高考数学二轮复习:(文数)专题09 等差数列、等比数列
- 格式:doc
- 大小:272.00 KB
- 文档页数:5
等比等差数列的所有公式等差数列和等比数列是数学领域里比较基础且常见的两种数列。
它们不仅在高中阶段的数学学习中出现,同时也在大学的高级数学科目中应用广泛。
本文将会全面介绍等差数列和等比数列的定义、公式以及应用,以期为读者提供一个全面且清晰的了解。
一、等差数列等差数列是指一种数列,其任意两个相邻项之间的差值是相等的,这个相等的差值叫做公差。
举个例子,1,3,5,7,9....,就是一个公差为2的等差数列。
等差数列的通项公式对于任意一个等差数列,其通项公式可以表示为an=a1+(n-1)d,其中an表示该数列的第n项,a1表示该数列的首项,d表示该数列的公差。
这个公式用起来非常方便,读者只需要知道该数列的首项和公差,就可以轻松地得出该数列的任意一项。
等差数列的和公式等差数列的和公式就是数列的所有数值之和,它能够帮助我们快速计算数列中所有数值之和。
韦达定理是该公式的基础,韦达定理是指求等差数列和时将数列上下颠倒,在叠加两个相同的数列使其首项与末项分别相加后,其中的所有项均相等,其和是所求等差数列的和的两倍。
求和公式: Sn=n(a1+an)/2其中n表示项数,a1表示首项,an表示末项。
(特殊情况下)如果公差为1,那么求和公式可以变为:Sn=n(a1+an)/2=n(a1+1)/2 。
二、等比数列等比数列是指一种数列,其任意两个相邻项之间的比值是相等的,这个相等的比值叫做公比。
例如,1,2,4,8,16....就是一个公比为2的等比数列。
等比数列的通项公式对于任意一个等比数列,其通项公式可以表示为an=a1×r^(n-1),其中an表示该数列的第n项,a1表示该数列的首项,r表示该数列的公比。
与等差数列的情况类似,知道等比数列的首项和公比,就可以很容易地得出该数列的任意一项。
等比数列的和公式等比数列的和公式可以帮助我们快速计算数列中所有数值之和。
其中,如果公比r=1,那么求和公式就是Sn=na1,这个公式表示如果公比为1的等比数列中有n个元素,那么这个数列的和就是该数列第一个元素的值与这n 个元素数值之和相等。
课时作业9 数列的通项与求和A 基础达标1.[2022·北京市房山中学模拟]已知数列{a n }为等差数列,{b n }是公比为2的等比数列,且满足a 1=b 1=1,a 3+b 3=1.(1)求数列{a n }和{b n }的通项公式;(2)令c n =a n +b n ,求数列{c n }的前n 项的和S n .2.[2022·四川省内江市第六中学检测]已知数列{a n }的前n 项和为S n ,满足a 1=1,S n+1=2S n +1.(1)求证:数列{a n }为等比数列并求数列{a n }的通项公式; (2)设b n =(2log 2a n +1)a n ,求{b n }的前n 项和T n .3.[2022·黑龙江哈九中二模]已知数列{a n }满足a 1a 2…a n =2-2a n ,n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫11-a n 是等差数列,并求数列{a n }的通项公式; (2)记b n =a nn (n +1),求{b n }的前n 项和S n .4.[2022·杭州市余杭中学模拟]已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4-a 3),b 5=4(b 4-b 3).(1)求{a n }和{b n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:S n S n +2<S 2n +1 (n ∈N *); (3)对任意的正整数n ,设c n=⎩⎪⎨⎪⎧bn(b n+1)(b n +2+1),n 为奇数an -1b n +1,n 为偶数,求数列{c n }的前2n 项和.B 素养提升5.[2022·甘肃兰州模拟]在①S 5S 9=13,②a 2是a 1和a 4的等比中项,这两个条件中任选一个,补充在下面问题中,并解答.问题:已知公差d 不为0的等差数列{a n }的前n 项和为S n ,a 3=6. (1)________,求数列{a n }的通项公式;(2)若数列b n =2a n ,c n =a n +b n ,求数列{c n }的前n 项和T n .6.[2022·江西鹰潭一模]已知正项数列{a n }的首项a 1=1,前n 项和S n 满足a n =S n +S n -1(n ≥2).(1)求数列{a n }的通项公式; (2)记数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,若对任意的n ∈N *,不等式4T n <a 2-a 恒成立,求实数a 的取值范围.课时作业9 数列的通项与求和1.解析:(1)由题设b n =b 1qn -1=2n -1,所以b 3=b 1q 2=4,而a 3+b 3=1,则a 3=1-b 3=-3,由a 3=a 1+2d =1+2d =-3,则d =-2,故a n =a 1+(n -1)d =3-2n . 综上,a n =3-2n ,b n =2n -1.(2)由(1)知:c n =3-2n +2n -1,所以S n =3n -2(1+2+…+n )+(1+2+…+2n -1)=3n -n (n +1)+1-2n1-2=2n -n 2+2n -1.2.解析:(1)证明:∵a 1=1,S n +1=2S n +1①,当n ≥2时,S n =2S n -1+1②,①减去②得a n +1=2a n ,∵S 2=2S 1+1,∴a 1+a 2=2a 1+1⇒a 2=a 1+1=2,∴a 2=2a 1,∴a n +1a n=2, 可得数列{a n }是首项为1,公比为2的等比数列.∴a n =2n -1.(2)∵b n =(2log 2a n +1)a n ,∴b n =(2log 22n -1+1)2n -1=(2n -1)2n -1,T n =1×1+3×2+5×22+…+(2n -1)2n -1①,2T n =1×2+3×22+5×23+…+(2n-1)2n②,①减去②得,∴-T n =1+2×(2+22+…+2n -1)-(2n -1)×2n=1+2×2(1-2n -1)1-2-(2n -1)×2n=-3+(3-2n )×2n ,∴T n =3+(2n -3)×2n.3.解析:(1)证明:当n =1时,a 1=2-2a 1,得a 1=23,当n ≥2时,有a 1a 2…a n =2-2a n ,a 1a 2…a n -1=2-2a n -1,相除得a n =1-a n1-a n -1(n ≥2),整理为:11-a n -1=a n 1-a n =11-a n -1(n ≥2),即11-a n -11-a n -1=1(n ≥2),∴⎩⎨⎧⎭⎬⎫11-a n 为等差数列,公差d =1,首项为11-a 1=3;所以11-a n =3+(n -1)=n +2,整理为:a n =n +1n +2(n ∈N *). (2)b n =a n n (n +1)=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2,S n =12(1-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2)=12(1+12-1n +1-1n +2),S n =34-12(2n +3)(n +1)(n +2)=34-2n +32(n +1)(n +2).4.