于失锁差拍状态,被控振荡器未被输入信号锁定;但是由于锁相环路的控制作用,使锁相环路的平均频率向输入信号频率方向牵引。
锁相技术期末总结一、引言锁相技术是一种广泛应用于现代电子技术中的信号处理方法,主要用于提取信号中的相位信息。
它通过对输入信号与本地参考信号进行比较和修正,实现对信号相位的精确测量和调整。
锁相技术的应用领域非常广泛,包括无线通信、激光测距、声纳系统、医学影像等。
在本次课程学习中,我们深入了解了锁相技术的原理、应用和实现方法,并通过实践操作进一步巩固了对锁相技术的理解。
二、锁相技术的原理和基本概念锁相技术的原理是基于反馈控制和频率调制的,通过频率调制输入信号和本地参考信号,实现对信号相位的精确测量和调整。
1. 相位差测量原理通过将输入信号与本地参考信号进行乘法运算,并通过低通滤波器和放大器对乘积信号进行处理,最终得到与相位差成正比的直流电压。
根据这个原理,我们可以通过测量这个直流电压来得到输入信号与参考信号之间的相位差。
2. 锁相循环原理锁相循环是指通过反馈控制将输入信号的相位差调整到指定值的过程。
锁相循环由相位比较器、环路滤波器、VCO(Voltage Controlled Oscillator)和反馈网络等组成。
相位比较器用于比较输入信号的相位差和参考信号的相位差,输出误差信号;环路滤波器用于对误差信号进行滤波;VCO用于将滤波后的误差信号转换成频率信号,并与参考信号进行混频;反馈网络将VCO的输出作为参考信号送回相位比较器,形成一个闭环控制系统。
三、锁相技术的应用锁相技术在各个领域中都有广泛的应用,下面主要介绍其中几个典型的应用。
1. 通信领域锁相技术在通信领域中的应用主要包括载波恢复、时钟恢复和时钟同步。
在接收端,通过锁相环的频率跟踪功能可以自适应地追踪和调整接收信号的频率,从而实现载波恢复。
而由于通信系统中的时钟信号也是通过调制到信号中进行传输的,因此通过锁相循环也可以实现对时钟信号的恢复和同步。
2. 激光测距锁相技术在激光测距领域中被广泛应用。
激光测距的原理是利用激光光束射到目标上并接收反射光,通过测量光传播的时间来计算目标的距离。
锁相技术复习要点第1章 锁相环路的基本工作原理一、考核知识点(一)锁相环路的基本工作原理;(二)锁相环路的相位数字模型及其微分方程;(三)锁相环路的基本性能。
二、考核要求(一)锁定与跟踪的概念1、识记:(1)相位的概念;(2)锁相环路的定义;(3)环路的捕获带(4)环路的同步带。
2、领会:(1)锁相环路是一个相位跟踪系统,它建立了输出信号瞬时相位与输入信号瞬时相位的控制关系(2)几个重要参数:载波相位、瞬时相位、自由振荡角频率、瞬时相差、移稳态相差;(3)环路的两种基本工作状态:捕获过程、锁定状态。
3、应用:(1)环路是处于锁定状态的判定依据;(2)一阶环稳态相差的计算。
(二)环路组成1、识记:(1)环路的基本部件;(2)鉴相器的作用与数学模型;(3)鉴相器的分类:模拟乘法器鉴相器、序列电路(数字鉴相器);(4)环路滤波器的作用与数学模型;(5)压控振荡器的作用与数学模型;(6)压控灵敏度;(7)压控振荡器的种类。
2、领会:(1)锁相环路的组成及框图;(2)正弦鉴相器及数学模型;(3)几种常用的环路滤波器及传递函数;(4)锁相环路的相位数学模型。
3、应用;(1)理想积分滤波器分析;(2)非常用环路滤波器的传递函数求解。
(三)环路的动态方程1、 识记:(1)瞬时频差;(2)控制频差;(3)固有频差;(4)环路增益K。
2、 领会:(1)锁相环路动态方程3、应用:(1)锁相环路动态方程的含意;(2)稳态相差的求解。
(四)一阶环路的捕获、锁定与失锁。
