基于吸收光谱技术的气流速度测量研究
- 格式:pdf
- 大小:1.19 MB
- 文档页数:6
吸收光谱简介纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。
许多宝石显示出在可见光谱中吸收带或线的特征样式,其完整的样式被称为"吸收光谱"。
吸收光谱处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。
吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸汽或气体后产生的,如让高温光源发出的白光,通过温度较低的钠的蒸汽就能生成钠的吸收光谱。
这个光谱背景是明亮的连续光谱。
而在钠的标识谱线的位置上出现了暗线。
通过大量实验观察总结出一条规律,即每一种元素的吸收光谱里暗线的位置跟他们明线光谱的位置是互相重合的。
也就是每种元素所发射的光的频率跟它所吸收的光频率是相同的。
太阳光谱是一种吸收光谱,是因为太阳发出的光穿过温度比太阳本身低得多的太阳大气层,而在这大气层里存在着从太阳里蒸发出来的许多元素的气体,太阳光穿过它们的时候跟这些元素的标识谱线相同的光都被这些气体吸收掉了。
因此我们看到的太阳光谱是在连续光谱的背景上分布着许多条暗线。
这些暗线是德国物理学家夫琅和费首先发现的称为夫琅和费线。
吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少光谱分析光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.例如,在检查半导体材料硅和锗是不是达到了高纯度的要求时,就要用到光谱分析.在历史上,光谱分析还帮助人们发现了许多新元素.例如,铷和铯就是从光谱中看到了以前所不知道的特征谱线而被发现的.光谱分析对于研究天体的化学组成也很有用.十九世纪初,在研究太阳光谱时,发现它的连续光谱中有许多暗线(参看彩图9,其中只有一些主要暗线).最初不知道这些暗线是怎样形成的,后来人们了解了吸收光谱的成因,才知道这是太阳内部发出的强光经过温度比较低的太阳大气层时产生的吸收光谱.仔细分析这些暗线,把它跟各种原子的特征谱线对照,人们就知道了太阳大气层中含有氢、氦、氮、碳、氧、铁、镁、硅、钙、钠等几十种元素.吸收光谱分类原子吸收光谱技术参数波长范围: 189-900nm主要特点1. 狭缝:狭缝的宽度自动选择,狭缝的高度自动选择。
激光光声光谱检测技术激光光声光谱技术作为一种髙灵敏度的微量气体检测技术历史已经超过30年,几乎同红外气体检测技术一样长。
这两种检测技术的共同点都是利用气体分子吸收红外线的特性,二者的区别在于光源。
红外检测技术是利用红外线做型g,是广谱的光源,即使经过滤光片依然是广谱的光源,所以红外气体传感器的选择性差灵敏度低。
激光光声光谱技术采用激光器做光源,是单一频率的光源,也渥的频率可以和气体分子的吸收频率一致,所以激光光声光谱技术的特点是选择性好灵敏度髙。
一、激光光声光谱气体检测技术原理光声气体检测技术是基于不同气体在红外波段有不同的特征吸收光谱,比如CO是2.32pm和4.26pm, CO2是4.65pm和14.99pm,而SF6的红外特征光谱在10.5pm附近。
光声气体检测原理是利用气体吸收一强度随时间变化的光束而被加热时所引起的一系列声效应。
当某个气体分子吸收一频率为v的光子后,从基态E0跃迁到激发态E1,则两能量级的能量差为El-E0=hvo受激气体分子与气体中任何一分子相碰撞,经过无辐射驰豫过程而转变为相撞的两个分子的平均动能(既加热),通过这种方式释放能虽:从尔返回基态。