解析:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . ∵a 1=1,a 5=5(a 4-a 3),可得d =1.∴a n =n .∵b 1=1,b 5=4(b 4-b 3),且q ≠0,可得q 2-4q +4=0,解得q =2,∴b n =2n -1.(2)证明:由题可知S n =1+2+…+n =n (n +1)2,故S n S n +2=14n (n +1)(n +2)(n +3),S 2n +1 =14(n +1)2(n +2)2,作差得:S n S n +2-S 2n +1 =14(n +1)(n +2)[n (n +3)-(n +1)(n +2)]=-12(n +1)(n +2)<0,因此,S n S n +2<S 2n +1 .(3)由题可知c n=⎩⎪⎨⎪⎧b n(b n+1)(bn +2+1),n 为奇数an -1b n +1,n 为偶数,故当n 为奇数2k -1(k ∈N *)时,c 2k -1=b 2k -1(b 2k -1+1)(b 2k +1+1)=13(1b 2k -1+1-1b 2k +1+1),故记H n =c 1+c 3+…+c 2n -1 =13k =1n ⎝ ⎛⎭⎪⎫122k -2+1-122k +1 =13 ⎝ ⎛⎭⎪⎫12-122n +1 . 当n 为偶数2k (k∈N *)时,记T n =c 2+c 4+…+c 2n =14+342+…+2n -14n ,14T n =142+343+…+2n -34n +2n -14n +1,故34T n =14+242+243+…+24n -2n -14n +1=14+18⎝ ⎛⎭⎪⎫1-14n -11-14-2n -14n +1=512-16·4n -1-2n -14n +1, 因此,T n =43⎝ ⎛⎭⎪⎫512-16·4n -1-2n -14n +1=59-6n +59·4n; 故所求c 1+c 2+…+c 2n =T n +H n =13⎝ ⎛⎭⎪⎫12-122n +1+59-6n +59·4n =1318-13·22n +3-6n +59·4n .5.解析:(1)选①:由于S 5=5(a 1+a 5)2=5a 3,S 9=9(a 1+a 9)2=9a 5,所以S 5S 9=5a 39a 5=13,又a 3=6,所以a 5=10,故d =12(a 5-a 3)=2,所以a n =a 3+(n -3)d =2n ;选②:a 2是a 1和a 4的等比中项,则a 22 =a 1a 4,所以(a 3-d )2=(a 3-2d )(a 3+d ),又a 3=6,解得d =2,d =0(舍去), 所以a n =a 3+(n -3)d =2n .(2)b n =2a n =4n,c n =a n +b n =2n +4n,则T n =(2+4)+(2×2+42)+…+(2n +4n )=2(1+2+...+n )+(4+42+ (4)) =n 2+n +4(1-4n)1-4=n 2+n +43(4n-1).6.解析:(1)当n ≥2时,a n =S n +S n -1,∴S n -S n -1=S n +S n -1,即S n -S n -1=1,又S 1=1, 所以数列{S n }是首项为1,公差为1的等差数列,故S n =n , 又由a n =S n +S n -1=n +n -1=2n -1(n ≥2), 当n =1时,a 1=1也适合,所以a n =2n -1. (2)∵1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),∴T n =12(1-13+13-15+…+12n -1-12n +1)=12⎝ ⎛⎭⎪⎫1-12n +1<12,又∵对任意的n ∈N *,不等式4T n <a 2-a 恒成立,∴2≤a 2-a ,解得a ≤-1或a ≥2.即所求实数a 的范围是a ≤-1或a ≥2.。
常考问题9 等差数列、等比数列(建议用时:50分钟)1.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.解析 a 1+a 2+a 3=15⇒3a 2=15⇒a 2=5,a 1a 2a 3=80⇒(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(舍去d =-3),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105. 答案 1052.(2013·泰州期中)已知等比数列{a n }为递增数列,且a 3+a 7=3,a 2a 8=2,则a 13a11=________.解析 根据等比数列的性质建立方程组求解.因为数列{a n }是递增等比数列,所以a 2a 8=a 3a 7=2,又a 3+a 7=3,且a 3<a 7,解得a 3=1,a 7=2,所以q 4=2,故a 13a 11=q 2= 2.答案 23.(2013·南京二模)设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 7=________. 解析 设等差数列{a n }的公差为d ,则S 3S 6=3a 1+3d 6a 1+15d =13⇒a 1=2d ,所以S 6S 7=6a 1+15d 7a 1+21d =2735.答案 27354.数列{a n }为正项等比数列,若a 2=1,且a n +a n +1=6a n -1(n ∈N *,n ≥2),则此数列的前4项和S 4=________.解析 设{a n }的公比为q (q >0),当n =2时,a 2+a 3=6a 1,从而1+q =6q ,∴q =2或q =-3(舍去),a 1=12,代入可有S 4=12×(1-24)1-2=152.答案 1525.(2012·南京学情调研)在等比数列{a n }中,若a 1=12,a 4=-4,则|a 1|+|a 2|+…+|a 6|=________.解析 求出等比数列的通项公式,再求和.由等比数列{a n }中,若a 1=12,a 4=-4,得公比为-2,所以a n =12×(-2)n -1,|a n |=12×2n -1,所以|a 1|+|a 2|+…+|a 6|=12(1+2+22+…+25)=12×1-261-2=632.答案 6326.(2013·新课标全国Ⅰ卷改编)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m=0,S m +1=3,则m 等于________. 