1、识记:(1)一阶环路;(2)相点;(3)相轨迹(4)相平面。
2、领会:(1)一阶环路的非线性微分方程;(2)相轨迹上相点的含义。
3、应用:(1)频率牵引现象;(2)一阶环路的捕获带、同步带、快捕带。
第二章 环路跟踪性能一、考核知识点(一)锁相环路的线性相位模型及传递函数;(二)锁相环路的性能指标;(三)二阶环路在典型输入下的响应;(四)环路的频率响应。
名词解释和简答题整理第一章锁相环路的基本工作原理:1.锁相环(PLL)---锁相环是一个能够跟踪输入信号相位的闭环自动控制系统。
2.捕获带:环路能通过捕获过程而进入同步状态所允许的最大固有频差|Δωo|max。
3.同步带:锁相环路能够保持锁定状态所允许的最大固有频差|Δωo|max。
4.快捕带:保证环路只有相位捕获一个过程的最大固有频差值|Δωo|max。
5.输入信号频率与环路自由振荡频率之差,称为环路的固有频率环路固有角频差:输入信号角频率ωi与环路自由振荡角频率ωo之差。
瞬时角频差:输入信号频率ωi与受控压控振荡器的频率ωv之差。
控制角频差:受控压控振荡器的频率ωv与自由振荡频率ωo之差。
三者之间的关系:瞬时频差=固有频差-控制频差。
6.鉴相器是一个相位比较装置,用来检测输入信号相位θ1(t)与反馈信号相位θ2(t)之间的相位差θe(t)。
输出的误差信号u d(t)是相差θe(t)的函数。
7.锁相环路由鉴相器、环路滤波器和压控振荡器三个主要部件构成;其独特的性能有载波跟踪特性、调制跟踪特性和低门限特性。
8.环路滤波器---即低通滤波器,滤除鉴相器输出电压中的高频分量,起平滑滤波的作用,提高环路的稳定性。
9.压控振荡器---压控振荡器是一个电压-频率变换装置,它的振荡频率应随输入控制电压u c(t)线性地变化。
10.环路的动态方程:pθe(t)= pθ1(t)-K o U d F(p)sin θ1(t)11.相平面:将瞬时频差与瞬时相差的关系在平面直角坐标系中所做的图。
相点:是相平面上相轨迹上的一个点,表示环路在某一时刻的状态。
12.如果锁相环路的起始状态处于不稳定平衡点时,环路自身没有能力摆脱这种状态,只有依靠外力(噪声或人为扰动)才能使环路偏离这个状态而进行捕获;所以一旦遇到这种情况就可能出现在不稳定平衡状态的滞留,致使捕获过程延长。
这种现象称为锁相环路的延滞现象。
13.环路固有频差Δωo大于环路增益K,锁相环路处于失锁差拍状态,被控振荡器未被输入信号锁定;但是由于锁相环路的控制作用,使锁相环路的平均频率向输入信号频率方向牵引。
这种现象称为锁相环路的频率牵引现象第二章环路跟踪性能:1.对于输入相位阶跃而言,因为锁相环路在暂态过程中误差电压u d(t)≠0,压控振荡器的相位已得到调整,最终并不再要求压控振荡器的频率得到调整,可以允许控制电压等于零。
所以稳态时,鉴相器输出的误差电压u d(t)=0,环路的跟踪状态是可以维持的。
2.采用理想积分滤波器的二阶环路,在输入频率阶跃的情况下,稳态时,鉴相器输出的误差电压ud(t)=0,环路的跟踪状态是如何维持的?在输入频率阶跃的情况下,达到稳态时要求压控振荡器的频率调整到与输入频率相等,所以控制电压是不可少的。
在跟踪的暂态过程中,误差电压u d(t)并不等于零,它将对滤波器充电,因而获得控制电压u c(t)。
达到稳态后,误差电压u d(t)消失,不再继续对环路滤波器充电,但是对于一个理想积分环节来说,前面充电得到控制电压u c(t)将会永远保持下去,不会消失。
所以由于暂态过程中对环路滤波器充电积累起来的控制电压维持了环路的稳态跟踪。
3.若一个锁相环路的截止频率ΩC=1000rad/s。