气体通过这种无辐射的驰豫过程把吸收的光能部分地或全部的转换成热能而被加热。
如果入射光强度调制的频率小于该驰豫过程的驰豫频率,则这光强的调制就会在气体中产生相应的温度调制。
根据气体立律,封闭在光声腔内的气体温度就会产生与光强调制频率相同的周期性起伏。
也就是说,强度时变的光束在气体试样内激发出相应的声波,用传声器便可直接检测该信号。
气体光声检测系统通常由激光器(或普通单色光遞)、调制器(使光束作强度调制,例如机械切光器、电光调制器等)、充有被测吸收气体和装有检测传声器的光声腔以及信号采集处理系统组成。
利用光声原理实现的气体检测技术是基于气体的特征红外吸收,间接测量气体吸收的能量,因此测量灵敏度髙,检测极限低,切不存在传鯉老化的问题。
总第190期2020年第6期山西化工SHANXI CHEMICAL INDUSTRYTotal190No.6,2020堂桩导测述用DOI:10.16525/l4-1109/tq.2020.06.07激光吸收光谱气体检测中谱线的自动筛选李梅秀1,邵欣八,王芳1,付作伟3(1.内蒙古阿拉善生态环境监测站,内蒙古阿拉善盟750306;2.天津中德应用技术大学智能制造学院,天津300350;3.中创精仪(天津)科技有限公司,天津300301)摘要:激光吸收光谱(LAS)技术进行气体检测具有高选择性、高灵敏度、快速响应、可多组分多参量同时非接触测量等优势,被广泛用于环境监测、污染排放检测、工业过程控制等领域。
在应用LAS技术进行气体检测时,首要工作就是选择合适的目标谱线。
目前对谱线的筛选都是基于人工观察完成,费时费力,效率低下。
设计了一款自动化谱线筛选软件,对于给定波段范围,基于LAS检测原理和谱线筛选原贝9,结合测量的环境条件对HITRAN光谱数据库中的相关谱线数据进行分析,根据吸光度和谱线的线宽等对灵敏度和谱线干扰进行判断,最终输出筛选的目标谱线或测温谱线对。
该方法大大提高了谱线的筛选效率,可用于LAS气体检测之前目标谱线的自动化筛选,对于气体的浓度检测和温度测量具有重要意义。
关键词:激光吸收光谱,HITRAN光谱数据库,谱线筛选,气体检测中图分类号.0657.38文献标识码:A文章编号:1004-7050(2020)06-0018-05引言环境问题是21世纪全球共同关注的重点问题之一,环境监测技术和环境保护工作愈发受到重视。
我国的污染现状不容小视,大量的环境监测站应运而生,旨在对大气环境等的实时监测,及时掌握事故及污染发生和发展实况,尽一切可能减轻污染带来的危害,这对污染控制、环境保护以及安全生产都有非常重要的意义。
激光吸收光谱(LAS)技术是一种先进的检测技术,其灵敏度高、实时性好(可达毫秒量级),可以做到多组分、多参量的同时测量,并且在动态快速的同时兼具高选择性皿。
浅谈差分吸收光谱技术及在大气监测领域中的应用差分吸收光谱技术是近年来应用较为广泛的大气监测方法之一,具有高效率、大范围、便于操作等方面的优势,可以用于大气领域的长期监测工作。
为此,本文针对差分吸收光谱技术的原理与技术要点进行分析,并探讨这门技术在大气监测领域中的应用,希望能够推进这种技术在更加广泛的领域应用。
标签:差分吸收光谱技术;大气监测;比尔-郎博特定律前言:近年来,人们在生产与生活过程中给周边环境造成的影响越来越大,大气污染、臭氧空洞与厄尔尼诺现象逐渐加剧,人们愈发关注环境问题,雾霾及PM2.5对于大气环境的影响也逐渐成为近年来的热门词汇,这种情况下,研究差分吸收光谱技术及其在大气监测中的具体应用,对于探究大气问题具有重要作用。
1.差分吸收光谱技术原理本质上来说,差分吸收光谱技术是利用光谱会被分子所吸收的特性,并根据比尔-郎博特定律中对于不同分子对光辐射区别吸收特点对空气成分与浓度进行判断的一种方法。