解析 a m =2,a m +1=3,故d =1, 因为S m =0,故ma 1+m (m -1)2d =0, 故a 1=-m -12, 因为a m +a m +1=5, 故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5, 即m =5. 答案 57.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为前______项的和.解析 因为S 19=19a 10<0,而由a 11>|a 10|得a 11+a 10>0,所以S 20=10(a 11+a 10)>0,故S n 中最大的负数为前19项的和. 答案 198.(2012·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.解析 因为各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,所以a 4=2,q =2,故a n =2n -3,又f ′(x )=a 1+2a 2x +3a 3x 2+…+10a 10x 9,所以f ′⎝ ⎛⎭⎪⎫12=2-2+2×2-2+3×2-2+…+10×2-2=2-2×10×112=554.答案 5549.已知公差不为零的等差数列{a n }的前4项和为10,且a 2,a 3,a 7成等比数列. (1)求通项公式a n ;(2)设b n =2a n ,求数列{b n }的前n 项和S n . 解 (1)由题意知⎩⎨⎧4a 1+6d =10,(a 1+2d )2=(a 1+d )(a 1+6d ), 解得⎩⎨⎧a 1=-2,d =3,所以a n =3n -5(n ∈N *).(2)∵b n =2a n =23n -5=14·8n -1,∴数列{b n }是首项为14,公比为8的等比数列,所以S n =14(1-8n)1-8=8n -128.10.(2013·杭州模拟)已知数列{a n }是首项为133,公比为133的等比数列,设b n +15log 3a n =t ,常数t ∈N *. (1)求证:{b n }为等差数列;(2)设数列{c n }满足c n =a n b n ,是否存在正整数k ,使c k ,c k +1,c k +2按某种次序排列后成等比数列?若存在,求k ,t 的值;若不存在,请说明理由. (1)证明 a n =3-n 3,b n +1-b n =-15log 3⎝⎛⎭⎪⎫a n +1a n =5, ∴{b n }是首项为b 1=t +5,公差为5的等差数列. (2)解c n =(5n +t ) ·3-n3, 则c k =(5k +t )·3-k 3,令5k +t =x (x >0),则c k =x ·3-k 3,c k +1=(x +5)·3-k +13,c k +2=(x +10)·3-k +23.①若c 2k =c k +1c k +2,则⎝ ⎛⎭⎪⎫x ·3-k 32=(x +5)·3-k +13·(x +10)·3-k +23. 化简得2x 2-15x -50=0,解得x =10; 进而求得k =1,t =5; ②若c 2k +1=c k c k +2,同理可得(x +5)2=x (x +10), 显然无解;③若c 2k +2=c k c k +1,同理可得13(x +10)2=x (x +5), 方程无整数根.综上所述,存在k =1,t =5适合题意.11.(2013·南通调研)已知数列{a n }成等比数列,且a n >0.(1)若a 2-a 1=8,a 3=m .①当m =48时,求数列{a n }的通项公式;②若数列{a n }是唯一的,求m 的值;(2)若a 2k +a 2k -1+…+a k +1-(a k +a k -1+…+a 1)=8,k ∈N *,求a 2k +1+a 2k +2+…+a 3k 的最小值.解 设公比为q ,则由题意,得q >0.(1)①由a 2-a 1=8,a 3=m =48,得⎩⎨⎧a 1q -a 1=8,a 1q 2=48.解之,得⎩⎨⎧ a 1=8(2-3),q =3+3;或⎩⎨⎧a 1=8(2+3),q =3- 3.所以数列{a n }的通项公式为a n =8(2-3)(3+3)n -1,或a n =8(2+3)(3-3)n -1.②要使满足条件的数列{a n }是唯一的,即关于a 1与q 的方程组⎩⎨⎧a 1q -a 1=8,a 1q 2=m .有唯一正数解,即方程8q 2-mq +m =0有唯一解. 由Δ=m 2-32m =0,a 3=m >0,所以m =32,此时q =2. 经检验,当m =32时,数列{a n }唯一,其通项公式是a n =2n +2. (2)由a 2k +a 2k -1+…+a k +1-(a k +a k -1+…+a 1)=8,得a1(q k-1)(q k-1+q k-2+…+1)=8,且q>1.a2k+1+a2k+2+…+a3k=a1q2k(q k-1+q k-2+…+1)=8q2kq k-1=8⎝⎛⎭⎪⎫q k-1+1q k-1+2≥32,当且仅当q k-1=1q k-1,即q=k2,a1=8(k2-1)时,a2k+1+a2k+2+…+a3k的最小值为32.。
高考数学专题九等差数列与等比数列专题九等差数列与等比数列一、高考考点1.等差数列或等比数列定义的应用:主要用于证明或判断有关数列为等差〔或等比〕数列.2.等差数列的通项公式,前几项和公式及其应用:求3.等比数列的通项公式,前n项和及其应用:求4.等差数列与等比数列的〔小〕综合问题.5.等差数列及等比数列的主要性质的辅助作用:解决有关问题时,提高洞察能力,简化解题过程.6.数列与函数、方程、不等式以及解析几何等知识相互结合的综合题目:以高中档试题出现,重点考察运用有关知识解决综合问题的能力。
二、知识要点〔一〕、等差数列1.定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数那么这个数列叫做等差数列,这个常数叫做等差数列的公差. 认知:{-}为等差数列=d (n-※;求;解决关于或或的问题.;求;解决有关的问题.=d (n∈N且d为常数)※2, n∈N且d为常数)此为判断或证明数列{ 2.公式〔1〕通项公式:引申:认知:{==}为等差数列的主要依据.+〔n-1〕d:+〔n-m〕d 〔注意:n=m+(n-m) 〕}为等差数列为n的一次函数或为常数=kn+b (n)〔2〕前n项和公式: = 或 =n +认知:{+bn(n}为等差数列)为n的二次函数且常数项为0或 =n =3.重要性质 (1){{{}为递增数列}为递减数列}为常数列d>0; d<0; d=0(2)设m,n,p,q ,那么m+n=p+q + = + ;(3)2m=p+q 2 = + .即在等差数列中,如果某三项(或更多的项)的项数成等差数列,那么相应的各项依次成等差数列. (4)设,,分别表示等差数列{}的前n项和,次n项和,再次n项和,??那么,,??依次成等差数列. 〔二〕等比数列1、定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比.认知:〔1〕{}为等比数列 =q (n∈N且q为非零常数)※=q (n≥2,n∈N且q为非零常数) ※(2〕{}为等比数列,且※(n≥2,且≠0)≠0 )(n2.公式〔1〕通项公式:引申:认知:{ ==;〔注意:n=m+(n-m) 〕=c(c,q均是不为0的常数,且n)}为等比数列〔2〕前n项和公式认知:{}为等比数列=A+B 〔其中n,且A+B=0〕.3.主要性质:〔1〕设m,n,p,q ,那么有m+n=p+q;〔2〕2m=p+q即在等比数列中,如果某三项〔或更多的项〕的项数成等差数列,那么相应的各项依次成等比数列. 〔3〕设,,,,??分别表示等比数列的前n项和,次n项和,再次n项和,??,那么,,??依次成等比数列。
