数据标准化和指标权重确定方法
- 格式:ppt
- 大小:324.50 KB
- 文档页数:1
计算指标权重前数据标准化的方法
在进行指标权重计算前,需要对原始数据进行标准化处理,以确保不同指标的数据在计算中具有相同的权重和影响力。
数据标准化的方法包括以下几个步骤:
1. 数据清洗:对原始数据进行清洗,去除异常值和缺失值,以保证数据的准确性和完整性。
2. 数据归一化:将不同指标的数据转化为统一的数值范围,如0~1或-1~1,以便进行比较和计算。
常用的归一化方法包括极差法、标准差法和小数定标法等。
3. 数据加权:根据指标的重要性和影响力,给不同指标的数据赋予不同的权重值。
常用的加权方法包括主观加权法、客观加权法和灰色关联度法等。
4. 计算指标权重:根据加权后的数据,使用层次分析法、熵权法、TOPSIS法等方法进行指标权重计算,得到各指标在综合评价中的相对权重。
- 1 -。
一、指标权重的确定1.综述目前关于属性权重的确定方法很多,根据计算权重时原始数据的来源不同,可以将这些方法分为三类:主观赋权法、客观赋权法、组合赋权法。
主观赋权法是根据决策者(专家)主观上对各属性的重视程度来确定属性权重的方法,其原始数据由专家根据经验主观判断而得到。
常用的主观赋权法有专家调查法(Delphi法)、层次分析法(AHP )[106-108]、二项系数法、环比评分法、最小平方法等。
本文选用的是利用人的经验知识的有序二元比较量化法。
主观赋权法是人们研究较早、较为成熟的方法,主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。
但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限性。
鉴于主观赋权法的各种不足之处,人们又提出了客观赋权法,其原始数据由各属性在决策方案中的实际数据形成,其基本思想是:属性权重应当是各属性在属性集中的变异程度和对其它属性的影响程度的度量,赋权的原始信息应当直接来源于客观环境,处理信息的过程应当是深入探讨各属性间的相互联系及影响,再根据各属性的联系程度或各属性所提供的信息量大小来决定属性权重。
如果某属性对所有决策方案而言均无差异(即各决策方案的该属性值相同),则该属性对方案的鉴别及排序不起作用,其权重应为0;若某属性对所有决策方案的属性值有较大差异,这样的属性对方案的鉴别及排序将起重要作用,应给予较大权重.总之,各属性权重的大小应根据该属性下各方案属性值差异的大小来确定,差异越大,则该属性的权重越大,反之则越小。
常用的客观赋权法[109-110]有:主成份分析法、熵值法[111-112]、离差及均方差法、多目标规划法等。
其中熵值法用得较多,这种赋权法所使用的数据是决策矩阵,所确定的属性权重反映了属性值的离散程度。
客观赋权法主要是根据原始数据之间的关系来确定权重,因此权重的客观性强,且不增加决策者的负担,方法具有较强的数学理论依据。
简述综合评分法的步骤
综合评分法是一种常见的评估方法,它结合多个指标来评价一个事物的综合表现。
下面简述综合评分法的步骤:
1. 确定评价指标:首先需要明确需要评价的对象和目的,然后根据目的确定适当的评价指标。
评价指标应该具有客观性、可量化性和可比性。
2. 确定权重:对于不同的评价指标,需要给予不同的权重。
权重的确定应该基于指标的重要性和影响程度,可以通过专家访谈、问卷调查等方法来确定。
3. 数据收集:收集与每个指标相关的数据,可以通过问卷调查、实地观察、统计数据等方式获取。
4. 数据标准化:将不同指标的数据进行标准化处理,使其在同一量级上可比较。
5. 指标加权:根据权重对标准化后的指标进行加权处理,得到每个指标的加权得分。
6. 综合评价:将所有指标的加权得分相加,得到综合评价得分。
根据得分的高低可以对不同事物进行排名或分类。
7. 结论与建议:根据综合评价的结果,得出结论并提出相应的建议,为决策提供参考依据。
综合评分法可以被广泛应用于各种评估场景,如企业绩效评估、产品质量评估、人才选拔等。
但需要注意,综合评分法只是一种评估方法,对于不同的情境和目的,需要选择适合的方法。
权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。
按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。
客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。
两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。
客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。
下面就对当前应用较多的评价方法进行阐述。
一、变异系数法(一)变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。
是一种客观赋权的方法。
此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。
例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。
如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。
由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。
为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。
确定权重的7种⽅法确定权重的7种⽅法表7-1 地质环境质量评价定权⽅法⼀览表序号定权⽅法1 专家打分法2 调查统计法1.重要性打分法2.“栅栏”法3.“⽹格”法4.列表打勾ü集合统计法T1.频数截取法2.聚类求均值法3.中间截取求均值法.3 序列综合法1.单定权因⼦排序法2.多定权因⼦排序法4 公式法1.三元函数法2.概率法3.信息量法4.相关系数法5.⾪属函数法5 数理统计法1.判别分析法2.聚类分析法3.因⼦分析法6 层次分析法7 复杂度分析法⼀、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第⼀步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的⽅法。