输入信号为u i(t)=U i sin[1000000t+2sin(100t+θi)]。
环路这时是处于调制跟踪状态还是载波跟踪状态?为什么?环路这时处于调制跟踪状态;因为这里的锁相环路的截止频率ΩC=1000rad/s即环路的自然频率ωn;输入信号的相位调制频率Ω=100rad/s小于环路的截止频率,即处于闭环低通特性的通带之内,这时环路可以良好的传递相位调制,压控振荡器的输出相位θ2(t)就可以良好地跟踪输入相位θ1(t)的变化。
即环路处于调制跟踪状态。
4.调制跟踪:(当Ω小于ωn,即处于闭环低通特性的通带之内时),环路输出相位θ2(t)将跟踪θ1(t)的瞬时变化,压控振荡器的输出电压u o(t)也就成为一个正弦调相信号,这种跟踪状态称为调制跟踪。
可作调频信号的解调器。
5.载波跟踪:(当Ω大于ωn,即输入信号的调制频率处于闭环低通特性的通带之外时)环路输出相位不能跟踪输入的相位调制,而是跟踪了输入信号载频的漂移,这种跟踪称为载波跟踪。
6.载波跟踪环可用于提取输入已调信号的载波,也可提取淹没在噪声中的载波信号。
7.根据奈奎斯特准则,可以用锁相环路开环频率响应的伯德图来直接判定锁相环路闭环时的稳定性。
8.开环增益达到0dB时的频率称为增益临界频率,用ΩT表示;开环相移达到π的频率称为相位临界频率,用符号Ωk表示。
9.相位余量是指开环增益降至0dB时,开环相移量与π的差值。
增益余量是指开环相移达到π时,开环增益低于0dB的dB数。
第三章环路噪声性能:1.环路输入信噪比(S/N)i:指的是输入信号载波功率U2i/2与通过环路前置带宽B i的噪声功率N o B i之比。
2.环路信噪比(S/N)L:是指输入信号载波功率U2i/2与可通过环路单边噪声带宽B L的噪声功率N o B L之比。
反映了对噪声的抑制能力。
3.在低(S/N)L时,出现的另一个现象是环路相差可能跳越一个错误!未找到引用源。
或几个错误!未找到引用源。
周期才能重新稳定下来,这种现象叫做跳周。
第四章环路的捕获性能:1.如果环路依靠自己的控制能力达到捕获锁定,称这种捕获过程为自捕获。
2.若环路借助于辅助电路才能实现捕获锁定,则称这种捕获过程为辅助捕获。
3.相轨迹:是相平面上相点的移动形成的一条轨迹,它反映了环路状态的变化过程。
相轨迹方程:瞬时频差与瞬时相差的关系式。
4.辅助频率捕获的基本出发点:(1)减小作用到环路上的起始频差,使之尽快的落入快捕带内,达到快捕锁定。
属于这方面的有人工电调、辅助扫描、辅助鉴频和鉴频鉴相;(2)使用两种不同的环路带宽或增益,捕获时使环路具有较大的带宽和增益,锁定以后使环路带宽或增益减小。
就是所谓的变带宽和变增益法。
5. 变带宽法的基本原理是在捕获过程中使环路具有较大的带宽,以扩大捕获带;在锁定后,则使环路的带宽变窄,以保证跟踪和滤波性能;加大环路的带宽还必须保证环路工作于门限之上;通过改变环路滤波器的带宽可以实现变带宽。
6. 变增益法的基本工作原理是在捕获过程中提高环路的增益,以扩大捕获带;捕获过程中通过辅助鉴相器使直流放大器的增益变大,是捕获带变宽;在锁定后,环路的增益降低。
第五章 集成锁相环路:1. 模拟乘法器可以完成两输入信号的相乘作用,用作鉴相器的主要特点是输出电压的平均值与两输入信号的幅度成正比,输出频率为输入差拍;模拟乘法器鉴相器具有正弦鉴相特性;四象限模拟乘法器特点是工作频带较宽,线性好、精度好,可输入正弦信号等。
2. T4044数字式鉴频鉴相器电路主要由数字比相器(9个与非门)、电荷泵(V 1~V 7)和一个作为LF 用的放大器(达林顿电路)三部分组成。
