第3章能量型传感器
- 格式:ppt
- 大小:1.78 MB
- 文档页数:1
第三章常用的传感器§3.1传感器的分类一、传感器的定义通俗的讲,传感器就是将被测信息转换成某种信号的器件。
也就是将被测物理量转换成于之相对应的、容易检测、传输或处理的信号的装置,称之为传感器。
传感器通常直接作用于被测量。
传感器是对信号进行感受与传送的装置,它是测试装置的输入环节,因此传感器的性能直接影响着整个测试装置的工作可靠性。
近来,随着测量、控制及信息技术的发展,传感器作为这个领域内的一个重要构成因素,被视为90年代的重要技术之一受到了普遍的重视。
深入研究传感器的原理和应用,研制新型传感器,对于社会生产、科学技术和日常生活中的自动测量和自动控制的发展,以及在科学技术领域里实现现代化都有重要意义。
二、传感器的组成传感器一般由敏感元件、传感元件和测量电路三个主要部分组成,有时还加上辅助电源。
通常可用图表示如下:图4-1 传感器的组成由于其用途的不同或是结构原理的不同,其繁简程度相差很大。
因此,传感器的组成将依不同情况而有差异。
敏感元件——传感器的核心,它直接感受被测量(一般为非电量)并转换成信号形成,即输出与被测量成确定关系的其它量的元件,如膜片、热电偶,波纹管等。
传感元件——又称变换器,是传感器的重要组成部分。
传感元件可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量。
如热电偶和热敏电阻等。
传感元件也可以不只感受被测量,而只是感受与被测两或确定关系的其它非电量;如应变式压力传感器的电阻片,并不直接感受压力,只是感受与被测压力成确定关系的应变,然后输出电量,在多数情况下,使用的就是这种传感元件。
测量电路——能把传感元件输出的电信号转换为便于显示、记录、控制和处理的有用电信号的电路。
测量电路视传感元件的类型而定。
三、传感器的分类在生产和科研中应用的传感器种类很多,一种被测量有时可以用集中传感器来测量,用一种传感器往往可以测量多种物理量。
为了对传感器有一个概括的认识,对传感器进行研究是很必要的。
《机械工程测试技术基础》课后答案章节测试题第1章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。
3、 周期信号的频谱具有三个特点: , , 。
4、 非周期信号包括 信号和 信号。
5、 描述随机信号的时域特征参数有 、 、 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( )2、 信号的时域描述与频域描述包含相同的信息量。
( )3、 非周期信号的频谱一定是连续的。
( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( )5、 随机信号的频域描述为功率谱。
( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
4、求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。
5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。
第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
思考题1.传感器一般包括哪些部分,各部分的作用是什么?答:1、敏感元件:直接感受被测量,以确定的关系输出某一物理量(包括电学量)。
2、转换元件:将敏感元件输出的非电量物理量转换为电学量(包括电路参数量)。
3、转换电路:将电路参数(如电阻、电容、电感)量转换成便于测量的电学量(如电压、电流、频率等)。
2.从传感器的结构形式来划分,可将传感器按其构成方法分为哪几类?各类型的特点是什么?并画出各类型的结构简图。
答:1.通用型、2.参比型、3.差动型、4.反馈型。
1.通用型根据组成可分为:能量变换基本型、能量控制基本型、能量变换特殊型(辅助能源型)、电路参数型和多级变换型。
(1)能量变换基本型特点:(1)只由敏感元件构成。
(2)不需外加电源,敏感元件就是能量变换元件,能量从被测对象获得,输出能量较弱。
(3)利用热平衡现象或传输现象中的一次效应制成是可逆的。
(4)对被测对象有负荷效应(因输出逆效应而影响输入)。
(5)输出能量不可能大于被测对象的能量。
(2)能量控制基本型特点:(1)也由敏感元件组成,但需外加电源才能将被测非电量转换成电量输出。
(2)输出能量可大于被测对象具有的能量。
(3)无需变换电路即可有较大的电量输出。
(3)能量变换特殊型(辅助能源型)特点:(1)只由敏感元件构成。
(2)能量从被测对象获得,属能量变换型。
(3)辅助能源是为了增加抗干扰能力或提高稳定性,或取出信号,或为原理所需要而使用固定磁场。
(4)电路参数型特点:(1) 敏感元件对输入非电信号进行阻抗变换。
(2) 转换电路含有该敏感元件。
(3) 电源向转换电路提供能量从而输出电量,属于能量控制型。
(4) 输出能量远大于输入能量。
(5) 利用传输现象中的二次效应都属于此类传感器。
5)多级变换型2.参比补偿型特点:(1) 采用两个(或两个以上)性能完全相同的敏感元件。
其中一个感受被测量和环境量,另一个只感受环境量作补偿用。
(2) 两个敏感元件同时接到电桥的相邻两臂或反串。
第1章 概述什么是传感器传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。
传感器的共性是什么传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。
传感器由哪几部分组成的由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。
传感器如何进行分类、(1)按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。
(2)按传感器的输出量进行分类,分为模拟式和数字式传感器两类。
(3)按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。
(4)按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。
(5)按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。
(6)按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。