第⼆步列表。
列出对应于每个评价因⼦的权值范围,可⽤评分法表⽰。
例如,若有五个值,那么就有五列。
⾏列对应于权重值,按重要性排列。
第三步发给每个参予评价者⼀份上述表格,按下述步骤四~九反复核对、填写,直⾄没有成员进⾏变动为⽌。
第四步要求每个成员对每列的每种权值填上记号,得到每种因⼦的权值分数。
第五步要求所有的成员对作了记号的列逐项⽐较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直⾄满意为⽌。
第六步要求每个成员把每个评价因⼦(或变量)的重要性的评分值相加,得出总数。
第七步每个成员⽤第六步求得的总数去除分数,即得到每个评价因⼦的权重。
第⼋步把每个成员的表格集中起来,求得各种评价因⼦的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与⾃⼰在第七步得到的权值进⾏⽐较。
第⼗步如有⼈还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为⽌,各评价因⼦(或变量)的权值就这样决定了。
⼆、调查统计法具体作法有下⾯四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据⾃⼰对各评价因⼦的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统⼀的要求,给定打分范围,通常1~5分或1~100分都可。
确定权重的7种方法主观赋权德尔菲专家法简介依据“德尔菲法”的基本原理,选择企业各方面的专家,采取独立填表选取权数的形式,然后将他们各自选取的权数进行整理和统计分析,最后确定出各因素,各指标的权数。
德尔菲法的主要缺点是过程比较复杂,花费时间较长。
实现方法选择专家。
一般情况下,选本专业领域中既有实际工作经验又有较深理论修养的专家10-30人左右,需征得专家本人同意。
将待定权重的p个指标和有关资料以及统一的确定权重的规则发给选定的各位专家,请他们独立给出各指标的权数值。
回收结果并计算各指标权数的均值和标准差。
将计算的结果及补充资料返还给各位专家,要求所有的专家在新的基础上确定权数。
重复3和4步骤,直至各指标权数与其均值的离差不超过预先给定的标准为止,也就是各专家的意见基本趋于一致,以此时各指标权数的均值作为该指标的权重。
此外,为了使判断更加准确,令评价者了解己确定的权数把握性大小,还可以运用“带有信任度的德尔菲法”,该方法需要在上述第5步每位专家最后给出权数值的同时,标出各自所给权数值的信任度。
这样,如果某一指标权数的任任度较高时,就可以有较大的把握使用它,反之,只能暂时使用或设法改进。
AHP层次分析法简介层次分析法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各指标的重要程度。
但该方法主观因素对判断矩阵的影响很大,当决策者的判断过多地受其主观偏好的影响时,结果不够客观。
实现方法构建层次评价矩阵构造判断矩阵构造判断矩阵就是通过各要素之间相互两两比较,并确定各准则层对目标层的权重。
简单地说,就是把准则层的指标进行两两判断,通常使用Santy的1-9标度方法给出。
对于m 个指标,构建m*m的判断矩阵,并使用确定的标度方法完成该判断矩阵A。
3. 层次单排序根据构成的判断矩阵,求解各个指标的权重。
有两种方式,一种是方根法,一种是和法。
数学建模评价类问题如何确定评价系统的指标权重?之前小编发过一篇系统介绍综合评价类问题的文章【数学建模之综合评价问题】,文中总结了综合评价模型一般步骤:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。
今天,小编继续和大家聊聊——如何确定评价系统的指标权重?0、前言对于多指标的评价系统,各指标之间的相对重要性是互不相同的,单纯将所有指标的重要性假设为无差别并不是一种可取的方法。
指标间相对重要性的量化过程也就是不同指标的权重确定过程,不同的权重确定方法必然导致不同的评价结果。
而指标权重的确定不仅在综合评价系统中应用广泛,同时在多目标决策中也有很多应用(当然,综合评价问题也可视为多目标决策问题),在进行数学规划时,实际问题中往往存在多个目标,而且很难证,可行域内存在某一个解使得所有目标函数都取得最优值。
在这种情况下,就需要对多个目标进行综合加权,将多目标问题转化为单目标问题再进行求解。
1、权重确定方法分类现有的指标权重方法主要可以分为两类,一类是相对主观的方法,专家通过经验确定不同指标之间的相对重要程度,通过多个专家的打分,取其平均值作为权重。
这类方法中,非常具有代表性的就是层次分析法。
另一类相对客观的权重确定方法是根据不同评价对象在该指标上得分的离散程度来确定权重。
评价系统的最终目的是将所有的评价对象区分开,如果某一个指标的数据离散程度越大,其对评价对象的区分度也就越好,所以其权重也应该较大一些。
在这类方法中,应用比较广泛的有变异系数法和熵值法。
2、主观赋权法——层次分析法本文中,我们以层次分析法为例来看一看主观赋权法。
在确定指标之间的权重时,如果指标数量较多,我们很难直接凭经验给出一组权重。
比如通过语文、数学和英语3门功课来评价一个学生的文化课水平,我们无法给出一个3维向量,可以同时衡量不同功课间的相对重要程度。
权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。
按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。
客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。
两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。
客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。
下面就对当前应用较多的评价方法进行阐述。
一、变异系数法(一)变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。