4.2数列大题4.2.1等差、等比数列的综合问题必备知识精要梳理1.判断给定的数列{a n}是等差数列的方法(1)定义法:a n+1-a n=d是常数(n∈N*).(2)通项公式法:a n=kn+b(k,b是常数).(3)前n项和法:数列{a n}的前n项和为S n=An2+Bn(A,B是常数且A2+B2≠0).(4)等差中项法:a n+a n+2=2a n+1(n∈N*).2.若数列{a n},{b n}为等差数列且项数相同,则{ka n},{a n±b n},{pa n+qb n}都是等差数列.3.判断给定的数列{a n}是等比数列的方法(1)定义法:a n+1a n=q(常数q≠0).(2)通项公式法:a n=kq n(k,q为常数,且kq≠0).(3)中项法:a n·a n+2=a n+12(n∈N*).(4)前n项和法:数列{a n}的前n项和为S n=A-Aq n(常数A≠0,公比q≠1).4.若数列{a n},{b n}为等比数列且项数相同,则{ka n}(k≠0),{a n2},{a nb n}都是等比数列.关键能力学案突破热点一等差(比)数列的判断与证明【例1】(2020山东淄博4月模拟,18)已知数列{a n}满足a1=1,a n+1=4a n+3n-1,b n=a n+n.(1)证明:数列{b n}为等比数列;(2)求数列{a n}的前n项和.解题心得1.判断数列是等差(比)数列的方法通常有四种,证明数列是等差(比)数列的方法常用定义法.2.对已知数列a n与S n的关系,证明{a n}为等差或等比数列的问题,解题思路是:由a n与S n 的关系递推出n+1时的关系式,两个关系式相减后,进行化简、整理,最终化归为用定义法证明.【对点训练1】(2019全国Ⅱ,理19)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.热点二等差数列的通项及求和【例2】(2019全国Ⅰ,文18)记S n为等差数列{a n}的前n项和.已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.解题心得a1,n,d是等差数列的三个基本量,a n和S n都可以用这三个基本量来表示,五个量a1,n,d,a n,S n中可“知三求二”,一般是通过通项公式和前n项和公式联立方程(组)求解,这种方法是解决数列问题的基本方法.【对点训练2】(2020海南天一大联考第三次模拟,17)对于由正整数构成的数列{A n},若对任意m,n∈N*且m≠n,A m+A n也是{A n}中的项,则称{A n}为“Q数列”.设数列{a n}满足a1=6,8≤a2≤12.(1)请给出一个{a n}的通项公式,使得{a n}既是等差数列也是“Q数列”,并说明理由;(2)根据你给出的通项公式,设{a n}的前n项和为S n,求满足S n>100的正整数n的最小值.热点三等比数列的通项及求和【例3】(2020山东,18)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.解题心得1.已知等比数列前几项或者前几项的关系,求其通项及前n项和时,只需利用等比数列的通项公式及求和公式得到几个方程求解即可.2.若已知条件没有明确数列{a n}是等比数列,而是已知a n=f(S n)的关系式,在转化此条件时,通常有两种思路,一是将a n用S n-S n-1代替,二是由a n=f(S n)推出a n-1=f(S n-1),两式作差,消去S n.【对点训练3】(2020四川绵阳三模,理17)若数列{a n}的前n项和为S n,已知a1=1,a n+1=23S n.(1)求S n;(2)设b n=1S n ,求证:b1+b2+b3+…+b n<52.热点四等差、等比数列的综合问题【例4】(2020安徽合肥4月质检二,理17)已知等差数列{a n}的前n项和为S n,a2=1,S7=14,数列{b n}满足b1·b2·b3·…·b n=2n2+n 2.(1)求数列{a n}和{b n}的通项公式;(2)若数列{c n}满足c n=b n cos(a nπ),求数列{c n}的前2n项和T2n.解题心得对于等差、等比数列的综合问题,解决的思路主要是方程的思想,即运用等差、等比数列的通项公式和前n项和公式将已知条件转化成方程或方程组,求出首项、公差、公比等基本量,再由基本量求出题目要求的量.【对点训练4】(2020全国Ⅲ,文17)设等比数列{a n}满足a1+a2=4,a3-a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3,求m.热点五等差、等比数列的存在问题【例5】(2020山东新高考模拟,17)在①b1+b3=a2,②a4=b4,③S5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=-81,是否存在k,使得S k>S k+1且S k+1<S k+2?解题心得从三个给出的选择性条件中,选择自己好理解的条件是解题的关键,将已知的条件通过逻辑推理进行转换是解题的突破口,较强的运算能力是拿到满分的重要保证.【对点训练5】(2020山东枣庄二模,17)在①S4是a2与a21的等差中项;②a7是S33与a22的等比中项;③数列{a2n}的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题.已知{a n}是公差为2的等差数列,其前n项和为S n,.(1)求a n;(2)设b n=(34)n·a n,是否存在k∈N*,使得b k>278?若存在,求出k的值;若不存在,说明理由.核心素养微专题(四) 求解等差、等比数列的应用题【例1】(2020安徽合肥一中模拟,文12)如图所示,一条螺旋线是用以下方法画成的:△ABC 是边长为2的正三角形,曲线CA 1,A 1A 2,A 2A 3是分别以A ,B ,C 为圆心,AC ,BA 1,CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线的第一圈,然后又以A 为圆心,AA 3为半径画圆弧,……,这样画到第n 圈,则所得螺旋线的长度l n 为( ) A.(3n 2+n )π B.2(3n 2+n )πC.(3n 2+n )π2D.