第三章 拉普拉斯变换法-3
- 格式:ppt
- 大小:1.11 MB
- 文档页数:12
拉普拉斯变换微分定理三阶一、拉普拉斯变换简介拉普拉斯变换是一种数学变换,它在数学、物理、工程等领域具有广泛的应用。
拉普拉斯变换源于法国数学家拉普拉斯在18世纪末的研究成果,它是一种将复杂数学问题简化求解的方法。
1.拉普拉斯变换的定义拉普拉斯变换是将一个函数f(t)变换为另一个函数F(s)的运算,定义如下:F(s) = ∫(e^(-st) * f(t) * dt),其中s为变换域变量,t为时域变量。
2.拉普拉斯变换的基本性质拉普拉斯变换具有以下基本性质:(1) 线性性质:拉普拉斯变换具有线性性质,即变换后的函数是原函数的线性组合。
(2) 尺度变换:拉普拉斯变换具有尺度变换性质,变换后的函数与变换前的函数在尺度上存在一定的关系。
(3) 移位性质:拉普拉斯变换具有移位性质,变换后的函数通过平移原函数得到。
二、拉普拉斯变换微分定理三阶的推导拉普拉斯变换微分定理是拉普拉斯变换在微分方程求解中的应用。
以下是拉普拉斯变换微分定理三阶的推导过程:1.拉普拉斯变换微分定理一阶设f(t)为t的函数,对其进行一阶导数,得到f"(t)。
将f(t)和f"(t)进行拉普拉斯变换,得到F(s)和F"(s)。
2.拉普拉斯变换微分定理二阶对拉普拉斯变换后的函数F"(s)进行一阶导数,得到F""(s)。
3.拉普拉斯变换微分定理三阶对拉普拉斯变换后的函数F""(s)进行一阶导数,得到F"""(s)。
三、拉普拉斯变换微分定理三阶的应用拉普拉斯变换微分定理三阶在求解微分方程、信号处理与系统分析、工程与应用等领域具有广泛的应用。
1.求解微分方程利用拉普拉斯变换微分定理三阶,可以将复杂微分方程转化为更易于求解的线性微分方程。
2.信号处理与系统分析拉普拉斯变换微分定理三阶在信号处理与系统分析中具有重要意义,可以帮助分析信号的频率特性和系统的稳定性。
目录第一章自动控制系统的基本原理第一节控制系统的工作原理和基本要求第二节控制系统的基本类型第三节典型控制信号第四节控制理论的内容和方法第二章控制系统的数学模型第一节机械系统的数学模型第二节液压系统的数学模型第三节电气系统的数学模型第四节线性控制系统的卷积关系式第三章拉氏变换第一节傅氏变换第二节拉普拉斯变换第三节拉普拉斯变换的基本定理第四节拉普拉斯逆变换第四章传递函数第一节传递函数的概念与性质第二节线性控制系统的典型环节第三节系统框图及其运算第四节多变量系统的传递函数第五章时间响应分析第一节概述第二节单位脉冲输入的时间响应第三节单位阶跃输入的时间响应第四节高阶系统时间响应第六章频率响应分析第一节谐和输入系统的定态响应第二节频率特性极坐标图第三节频率特性的对数坐标图第四节由频率特性的实验曲线求系统传递函数第七章控制系统的稳定性第一节稳定性概念第二节劳斯判据第三节乃奎斯特判据第四节对数坐标图的稳定性判据第八章控制系统的偏差第一节控制系统的偏差概念第二节输入引起的定态偏差第三节输入引起的动态偏差第九章控制系统的设计和校正第一节综述第二节希望对数幅频特性曲线的绘制第三节校正方法与校正环节第四节控制系统的增益调整第五节控制系统的串联校正第六节控制系统的局部反馈校正第七节控制系统的顺馈校正第一章自动控制系统的基本原理定义:在没有人的直接参与下,利用控制器使控制对象的某一物理量准确地按照预期的规律运行。
第一节控制系统的工作原理和基本要求一、控制系统举例与结构方框图例1.一个人工控制的恒温箱,希望的炉水温度为100C°,利用表示函数功能的方块、信号线,画出结构方块图。
图1人通过眼睛观察温度计来获得炉内实际温度,通过大脑分析、比较,利用手和锹上煤炭助燃。
比较图2例2.图示为液面高度控制系统原理图。
试画出控制系统方块图和相应的人工操纵的液面控制系统方块图。
解:浮子作为液面高度的反馈物,自动控制器通过比较实际的液面高度与希望的液面高度,调解气动阀门的开合度,对误差进行修正,可保持液面高度稳定。
⎰∞∞--=t e t f s F st b d )()(⎰∞--=0def d e )()(t t f s F st)(d e )(j 21)(j j deft s s F t f st επσσ⎥⎦⎤⎢⎣⎡=⎰∞+∞-第三章信号的拉普拉斯变换和z 变换一、拉普拉斯变换的定义1.双边拉普拉斯变换只有选择适当的σ值才能使积分收敛,信号f(t)的双边拉普拉斯变换存在。
※象函数相同,但收敛域不同。
双边拉氏变换必须标出收敛域。
2.单边拉氏变换3.常见函数的拉普拉斯变换及其⎰∞+∞-=j j d e )(j21)(σσπs s F t f st b Fb(s)称为f(t)的双边拉氏变换(或象函数),f(t)称为Fb(s)的双边拉氏逆变换(或原函数)。
从0-开始收敛域二、拉普拉斯变换性质线性性质尺度变换证明:[]⎰∞--=de)()(tatfatf L st,则令atτ=时移特性与尺度变换相结合复频移(s域平移)特性时域的微分特性(微分定理)若f(t)←→F(s),Re[s]>σ0,则f’(t)←→sF(s)–f(0-)证明:()()()())(deedessFfttsft ftt f ststst+-=⎥⎦⎤⎢⎣⎡--='--∞-∞---∞-⎰⎰推广:()()[])0()0()()0(d)(d22----'--='--=⎥⎦⎤⎢⎣⎡fsfsFsffsF sttfL∑-=----=⎥⎦⎤⎢⎣⎡1)(1)0()(d)(d nrrrnnnfssFsttfL若f1(t)←→F1(s)Re[s]>σ1,f2(t)←→F2(s)Re[s]>σ2则a1f1(t)+a2f2(t)←→a1F1(s)+a2F2(s)Re[s]>max(σ1,σ2)若f(t)←→F(s),Re[s]>σ0,且有实数a>0,则f(at)←→)(1asFa若f(t)<----->F(s),Re[s]>σ0,且有实常数t0>0,则f(t-t0)ε(t-t0)<----->e-st0F(s),Re[s]>σ0若f(t)←→F(s),Re[s]>σ0,且有复常数s a=σa+jΩa,则f(t)e s a t←→F(s-s a),Re[s]>σ0+σas-→2:?)(sin ←→t t t ε=三、拉普拉斯逆变换三种方法:(1)查表(2)利用性质(3)部分分式展开-----结合∴......,,321为不同的实数根,n p p p p nn p s K p s K p s K s F -++-+-= 2211)(ip s i i s F p s K =-=)()()(e ]1[1t p s L t p i i ε=--若象函数F(s)是s 的有理分式,可写为1110111.......)(a s a s a s b s b s b s b s F n n n m m m m ++++++++=----若m ≥n (假分式),可用多项式除法将象函数F(s)分解为有理多项式P(s)与有理真分式之和。