是一种客观赋权的方法。
此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。
例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。
如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。
由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。
为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。
指标权重确定方法之熵权法一、熵权法介绍熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。
熵权法的基本思路是根据指标变异性的大小来确定客观权重。
一般来说,若某个指标的信息熵越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。
相反,某个指标的信息熵越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。
二、熵权法赋权步骤1.数据标准化将各个指标的数据进行标准化处理。
假设给定了k个指标,其中。
假设对各指标数据标准化后的值为,那么。
2.求各指标的信息熵根据信息论中信息熵的定义,一组数据的信息熵。
其中,如果,则定义。
3.确定各指标权重根据信息熵的计算公式,计算出各个指标的信息熵为。
通过信息熵计算各指标的权重:。
三、熵权法赋权实例1.背景介绍某医院为了提高自身的护理水平,对拥有的11个科室进行了考核,考核标准包括9项整体护理,并对护理水平较好的科室进行奖励。
下表是对各个科室指标考核后的评分结果。
但是由于各项护理的难易程度不同,因此需要对9项护理进行赋权,以便能够更加合理的对各个科室的护理水平进行评价。
2.熵权法进行赋权1)数据标准化根据原始评分表,对数据进行标准化后可以得到下列数据标准化表表2 11个科室9项整体护理评价指标得分表标准化表科室X1X2X3X4X5X6X7X8X9A 1.000.00 1.000.000.50 1.00 1.00 1.00 1.00B 1.00 1.000.00 1.000.50 1.00 1.00 1.00 1.00C0.00 1.000.33 1.000.50 1.00 1.00 1.00 1.00D 1.00 1.000.00 1.000.50 1.000.87 1.00 1.00E 1.000.00 1.00 1.00 1.000.00 1.00 1.000.00F 1.00 1.00 1.00 1.000.50 1.00 1.000.00 1.00G 1.00 1.000.00 1.000.50 1.000.00 1.00 1.00H0.50 1.000.33 1.00 1.00 1.00 1.00 1.00 1.00I 1.00 1.000.67 1.000.00 1.00 1.00 1.00 1.00J 1.000.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 K 1.00 1.000.67 1.000.50 1.00 1.00 1.00 1.002)求各指标的信息熵根据信息熵的计算公式,可以计算出9项护理指标各自的信息熵如下:表3 9项指标信息熵表X1X2X3X4X5X6X7X8X9信息熵0.950.870.840.960.940.960.960.960.963)计算各指标的权重根据指标权重的计算公式,可以得到各个指标的权重如下表所示:表4 9项指标权重表W1W2W3W4W5W6W7W8W9权重0.080.220.270.070.110.070.070.070.073.对各个科室进行评分根据计算出的指标权重,以及对11个科室9项护理水平的评分。
权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。
按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。
客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。
两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。
客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。
下面就对当前应用较多的评价方法进行阐述。
一、变异系数法(一)变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。
是一种客观赋权的方法。
此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。
例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP 不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。
如果各个国家的人均GNP 没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。
由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。
为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。
stata熵值法的数据标准化方法
熵值法是一种常用的数据标准化方法,可在stata软件中进行实施。
它基于信息论,通过计算数据中的熵值来确定各个指标对总体的贡献程度,从而实现数据的标准化。
在stata中,可以通过以下步骤实现数据的标准化:
1. 导入数据:使用`import`命令将数据文件导入stata软件中。
2. 计算指标权重:在进行熵值法标准化之前,需要计算各个指标的权重。
可以使用相关的统计方法,如主成分分析或模糊综合评判等,来确定指标的权重。
3. 计算熵值:根据指标的权重,使用`egen`命令计算每个样本的熵值。