(3n 2-n+1)π2核心素养分析本例考查考生多个核心素养,首先需要考生在读懂题意的基础上,从题目所给的几何图形中通过“数学抽象”得到一组数据;再通过“数学建模”将问题转化为等差数列模型;然后对等差数列模型的各项数值通过“数据分析”得到等差数列的项数和公差;最后通过“数学运算”得出答案.【跟踪训练1】(2019四川绵阳模拟,理16)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是 .【例2】已知正方体ABCD-A 1B 1C 1D 1的棱长为6,E ,F ,G 分别为A 1B 1,BB 1,B 1C 1的中点,E 1,F 1,G 1分别为EB 1,FB 1,B 1G 的中点,E 2,F 2,G 2分别为E 1B 1,F 1B 1,B 1G 1的点,……,依此类推,令三棱锥B-A 1B 1C 1的体积为V 1,三棱锥F-EB 1G 的体积为V 2,三棱锥的体积为F 1-E 1B 1G 1的体积为V 3,……,则V 1+V 2+V 3+…+V n =( ) A.288-18×(14)n -23B.288-18×(14)n -13C.288-36×(18)n -17D.576-9×(18)n -27核心素养分析本例考查三个核心素养,考生在读懂题意的基础上,需要从题目所给的正方体中通过“数学抽象”得到三棱锥的一组体积数据;再通过“数学建模”将问题转化为等比数列模型;然后对等比数列通过“数学运算”得出答案.【跟踪训练2】在数列{a n }中,a 1=1,前n 项和S n 满足3x (S n+1-1)=(2x+3)S n x ≠0,x ≠-32,n ∈N *.令f (x )=a n+1a n,则f (x )= .4.2 数列大题4.2.1 等差、等比数列的综合问题关键能力·学案突破【例1】 (1)证明 ∵b n =a n +n ,∴b n+1=a n+1+n+1.又a n+1=4a n +3n-1,∴bn+1b n=a n+1+n+1a n +n=(4a n +3n -1)+n+1a n +n=4(a n +n )a n+n =4.又b 1=a 1+1=1+1=2,∴数列{b n }是首项为2,公比为4的等比数列. (2)解 由(1)知,b n =2×4n-1,∴a n =b n -n=2×4n-1-n ,∴S n =a 1+a 2+…+a n =2(1+4+42+…+4n-1)-(1+2+3+…+n )=2(1-4n )−n (n+1)=23(4n -1)-12n 2-12n. 对点训练1 (1)证明 由题设得4(a n+1+b n+1)=2(a n +b n ),即a n+1+b n+1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n+1-b n+1)=4(a n -b n )+8,即a n+1-b n+1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n -1,a n -b n =2n-1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n-12,b n =12[(a n +b n )-(a n -b n )]=12n -n+12. 【例2】 解 (1)设{a n }的公差为d.由S9=-a5,得a1+4d=0.由a3=4,得a1+2d=4.可得a1=8,d=-2.因此{a n}的通项公式为a n=10-2n.(2)由(1)得a1=-4d,故a n=(n-5)d,S n=n(n-9)d.由a1>0知d<0,故S n≥a n等价于n2-11n+10≤0,解得1≤n≤10.所以n的取值范围是{n|1≤n≤10,n∈N}.对点训练2解(1)给出的通项公式为a n=2n+4,a1=6,a2=8符合题意.因为对任意n∈N*,a n+1-a n=2(n+1)+4-2n-4=2,所以{a n}是公差为2的等差数列.对任意m,n∈N*且m≠n,a m+a n=2m+4+2n+4=2(m+n+2)+4=a m+n+2,所以{a n}是“Q数列”.(2)因为{a n}是等差数列,所以S n=n(6+2n+4)2=n2+5n(n∈N*).因为S n单调递增,且S7=72+5×7=84<100,S8=82+5×8=104>100,所以n的最小值为8.注:以下答案也正确,解答步骤参考上面内容:①a n=3n+3,S n=32n2+92n,n的最小值为7;②a n=6n,S n=3n2+3n,n的最小值为6.【例3】解(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q=12(舍去),q=2.因为a1q2=8,所以a1=2.所以{a n}的通项公式为a n=2n.(2)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480.对点训练3(1)解a n+1=2S n,可得a n+1=S n+1-S n=2S n,即S n+1=5S n,由a 1=1,可得S 1=1,可得数列{S n }是首项为1,公比为53的等比数列,则S n =(53)n -1;(2)证明 因为b n =1n=(3)n -1,所以{b n }是首项为1,公比为35的等比数列,则b 1+b 2+b 3+…+b n =1-(35)n 1-35=521-(35)n <52.【例4】 解 (1)设{a n }的公差为d ,由a 2=1,S 7=14得{a 1+d =1,7a 1+21d =14.解得a 1=12,d=12,所以a n =n2.∵b 1·b 2·b 3·…·b n =2n 2+n2=2n (n+1)2,∴b 1·b 2·b 3·…·b n-1=2n (n -1)2(n ≥2),两式相除得b n =2n (n ≥2).当n=1时,b 1=2,适合上式,∴b n =2n . (2)∵c n =b n cos(a n π)=2n cos (nπ),∴T 2n =2cos π2+22cos π+23cos 3π2+24cos 2π+…+22n-1cos(2n -1)π2+22n cos n π=22cos π+24cos 2π+26cos 3π+ (22)cos n π=-22+24-26+…+(-1)n·22n=-4[1-(-4)n ]1+4=-4+(-4)n+15.对点训练4 解 (1)设{a n }的公比为q ,则a n =a 1q n-1.由已知得{a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1. (2)由(1)知log 3a n =n-1,故S n =n (n -1)2.由S m +S m+1=S m+3得m (m-1)+(m+1)m=(m+3)(m+2),即m 2-5m-6=0,解得m=-1(舍去),m=6.【例5】 解 因为在等比数列{b n }中,b 2=3,b 5=-81,所以公比q=-3,从而b n =b 2(-3)n-2=3×(-3)n-2,从而a 5=b 1=-1.若存在k ,使得S k >S k+1,即S k >S k +a k+1,从而a k+1<0; 同理,若使S k+1<S k+2,即S k+1<S k+1+a k+2,从而a k+2>0.