传感器技术的发展趋势有哪些(1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化(5)传感器的微型化改善传感器性能的技术途径有哪些(1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制(5) 稳定性处理第2章传感器的基本特性|什么是传感器的静态特性描述传感器静态特性的主要指标有哪些答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。
主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。
传感器输入-输出特性的线性化有什么意义如何实现其线性化答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。
常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。
现代传感技术与系统课后答案第1章绪论1.传感器的基本概念是什么?一般情况下由哪几部分组成?国家标准(GB7665-87)传感器的定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
2.传感器有几种分类形式,各种分类之间有什么不同?共有10种分类形式。
根据传感器的工作机理:基于物理效应、基于化学效应、基于生物效应;传感器的构成原理:结构型与物性型;能量转换情况:能量转换型和能量控制型;根据传感器的工作原理分类:可分为电容式、电感式、电磁式、压电式、热电式、气电式、应变式等;根据传感器使用的敏感材料分类:可分为半导体传感器、光纤传感器、陶瓷传感器、高分子材料传感器、复合材料传感器等;根据传感器输出信号为模拟信号或数字信号:可分为模拟量传感器和数字量(开关量)传感器;根据传感器使用电源与否:可分为有源传感器和无源传感器;根据传感器与被测对象的空间关系:可分为接触式传感器和非接触式传感器;根据与某种高新技术结合而得名的传感器:如集成传感器、智能传感器、机器人传感器、仿生传感器等;根据输入信息分类:可分为位移、速度、加速度、流速、力、压力、振动、温度、湿度、粘度、浓度等。
3.举例说明结构型传感器与物性型传感器的区别。
结构型:利用物理学中场的定律构成的,特点是其工作原理是以传感器中元件相对位置变化引起场的变化为基础,而不是以材料特性变化为基础。
其基本特征是以其结构的部分变化或变化后引起场的变化来反映被测量(力、位移等)的变化。
如电容传感器利用静电场定律研制的结构型传感器。
物性型:利用物质定律构成的,如虎克定律、欧姆定律等。
物质定律是表示物质某种客观性质的法则。
这种法则,大多数是以物质本身的常数形式给出。
这些常数的大小,决定了传感器的主要性能。
因此,物性型传感器的性能随材料的不同而异。
如,光电管利用了外光电效应,压敏传感器是利用半导体的压阻效应。
4.传感器与传感技术概念有什么不同?答:传感器是获取信息的工具。
思考题1、 传感器一般包括哪些部分,各部分的作用是什么?答:1、敏感元件:直接感受被测量,以确定的关系输出某一物理量(包括电学 量)。
2、 转换元件:将敏感元件输出的非电量物理量转换为电学量(包括电路参数量)。
3、 转换电路:将电路参数(如电阻、电容、电感)量转换成便于测量的电学量 (如电压、电流、频率等)。
2. 从传感器的结构形式来划分,可将传感器按其构成方法分为哪几类?各类型的 特点是什么?并画出各类型的结构简图。
力-1诵用型 2参卜卜型 3差油型 4通用型根据成可‘为:能量i 换基*型°、能量控制基本型、能量变换特殊 型(辅助能源型)、电路参数型和多级变换型。
(1)能量变换基木型物理、化学、生物 : 输入 加电源,敏感元件就是能量变换元件,能量从被测对象获得,输出能量较弱。
(3)利用热平衡现象或传输现象屮的一次效应制成是可逆的。
(4)对被测对象 有负荷效应(因输出逆效应而影响输入)。
(5)输出能量不可能大于被测对象的 能量。
(2)能量控制基木型特点:(1) 也由敏感元件组成,但需外加电源才能将被测非电量转换成电量输出。
(2) 输出能量可大于被测对象具有的能量。
(3)无需变换电路即可有较大的电 量输出。
(3)能量变换特殊型(辅助能源型)特点:(1)只由敏感元件构成。
(2)能量 从被测对象获得,属能量变换型。
(3)辅助能源是为了增加抗干扰能力或提高稳 定性,或取出信号,或为原理所需要而使用固定磁场。
电晕特点:(1)只由敏感元件构成。
(2)不需外输出 (4)电路参数型特点:(1)敏感元件对输入非电信号进行阻抗变换。
(2)转换电 路含有该敏感元件。
(3)电源向转换电路提供能量从而输出电量,属于能量控制 型。
(4)输出能量远大于输入能量。
(5)利用传输现象中的二次效应都属于此类 传感器。
2. 参比补偿型特点:(1)采用两个(或W 个以上)性能完全相同的敏感元件。
其 中一个感受被测量和环境量,另一个只感受环境量作补偿用。
能量转换型传感器
能量转换型传感器是一种常见的传感器类型,它能将某种物理量(如重量、温度、压力等)转换为能量信号输出,以实现对该物理量进行测量和检测。
该类型传感器通常由两部分组成:敏感元件和信号处理电路。
敏感元件是用于检测所需物理量的部分,它会将检测到的信号输送至信号处理电路,经处理后输出电信号,这个电信号能够提供关于被测量物理量的量度信息,以供工艺控制和操作者预测可能出现的问题。
传感器在不同行业和领域中有着广泛的应用。
航空公司和航空工业使用重量转换型传感器来测量飞机的荷载和飞行时的加速度。
汽车生产商使用传感器来监测燃油效率和发动机的健康度。
医疗保健单位使用血压计来测量血压、耳温枪来测量体温和心率传感器来检测心率。
能量转换型传感器的主要优势在于其精度和灵敏度。
该类型传感器的测量精度高,可以检测到非常微小的变化。
此外,传感器由电子电路控制,因此信号处理电路具有非常高的灵敏度,能够在短时间内检测到较小的变化,使其能够广泛用于诸如检测和观测这样需要高灵敏度的应用。
然而,能量转换型传感器也存在某些局限性。
首先,它们趋向于受到一些常见的干扰,例如电磁干扰和温度变化等。
因此,在设计和操作传感器时,必须采取措施来消除干扰。
此外,传感器的安装和调试需要一定的专业技能,这也增加了传感器使用的成本。
总结来说,与其他类型的传感器相比,能量转换型传感器有着广泛的使用范围和应用价值。
但需要我们对部分因素有更多的了解,例如传感器技术,干扰和适当的安装调试。
通过不断的研究和技术改进,我们可以期望能为未来的传感器设计和制造做出进一步的发展和进步。