可以通过使用`egen`命令的`wtdsum()`函数来计算加权熵值。
4. 标准化数据:使用`egen`命令,通过将每个样本的原始数据除以其对应的熵值,来实现数据的标准化。
例如,可以使用以下命令将一个变量`x`进行标准化: ```stata
egen x_normalized = mean(x)/x
```
这将创建一个新的变量`x_normalized`,它等于原始变量`x`除以样本的熵值。
通过上述步骤,我们可以在stata中使用熵值法进行数据的标准化。
这种方法可以帮助我们对不同指标的数据进行综合评价和比较分析,从而更好地理解和解释数据。
注意,在实施熵值法之前,需要进行必要的数据预处理和权重计算,以确保结果的准确性和可靠性。
权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。
按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。
客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。
两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。
客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。
下面就对当前应用较多的评价方法进行阐述。
一、变异系数法(一)变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。
是一种客观赋权的方法。
此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。
例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。
如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。
由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。
为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。
数据标准化熵权topsis法求得分随着社会的发展和数据处理技术的日益成熟,各行各业都在积极探寻如何利用数据和信息化手段提升效率和质量。
然而,在大量的数据中挖掘出有用的信息并不是易事,需要运用一些科学的方法和技术来进行有效地数据分析和决策支持。
其中,数据标准化熵权TOPSIS法是一种较为成熟的方法,应用广泛,并取得了较好的效果。
数据标准化是指将数据转化为无单位、无量纲的数值,将各指标统一化,便于进行综合评价。
常用的数据标准化方法有最小-最大标准化、均值-方差标准化等。
熵权法是一种基于信息熵的权重分配方法,其基本思想是通过计算指标之间的信息熵来确定权重大小,反映每个指标对决策的贡献程度。
熵权法不仅能解决因指标之间相关性而导致权重分配不合理的问题,而且充分考虑了指标之间的不确定性,使得权重更加准确和实用。
TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)是一种多指标决策方法,通过将各方案离理想解的距离和离负理想解的距离进行比较,选出离理想解最近的方案作为最优方案。
即,对于一个决策问题,有n个方案,每个方案有m个评价指标,将n个方案的评价指标按照一定的标准进行归一化处理,得到一个n行m 列的评价矩阵,其中第i行第j列的值表示第i个方案在第j个指标下的得分,这个评价矩阵即为标准化矩阵。
首先对评价矩阵进行标准化,将每个指标转化为0-1内的数值,具体方法为:$$x_{ij}^{*}=\frac{x_{ij}-\operatorname{min}(x_j)}{\operatorname{max}(x_j)-\oper atorname{min}(x_j)}$$其中,$x_{ij}$表示第$i$个方案在第$j$个指标下的原始数据,$x_j$为第$j$个指标所有方案的原始数据,$\operatorname{min}(x_j)$和$\operatorname{max}(x_j)$分别表示第$j$个指标所有方案的最小值和最大值。
权重的确定方法综合评价指标体系内部各元素间存在质和量的联系。
由指标体系的结构模型(如层次模型),我们已经确定了指标体系质的方面的联系,那么权重则反映各系统各元素之间量的方面联系纽带,它对于系统综合评价具有重要的意义。
无论是在模糊综合评价,还是层次分析、灰色系统评价无一例外的用到了评价指标的权重。
权重的概念韦氏大词典中对权重(Weight)的解释为:“在所考虑的群体或系列中,赋予某一项目的相对值”;“在某一频率分布中,某一项目的频率”;“表示某一项目相对重要性所赋予的一个数”。
从中我们可以得出两点结论:(1)权重是表示因素重要性的相对数值。
(2)权重是通过概率统计得出的频率分布中的频率。
由此可以看出权重具有随机性与模糊性,它是一个模糊随机量。
在综合评价中权重可以定义为元素对于整体贡献的相对重要程度,即元素能够反映总体的程度。
权重的确定方法对实际问题选定被综合的指标后,确定各指标的权的值的方法有很多种。
有些方法是利用专家或个人的知识和经验,所以有时称为主观赋权法。
但这些专家的判断本身也是从长期实际中来的,不是随意设想的,应该说有客观的基础;有些方法是从指标的统计性质来考虑,它是由调查所得的数据决定,不需征求专家们的意见,所以有时称为客观赋权法。
在这些方法中,德尔菲(Delphi)方法是被经常被采用的,其它方法就相对来说用得不多,这里列举几个在下面,以供比较。
1. 德尔菲法德尔菲法又称为专家法,其特点在于集中专家的知识和经验,确定各指标的权重,并在不断的反馈和修改中得到比较满意的结果。
基本步骤如下:(1)选择专家。
这是很重要的一步,选得好不好将直接影响到结果的准确性。
一般情况下,选本专业领域中既有实际工作经验又有较深理论修养的专家10~30人左右,并需征得专家本人的同意。
(2)将待定权重的p个指标和有关资料以及统一的确定权重的规则发给选定的各位专家,请他们独立的给出各指标的权数值。
(3)回收结果并计算各指标权数的均值和标准差。