若选①:由b 1+b 3=a 2,得a 2=-1-9=-10,又a 5=-1,则可得a 1=-13,d=3,所以a n =3n-16,当k=4时,能使a5<0,且a6>0成立;若选②:由a4=b4=27,且a5=-1,所以数列{a n}为递减数列,故不存在a k+1<0,且a k+2>0;若选③:由S5=-25=5(a1+a5)2=5a3,解得a3=-5,从而a n=2n-11,所以当k=4时,能使a5<0,a6>0成立.对点训练5解(1)若选①S4是a2与a21的等差中项,则2S4=a2+a21,即24a1+4×32×2=(a1+2)+(a1+20×2).解得a1=3.所以a n=3+2(n-1)=2n+1.若选②a7是S33与a22的等比中项,则a72=S33·a22,即(a1+6×2)2=a1+3-12×2·(a1+21×2).解得a1=3.所以a n=3+2(n-1)=2n+1.若选③数列{a2n}的前5项和为65,则a2+a4+a6+a8+a10=65,即5a1+25d=65,解得a1=3.所以a n=3+2(n-1)=2n+1.(2)不存在.理由如下,b n=(34)n·a n=(2n+1)·(34)n.b n+1-b n=(2n+3)·(3)n+1-(2n+1)·(3)n=3n4n+1[3(2n+3)-4(2n+1)]=3n4n+1(5-2n).所以b n+1>b n可转化为b n+1-b n>0,即5-2n>0,解得n<2.5,则n=1,2,即b3>b2>b1;b n+1<b n可转化为b n+1-b n<0,即5-2n<0,解得n>2.5,则n=3,4,5,…,即b3>b4>b5>….所以{b n}中的最大项为b3=(2×3+1)×(34)3=7×2764.显然b3=7×2764<8×2764=278.所以∀n∈N*,b n<278.所以不存在k∈N*,使得b k>278.核心素养微专题(四)【例1】B解析第一圈的三段圆弧为CA1,A1A2,A2A3,第二圈的三段圆弧为A3A4,A4A5,A5A6,…,第n圈的三段圆弧为A3(n-1)A3n-2,A3n-2A3n-1,A3n-1A3n.各段圆弧的长度分别为2×2π3,4×2π3,6×2π3,8×2π3,10×2π3,12×2π3,…,(6n-4)×2π3,(6n-2)×2π3,6n ×2π, 此数列是以4π3为首项,4π3为公差,项数为3n 的等差数列, 则l n =(2×2π3+6n×2π3)×3n 2=2(3n 2+n )π,故选B .跟踪训练1 a n =√3n -2 解析 设S △OA 1B 1=S ,∵a 1=1,a 2=2,OA n =a n , ∴OA 1=1,OA 2=2.又易知△OA 1B 1∽△OA 2B 2, ∴S △OA 1B1S △OA 2B2=(OA 1)2(OA 2)2=(12)2=14.∴S 梯形A 1B 1B 2A 2=3S △OA 1B 1=3S.∵所有梯形A n B n B n+1A n+1的面积均相等,且△OA 1B 1∽△OA n B n , ∴OA 1OA n=√S △OA 1B1S △OA n B n=√S S+3(n -1)S =√13n -2.∴a1a n=√3n -2,∴a n =√3n -2. 【例2】 C 解析 由题意得V 1=13×12×6×6×6=36.因为E ,F ,G 分别为A 1B 1,BB 1,B 1C 1的中点,所以三棱锥F-EB 1G 的体积为V 2=18V 1;E 1,F 1,G 1分别为EB 1,FB 1,B 1G 的中点,所以V 3=18V 2;E 2,F 2,G 2分别为E 1B 1,F 1B 1,B 1G 1的中点,所以V 4=18V 3;…,V k+1=18V k . 所以V 1,V 2,V 3,…,V n 成等比数列,且首项为36,公比为18, 所以S n =36×[1-(18)n]1-18=288-36×(18)n -17.故选C .跟踪训练22x+33x解析 由题知,当n=1时,3x (a 1+a 2-1)-(2x+3)a 1=0,因为a 1=1,所以a 2=2x+33x , 所以a2a 1=2x+33x . 当n ≥2时,有3x (S n+1-1)-(2x+3)S n =0, ① 3x (S n -1)-(2x+3)S n-1=0,②①-②得3xa n+1-(2x+3)a n=0,即a n+1a n =2x+33x,于是f(x)=2x+33x.。
高中数学 ︵ 高三秋季班 ︶人 教 A 版1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明.2.从高考特点上,难度以中、低档题为主,一般设置一道选择题和一道解答题.1.知识串联2.结论记忆 (1)等差数列的性质设等差数列{a n }(公差为d )的前n 项和为S n .①若m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *);②数列S n n 是等差数列,首项为a 1,公差为12d ;高中数学 ︵ 高三秋季班 ︶人 教 A 版 ③S k ,S 2k -S k ,S 3k -S 2k ,…,S mk -S (m -1)k ,…构成公差为k 2d 的等差数列; ④若数列{a n }共有2n 项,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1;⑤若数列{a n }共有2n -1项,则S 奇-S 偶=a n ,S 奇S 偶=nn -1.(2)等比数列的性质若数列{a n }是公比为q 的等比数列,前n 项和为S n ,则有如下性质: ①若m +n =p +q ,则a m a n =a p a q (m ,n ,p ,q ∈N *);②若m ,n ,p 成等差数列,则a m ,a n ,a p 成等比数列(m ,n ,p ∈N *); ③S n +m =S m +q m S n =S n +q n S m ;④若项数为2n ,则S 偶S 奇=q ,若项数为2n +1,则S 奇-a 1S 偶=q ;⑤当q≠-1时,连续m 项的和(如S m , S 2m -S m , S 3m -S 2m ,…)仍组成等比数列(公比为q m ,m ≥2).注意:这里连续m 项的和均非零.例1 (1)已知数列{a n }的前n 项和为S n ,满足S n +2n =2a n ,则a 2022=( ) A .22022-2 B .22023-2 C .22024-2D .22021-2(2)(2024·保定一模)已知数列{a n }的前n 项和为S n ,且满足a 1=1,a 2=2,a n +1=4a n-3a n -1,则下面说法不正确的是( )A .数列{a n +1-a n }为等比数列B .数列{a n +1-3a n }为等差数列C .a n =3n -1+1D .S n =3n -14+n21.典型的递推关系式及处理方法高中数学 ︵ 高三秋季班 ︶人 教 A 版2.S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.