当空气或空气池中经过同一束光线时,空气中的不同分子会对光线进行有差别的吸收,会影响光线的波长、强度与光子的组成,被空气分子吸收之后的光谱,同原本的光谱相互对比,即为吸收光谱,此时分析吸收光谱就可以确定空气中某些物质的成分与数量。
一般来说,运用差分吸收光譜技术来监测空气情况,会采用光源、空气池、望远镜设备来进行,由光源发出光束,经过空气池最后通过望远镜来观察,在这一过程中,光线会经过不同的分子吸收与散射作用发生改变。
根据比尔-郎博特定律,光线经过一段分散均衡、厚度(L)一定、密度(C)一定的空气时,透射后的光线强度为I(λ,T,P)和透射前的原光线强度I0(λ)之间的关系为这其中,σ是气体吸收光线谱时的横截面,是一个函数,其种类在于光谱波长、空气温度与压力、空气中分子的种类,其单位为cm2/mole。
空气池中的真实温度与压力,会影响空气吸收光谱的横截面,对光产生散射作用,当空气温度升高18°R,光栅光谱设备就会产生1个像素的位移,当光谱出于室内正常温度或者高温情况下,空气温度与压力对于空气吸收光谱横截面的影响也会对计算带来不利影响,在空气中,光线的强度会随着空气分子的吸收而逐渐衰减,空气内分子对于光子的吸收与散射作用的叠加,其结果如下:这其中,σi是i类型的空气吸收光谱时的横截面;Ci是i类型的空气从空气厚度L中的平均密度;εM是光线的米氏散射系数;εR是光线的瑞利散射系数;A是测量系统与光线波长关系转变较为缓和的结构。
毕业论文(设计可调谐二极管激光吸收光谱法检测CO气体的研究The Study of Remote Sensing CO Concentration Based on Tunable Diode Laser Absorption Spectroscopy 姓名与学号 3021121123指导教师年级与专业10级信息工程所在学院和系信息学院光电系毕业论文(设计任务书一、题目:可调谐二极管激光吸收光谱法检测CO气体的研究二、指导教师对毕业论文(设计的进度安排及任务要求:起讫日期 200 年月日至 200 年月日指导教师(签名职称三、系、研究所审核意见:负责人(签名年月日目录摘要 (2英文摘要 (2第一章绪论 (3第二章可调谐激光器 (4第三章红外吸收原理及优点 (8第四章 CO的吸收谱线 (11第五章可调谐二极管激光红外吸收光谱实验原理 (14第六章可调谐二极管激光吸收光谱实验装置 (19第七章结论 (24参考文献 (25摘要可调谐二极管激光吸收光谱(TDLAS技术是利用二极管激光器的波长调谐特性,获得被选定的待测气体特征吸收线的吸收光谱,从而对污染气体进行定性或者定量分析。
在大气痕量气体和气体泄漏的监测中,为了提高探测的灵敏度,一般会根据具体情况对激光器采取不同的调制技术如波长调制、振幅调制、频率或者位相调制等,同时和长光程吸收池相结合使用,并辅之以各种噪声压缩技术。
TDLAS不仅精度较高,选择性强而且响应速度快,已经广泛用于大气中多种痕量气体的检测以及地面的痕量气体和气体泄漏的检测。
本文介绍了一套可调谐二极管激光吸收光谱检测大气中一氧化碳浓度的实验装置,这套装置具有灵敏度高、检测限低(ppb量级、易于集成为便携式痕量气体检测仪等优点,系统选用近红外光源和探测器,与传统的中红外波长工作器件相比,成本得以降低。
近红外波长光信号利用光纤传输,替代了传统的复杂光路系统,使器件结构小型化。
若激光器的调谐波长范围能覆盖1.3—1.8μm或者在光路中装配几台窄范围可调偕激光器实现波长扫描范围覆盖1.3—1.8μm,则可同时实现对大气中诸多重要痕量气体如C02、CH4、CO、CH20、H2S、NH3、HCI、C2H2等的同步监测。
苯甲酸红外吸收光谱的测绘实验报告实验报告:苯甲酸红外吸收光谱的测绘
