运输问题-表上作业法
- 格式:ppt
- 大小:2.18 MB
- 文档页数:85
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题是一种常见的工业应用问题,涉及到如何安排运输工具和货物,以最小化总成本或最大化利润。
表上作业法(Tableau Programming)是解决运输问题的一种有效方法,其解题思路和原理、具体步骤如下:1. 确定问题的状态在表上作业法中,我们需要先确定问题的状态。
状态是指某个特定时间段内,某个运输问题需要满足的条件。
例如,在一个例子中,我们可以将运输问题的状态定义为“需要从A城市运输货物到B城市,运输工具数量为3,运输距离为100公里”。
2. 定义状态转移方程接下来,我们需要定义状态转移方程,以描述在不同状态下可能采取的行动。
例如,在这个问题中,我们可以定义一个状态转移方程,表示当运输工具数量为2时,货物可以运输到B城市,而运输距离为80公里。
3. 确定最优解一旦我们定义了状态转移方程,我们就可以计算出在不同状态下的最优解。
例如,在这个问题中,当运输工具数量为2时,货物可以运输到B城市,运输距离为80公里,总成本为200元。
因此,该状态下的最优解是运输距离为80公里,运输工具数量为2,总成本为200元。
4. 确定边界条件最后,我们需要确定边界条件,以确保问题的状态不会无限制地变化。
例如,在这个问题中,当运输工具数量为3时,运输距离为120公里,超过了B城市的运输距离范围。
因此,我们需要设置一个限制条件,以确保运输工具数量不超过3,且运输距离不超过120公里。
表上作业法是一种简单有效的解决运输问题的方法,其原理和具体步骤如下。
通过定义状态转移方程、确定最优解、确定边界条件,我们可以计算出问题的最优解,从而实现最小化总成本和最大化利润的目标。
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题是指在给定的供应地和需求地之间,选择最佳的运输方案,使总运输成本最低的问题。
表上作业法是一种常用的解决运输问题的方法,它基于线性规划的思想,通过逐步逼近最优解的方式来求解运输问题。
表上作业法的原理是将运输问题转化为一个线性规划问题,通过构建一个供需平衡表来描述运输问题。
在该表中,将供应地和需求地分别作为行和列,并在表中填入运输量的变量。
同时,引入一个辅助表来记录每个供应地和需求地的运输量。
具体的求解步骤如下:1. 构建供需平衡表:将给定的供应地和需求地以及对应的运输量填入表格中,并计算每个供应地和需求地的供应总量和需求总量。
2. 确定初始基本可行解:根据运输量的限制条件,确定一个初始的基本可行解。
可以选择将某些运输量设置为0,使得每个供应地和需求地都满足其供应总量和需求总量。
3. 计算单位运输成本:根据给定的运输成本,计算每个供应地和需求地之间的单位运输成本,填入表格中。
4. 判断最优解条件:检查当前的基本可行解是否满足最优解的条件。
如果每个供应地和需求地都满足其供应总量和需求总量,并且没有其他更低成本的运输方案,则当前解为最优解。
5. 迭代改进解:如果当前解不满足最优解的条件,则需要进行迭代改进。
在每一次迭代中,选择一个非基本变量(即非0运输量)进行改变,并计算改变后的基本可行解。
6. 更新供需平衡表和辅助表:根据改变后的基本可行解,更新供需平衡表和辅助表的运输量,并重新计算单位运输成本。
7. 重复步骤4-6,直到找到最优解为止。
通过以上的步骤,表上作业法能够有效地求解运输问题,并得到最优的运输方案。
它在实践中广泛应用于物流管理、供应链优化等领域,为运输问题的决策提供了科学的依据。