(1)利用an =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.提醒:通项a n 与S n 的关系中,a n =S n-S n -1成立的条件是n ≥2,而a 1应由a 1=S 1求出,然后再检验a 1是否满足n ≥2时a n 的式子.1.如图,九连环是中国从古至今广为流传的一种益智玩具.在某种玩法中,按一定规则移动圆环,用a n 表示解下n (n ≤9,n ∈N *)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n =2a n -1,n 为偶数,2a n -1+1,n 为奇数,则解下5个圆环所需的最少移动次数为( )A .5B .10C .21D .422.若数列{a n }的前n 项和S n =n -1n,则其通项公式为________.例2 (1)(2023·汕头二模)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .2(2)(2023·泉州模拟)记等比数列{a n }的前n 项和为S n ,若a 2-2a 1=0,S 3-S 2=4,则S 2022=( )A .22022-2B .22022-1C .22023-2D .22023-1高中数学 ︵ 高三秋季班 ︶人 教 A 版(3)(2022·北京海淀区模拟)如图是标准对数远视力表的一部分.最左边一列“五分记录”为标准对数视力记录,这组数据从上至下为等差数列,公差为0.1;最右边一列“小数记录”为国际标准视力记录的近似值,这组数据从上至下为等比数列,公比为1010.已知标准对数视力5.0对应的国际标准视力准确值为1.0,则标准对数视力4.8对应的国际标准视力精确到小数点后两位约为(参考数据:510≈1.58,1010≈1.26)( )A.0.57 B .0.59 C .0.61D .0.63利用等差数列、等比数列的通项公式、前n 项和公式,能够在已知三个元素的前提下求解另外两个元素,其中等差数列的首项和公差、等比数列的首项和公比为最基本的量,解题中首先要注意求解最基本的量.提醒:在等比数列求和公式中,若公比未知,则要注意分两种情况q =1和q ≠1讨论.1.(2022·石家庄模拟)在数列{a n }中,a 1=1,1a n +1-1a n =1,则a 2022=( )A .2022B .12022C .2021D .120212.(2024·日照一模)河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{a n },则log 2(a 3·a 5)的值为( )A .16B .12C .10D .8高中数学 ︵ 高三秋季班 ︶人 教 A 版 3.(2022·南通模拟)设数列{a n },{b n }均为公比不等于1的等比数列,前n 项和分别为S n ,T n ,若S n =(2n +1)T n ,则a 4b 8=( )A .12B .1C .32D .2例3 (1)(2024·菏泽一模)已知等比数列{a n }各项均为正数,且满足0<a 1<1,a 17a 18+1<a 17+a 18<2,记T n =a 1a 2…a n ,则使得T n >1的最小正数n 为( )A .36B .35C .34D .33(2)已知等差数列{a n }是递减数列,S n 为其前n 项和,且S 7=S 8,则( ) A .d >0 B .a 8=0 C .S 15>0D .S 6>S 5,S 12>S 111.通项的性质若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k .2.前n 项和的性质对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).提醒:若数列{a n }为等比数列,则a n ≠0,且a 1,a 3,a 5,…,a 2n -1,…同号,a2,a 4,a 6,…a 2n ,…同号.1.(2022·苏州三模)已知数列{a n },{b n }均为等差数列,且a 1=25,b 1=75,a 2+b 2=120,则a 37+b 37的值为( )A .760B .820C .780D .860 2.(2022·江西模拟)在正项等比数列{a n }中,a 4a 8a 12=22,则log 4a 2+12log 2a 14=( )A .12B .13C .14D .16高中数学 ︵ 高三秋季班 ︶人 教 A 版例4 (1)(2022·广州三模)等比数列{a n }中,a 1=1,且4a 1,2a 2,a 3成等差数列,则a nn(n ∈N *)的最小值为( )A .1625B .49C .1D .12(2)已知各项都是正数的数列{a n }的前n 项和为S n ,且S n =a n 2+12a n,则下列结论错误的是( )A .{S 2n}是等差数列 B .S n +S n +2<2S n +1 C .a n +1>a nD .S n -1S n≥ln n等差数列、等比数列综合问题的求解策略(1)对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算更加简便.(2)数列的通项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解有关数列的最值问题.(3)等差数列、等比数列与不等式交汇的问题常构造函数,根据函数的性质解不等式. 提醒:等差数列、等比数列多与数学文化、不等式等知识创新交汇命题,解决此类问题时要注意构造思想、转化思想的运用.1.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1= a n +(-2)n ,n 为奇数,a n +2n +1,n 为偶数,则下列说法中不正确的是( )A .数列{a n }的奇数项构成的数列是等差数列B .数列{a n }的偶数项构成的数列是等比数列C .a 13=8191D .S 10=6722.(2022·衡水模拟)已知等差数列{a n },{b n },n ∈N *,且b n =a n +a n +1,b 1=1,b 3=9,则a 1=________;若数列{a n }的前n 项和S n ≥21,则正整数n 的最小值为________.高中数学 ︵ 高三秋季班 ︶人 教 A 版1.已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A .14 B .12 C .6 D .32.图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=( )A .0.75B .0.8C .0.85D .0.93.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造卫星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1a 1,b 2=1+1a 1+1a 2,b 3=1+1a 1+1a 2+1a 3,…,以此类推,其中a k ∈N *(k =1,2,…),则( )A .b 1<b 5B .b 3<b 8C .b 6<b 2D .b 4<b 7高中数学 ︵ 高三秋季班 ︶人 教 A 版 4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块5.