实验目的:
通过红外光谱仪测定苯甲酸的红外吸收光谱,掌握红外光谱的原理和方法,加深对物质结构和化学反应的了解,培养实验操作能力和数据处理技能。
实验原理:
红外光谱是指物质在中红外区域(4000~400 cm-1)吸收较强的电磁辐射现象。
原因是物质的分子有特征的振动和转动,根据物质分子的结构和化学键的种类、数目、位置等,可以决定物质的红外吸收光谱图。
实验步骤:
1. 预备试样:取少量苯甲酸放在倒吸玻管中,加入几滴碳酸钠溶液,振荡后置于干燥器中除去水分,再在有氧气气流中通置,直至试样无明显变化。
2. 红外光谱测量:将准备好的试样涂覆在透明窗口上,然后将窗口置于红外光谱仪中进行扫描测量,得到红外光谱图样。
实验结果与分析:
在实验中,我们通过测量苯甲酸的红外吸收光谱,可以看到光谱图的两个大峰分别位于1655 cm-1和1285 cm-1处。
其中,1655 cm-1处的吸收峰是苯甲酸中羧基的C=O伸缩振动峰,1285 cm-1处的峰是苯环的C-H弯曲振动峰。
从光谱图可以看到,这些谷间的距离和强度可以区分出相邻的分子结构,可以给出很有价值的结构信息和反应过程的研究信息。
结论:
通过测量苯甲酸的红外吸收光谱,我们可以得到各特征谱带信息,从而判断其分子结构的不饱和度和含氧官能团等。
此外,基于对红外吸收峰的定量分析,可以对不同的物质起到对比鉴别的作用,有助于深入研究不同化合物在反应过程中的情况,对实验数据的处理提出更高的要求,有利于提高实验能力。
中文摘要中文摘要随着现代激光技术的发展,可调谐半导体激光吸收光谱(TDLAS)技术因其具有光谱分辨率高、选择性好、灵敏度高、响应速度快等优势,所以被越来越多地应用于大气环境监测、燃烧诊断、危险气体泄漏安全监测、工业过程控制以及医学诊断等领域。
而调制光谱技术和多光程吸收池常用于提高TDLAS系统的检测灵敏度及测量稳定性。
本文主要对TDLAS的调制光谱技术及其在气体检测中的应用展开研究。
首先研究了波长调制理论,实验搭建了一套波长调制气体吸收光谱测量系统,实现了燃烧中的CO2和CO的单激光器同时测量;其次,研究了免校准波长调制光谱理论,并从实验上验证了免校准技术对探测光强及外界干扰的免疫能力,并采用免校准波长调制光谱技术搭建了小型化TDLAS系统,实现了单个激光器对空气中CO和CH4的实时监测;最后,研究了频率调制光谱技术,实验测量了NO分子b4∑ˉ-a4∏系统(3,0)带跃迁谱线,并研究采用频率调制技术抑制光谱系统中的干涉噪声,实现频率调制光谱系统的小型化及快速测量。
本论文的研究成果及创新主要包括:1. 研究了波长调制理论,并实验搭建了一套波长调制气体吸收光谱测量系统,使用单个分布反馈式(Distributed Feedback, DFB)激光器实现了对通信波段(1.58 μm)附近的CO2和CO的同时测量,并在1 s的积分时间内选取最佳平均次数为10次来进一步减小随机噪声的影响。
通过Allan方差分析,系统对CO2和CO的最低探测极限可分别达到7.5 ppm (10-6)和14 ppm。
此外,实验通过控制空气进量对蜡烛不同燃烧程度时产物中的CO2和CO浓度进行了实时测量。
2. 实验验证了通过一次谐波归一化二次谐波信号实现的免校准波长调制光谱对激光光强变化及气流影响、系统震动等外界干扰的免疫能力。
基于免校准波长调制理论搭建了小型化的多光程TDLAS系统,用于空气中CO和CH4的实时监测。
系统尺寸为60⨯30⨯25 cm3,采用集成化的FPGA控制系统和新型Herriott多光程吸收池,选择中心频率为2.3 μm的DFB激光器作为光源,排除空气中复杂气体成分的干扰,同时考虑空气中实际含量选择合适吸收线,实现对CO和CH4的同时测量。