3. 射极耦合多谐振荡器型压控振荡器的工作原理: 交叉耦合的晶体管V 1、V 2组成正反馈级,在V 1、V 2相互翻转时,并分别接受有电压u c 控制的恒流源I O1、I O2(通常选择I O1=I O2=I O )的交替充放电。
得到的输出方波频率f 必然与C T 、I O 及二极管正相压降有关,又因I O1=I O2同时受控于u c ,则f 也与uc 有关。
4. 在负阻型压控振荡器中,端电压的上升引起端电流的下降,此时端口点电阻为负值。
这种现象称为负阻效应。
5. CMOS 压控振荡器的工作原理:CMOS 开关(P 1、N 1)、(P 1、N 2)在门电路输出的控制下分别导通与截止;对C T 充放电,充电或放电过程中随着C T 两端的电压的变化触发R-S 触发器的翻转;故输出频率f 必然与C T 、I O 有关,又因I O 受电压u c 的控制,则f 与u c 有关。
这就是压控振荡器的工作原理。
444o m c o o T D T Dm o T DI g u f K u C U C U g K C U ====8o TI f C =第六章锁相环路的应用:1.锁相环路的三个独特的优良性能分别为:载波跟踪特性、调制跟踪特性和低门限特性。
典型应用∈载波跟踪特性的应用:作为一个窄带滤波器,可提取淹没在噪声中的信号;调制跟踪特性:可制成高性能的调制器和解调器;低门限特性:用于解调调频、调相信号时,可取得门限扩展的效果,用于解调数字调制信号时,可是误码率降低。
2.锁相环路的载波跟踪特性:无论输入锁相环路的信号是已调制的还是为调制的,只要信号中包含有载波频率成分,就可将环路设计成一个窄带跟踪滤波器,跟踪输入信号载波成分的频率与相位的变化,环路的输出信号就是(放大的)需要提取得载波信号。
这就是锁相环路的载波跟踪特性。
载波跟踪特性的三重含意:一是窄带:锁相环路利用环路滤波器的低通特性来实现输入信号载频上的窄带带通特性,有效地滤除输入信号伴随的噪声与干扰;二是跟踪:环路能够在保持窄带特性的情况下跟踪输入载波频率的漂移;三是放大:可将弱输入载波信号放大为强信号输出。
3.调制跟踪特性(解调器):只要让环路有适当宽度的低频通带,压控振荡器输出信号的频率与相位就能跟踪输入调频或调相信号的变化,即得到输入角调制信号的复制品,这就是调制跟踪特性。
4.低门限特性:一般环路的通频带总比环路输入端的前置通频带窄得多,因而环路信噪比明显高于输入信噪比,环路能在低输入信噪比的条件下工作,即具有低门限的优良特性。
5.跟踪滤波器:是一个带通滤波器,其中心频率能够自动跟踪输入信号载波频率的变化。
当输入信号暂时消失时,环路滤波器输出的控制电压不会立即消失,压控振荡器能在一个短时间内维持振荡频率不变,因而锁相环还能跟踪衰弱信号。
6.为什么锁相环路对输入信号来说具有带通滤波的特性?锁相环路能够跟踪输入信号载波成分频率和相位的变化,可以有效地滤去输入信号伴随的噪声与干扰,环路输出信号就是需要提取得载波信号;锁相环路对输入高频信号的带通特性是由环路传递函数的低通特性决定的(锁相环路主要是利用环路滤波器的低通特性来实现输入信号载频上的窄带带通特性的);在高载频上,用锁相环路可以将通带做到几赫兹的带宽。
锁相环路的调制跟踪特性同样说明了环路对输入信号的带通特性。
7.二元数据信号的移频键控信号FSK以及移相键控信号PSK。
(会画波形)8.频率合成器是将一个高精确度和高稳定度的标准参考频率,经过混频、倍频与分频等对它进行加、减、乘、除的四则运算,最终产生大量的具有同样精确度和稳定度的频率源。
9.频率合成的方法有直接频率合成、间接合成和直接数字频率合成。
直接频率合成:利用混频器、倍频器、分频器盒带通滤波器来完成对频率的四则运算的合成方法,是最早的频率合成方法。