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm ,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm ,10 dm ×6 dm ,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为____________;如果对折n 次,那么∑nk =1S k =________dm 2.6.斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.斐波那契数列{a n }可以用如下方法定义:a n +2=a n +1+a n ,且a 1=a 2=1,若此数列各项除以4的余数依次构成一个新数列{b n },则数列{b n }的第2022项为( )A .0B .1C .2D .3。
专题09 等差数列、等比数列
1.已知等差数列{a n }的前n 项和为S n ,若a 3+a 5=8,则S 7=( ) A .28 B .32 C .56 D .24 【答案】:A
【解析】:S 7=7×(a 1+a 7)2=7×(a 3+a 5)2
=28.故选A.
2.等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为( ) A .-2或1 B .-1或2 C .-2 D .1
【答案】:C
3.设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=9
11,则当S n 取最大值时,n 的值为( )
A .9
B .10
C .11
D .12 【答案】:B
【解析】:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值.
4.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( )
A .4
B .5
C .6
D .7 【答案】:B
【解析】:由等比数列的性质可知a m +1·a m -1=a 2m =2a m (m ≥2),∴a m =2,即数列{a n }为常
数列,a n =2,
∴T 2m -1=22m -
1=512=29,即2m -1=9,所以m =5.
5.已知等比数列{a n }的各项都是正数,且3a 1,1
2a 3,2a 2成等差数列,则a 8+a 9a 6+a 7
=( )
A.6 B.7 C.8 D.9
【答案】:D
6.各项均不为零的等差数列{a n}中,a1=2,若a2n-a n-1-a n+1=0(n∈N*,n≥2),则S2 016=________.
【答案】:4 032
【解析】:由于a2n-a n-1-a n+1=0(n∈N*,n≥2),即a2n-2a n=0,∴a n=2,n≥2,又a1=2,∴a n=2,n∈N*,故S2 016=4 032.
7.设数列{a n}的前n项和为S n.若S2=4,a n+1=2S n+1,n∈N*,则a1=________,S5=________.
【答案】:1121
8.已知数列{a n}的各项均为正数,S n为其前n项和,且对任意n∈N*,均有a n,S n,a2n 成等差数列,则a n=________.
【答案】:n
【解析】:∵a n,S n,a2n成等差数列,∴2S n=a n+a2n.
当n=1时,2a1=2S1=a1+a21.
又a 1>0,∴a 1=1.
当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1,∴(a 2n -a 2
n -1)-(a n +a n -1)=0,
∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0, 又a n +a n -1>0,∴a n -a n -1=1,
∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n (n ∈N *).
9.已知等差数列{a n }满足a 3=2,前3项和S 3=92.
(1)求{a n }的通项公式;
(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .
10.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=5
4
,且当n ≥2时,4S n
+2
+5S n =8S n +1+S n -1. (1)求a 4的值;
(2)证明:⎩
⎨⎧
⎭
⎬⎫a n +1-12a n 为等比数列;
(3)求数列{a n }的通项公式.
【解析】(1)解:当n =2时,4S 4+5S 2=8S 3+S 1, 即4(a 1+a 2+a 3+a 4)+5(a 1+a 2)=8(a 1+a 2+a 3)+a 1, 整理得a 4=4a 3-a 2
4,
又a 2=32,a 3=5
4,
所以a 4=7
8
.
(2)证明:当n ≥2时,有4S n +2+5S n =8S n +1+S n -1, 即4S n +2+4S n +S n =4S n +1+4S n +1+S n -1, ∴4(S n +2-S n +1)=4(S n +1-S n )-(S n -S n -1), 即a n +2=a n +1-1
4a n (n ≥2).
经检验,当n =1时,上式成立.
∵a n +2-12a n +1a n +1-12a n =⎝⎛⎭⎫a n +1-14a n -12a n +1a n +1-12a n =1
2⎝⎛⎭⎫a n +1-12a n a n +1-12a n
=12为常数,且a 2-1
2a 1=1,
∴数列⎩⎨⎧⎭
⎬⎫a n +1-12a n 是以1为首项,1
2为公比的等比数列.
11.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)
2(n ∈N *).
(1)求证:数列{a n }是等差数列; (2)设b n =1
S n
,T n =b 1+b 2+…+b n ,求T n .
【解析】(1)证明: S n =a n (a n +1)
2
(n ∈N *),①
S n -1=a n -1(a n -1+1)2
(n ≥2).②
①-②得:a n =a 2n +a n -a 2n -1-a n -1
2
(n ≥2),
整理得:(a n +a n -1)(a n -a n -1)=(a n +a n -1)(n ≥2). ∵数列{a n }的各项均为正数, ∴a n +a n -1≠0, ∴a n -a n -1=1(n ≥2). 当n =1时,a 1=1,
∴数列{a n }是首项为1,公差为1的等差数列.。