二元合金组织观察与分析
- 格式:ppt
- 大小:1.91 MB
- 文档页数:40
序号: 1200134000101组别: 5深圳大学实验报告课程名称:材料科学基础实验实验项目名称:二元合金显微组织分析学院:材料学院专业:材料科学与工程指导教师:钱海霞报告人:叶淳懿学号:2016200084 班级:实验时间:2018.12.19实验报告提交时间:教务部制数据处理分析纯铁,退火态,4%硝酸酒精腐蚀,物镜10倍,铁素体(α相)由图可知,经过4%硝酸酒精腐蚀的退火态纯铁拥有大小较为明显和均匀的晶粒,且均为铁素体(α相)。
由熔融态纯铁随着温度下降,先析出δ相铁;随着温度继续下降,δ相铁发生转变变成γ相铁。
当温度降至912℃时,γ相铁开始转变为α相铁,即图中铁素体。
20钢,退火态,4%硝酸酒精腐蚀,物镜10倍,铁素体,珠光体经过4%硝酸酒精腐蚀的退火态20钢图中有浅色与黑色两种晶粒分散分布,其中浅色为铁素体,黑色为珠光体。
为亚共析钢。
20钢冷却时先匀晶转变析出δ相固溶体,之后发生包晶转变析出γ相,此时仍有δ相,但随着温度降低全部转变为奥氏体。
温度继续冷却,开始析出铁素体,并逐渐增多。
在770℃发生共析转变形成珠光体(α+FeC)。
345钢,退火态, 4%硝酸酒精腐蚀,物镜10倍,铁素体,珠光体45钢也是亚共析钢,由图可知,相比起20钢,黑色的珠光体含量更加多,且珠光体的晶粒更大。
45钢冷却时先匀晶转变析出δ相固溶体,之后发生包晶转变析出γ相,此时仍有液相,但随着温度降低全部转变为奥氏体。
其余过程与20钢相比并无太大差异,不再赘述。
60钢,退火态,4%硝酸酒精腐蚀,物镜10倍,铁素体,珠光体由图可知60钢仍是亚共析钢,但绝大部分已经是珠光体了,浅色的铁素体只占其中很小的一部分。
45钢冷却时直接匀晶转变析出γ相,无δ相析出。
其余过程与20钢相似,不再赘述。
T8钢,退火态,4%硝酸酒精腐蚀,物镜40倍,铁素体,渗碳体,珠光体T8钢为共析钢,从图中可看到黑绿色为渗碳体,浅色为铁素体。
他们共同构成了珠光体。
第三章金相显微组织分析第一节二元合金平衡(非平衡)显微组织分析金相显微组织是在金相显微镜下能够看到的合金内部组成物的直观形貌,它描述了各组成物的本质、形态、大小、数量和分布特征。
这些组成物由不同的相所组成。
合金的显微组织可以是一种相组成的单相组织,也可以是几种相组成的复合组织。
相:是具有同一聚集状态、同一结构、同一性质、并与其他部分在界面分开的均匀组成部分。
相图:是研究不同成分合金相平衡关系的一种图形。
组织:用肉眼或显微镜所观察到的不同组成相的形状,分布及各相之间的组合状态。
平衡组织:合金经缓慢冷却后具有的显微组织。
非平衡组织:合金经快冷后具有的显微组织。
二元合金:由两种组元组成的合金称为二元合金。
固溶体:以合金某一组元为溶剂,其晶体点阵中溶入其它组元原子(溶质)所组成的异类原子混合的结晶相,结构保持溶剂元素的点阵类型,其实质是固态溶液。
匀晶转变:由液相直接结晶出单相固溶体的过程。
共晶转变:具有E点成分的液相,在一定的温度下,同时结晶出一定成分的两个固相,即M点成分的α相与N点成分的β相。
包晶转变:由一个固相与液相作用形成另一个固相的过程,称为包晶转变。
晶内偏析(枝晶偏析):在一个晶粒内部成分不均匀的现象,称晶内偏析。
离异共晶:当不平衡共晶体量很少时,其中与初生晶体相同的相,常与初生晶体连成一片,不能分辩,而共晶体的另一相则留在枝晶间,这种形式的共晶组织称离异共晶。
伪共晶:亚共晶和过共晶合金在快冷时,初生晶体数量减少,共晶体的实际成分偏离原共晶点,形成伪共晶,成分靠近共晶点的合金,快冷时,甚至来不及析出初生晶体即发生共晶反应,得全部共晶体。
这种由非共晶成分的合金而获得全部共晶体的组织,称为伪共晶组织。
脱溶:由α固溶体中析出另一种固相的过程,称脱溶,一般脱溶相称为次生相表示。
或次生固溶体,以βⅡ观察二元合金显微组织,应根据该合金系的相图,分析合金在平衡及非平衡冷却条件下可能出现的相及组织组成物。
典图3-1 Ni-Cu相图型二元合金的显微组织可分为以下几类:一、固溶体合金的显微组织具有匀晶转变的合金,如图3—1所示,在平衡冷却条件下,其室温组织均为单相固溶体。
实验五二元合金相图一、目的要求1.用热分析法测绘Pb-Sn二元金属相图。
2.了解热分析法的测量技术。
二、基本原理相图是多相(二相或二相相以上)体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡情况(相的数目及性质等),故称为相图。
二元或多元体系的相图常以组成为自变量,其物理性质则大多取温度。
由于相图能反映出多相平衡体系在不同自变量条什下的相平衡情况,因此,研究多相体系的性质,以及多相体系相平衡情况的演变(例如冶金工业冶炼钢铁或其他合金的过程,石油工业分离产品的过程等),都要用到相图。
图4.1是一种类型的二元简单低共熔物相图。
图中A、B表示二个组分的名称,纵轴是物理量温度T,横轴是组分B的百分含量B%。
在acb线的上方,体系只有一个相(液相)存在;在ecf线以下,体系有两个相(两个固相——晶体A、晶体B)存在;在ace所包为的面积中,一个固相(晶体A)和一个液相(A在B中的饱和熔化物)共存;在bcf所包围的面积中,也是一个固相(晶体B)和一个液相(B在A中的饱和熔化物)共存;图中c点是ace与bef 两个相区的交点,有三相(晶体A、晶体B、饱和熔化物)共存。
测绘相图就是要将相图中这些分隔相区的线画出来。
常用的实验方法是热分析法。
热分析法所观察的物理性质是被研究体系的温度。
将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间(例如半分钟或一分钟)读体系温度一次,以所得历次温度值对时间作图,得一曲线,通常称为步冷曲线或冷却曲线,图4.2是二元金属体系的一种常见类型的步冷曲线。
冷却过程中,若体系发生相变,就伴随着一定热效应,团此步冷曲线的斜率将发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点。
若图4.2是图4.1中组成为P 的体系的步冷曲线,则点2、3就分别相当于相图中的点G 、H 。
因此,取一系列组成不同的体系,作出它们的步冷曲线,找出各转折点,即能画出二元体系的最简单的相图(对复杂的相图,还必须有其他方法配合,才能画出)。
实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2实验结果:金相组织分析:何林温雅欣杨多雪杨俊杰组:成分组织相理论相对量相实际相对量90%Pb-10%Sn α+βⅡα90% 87.1% β10% 12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶内。
实验三二元合金的显微组织(Microstructures of Binary Alloys)实验学时:1 实验类型:综合前修课程名称:《材料科学导论》适用专业:材料科学与工程一、实验目的运用二元共晶型相图,分析相图中典型组织的形成及特征。
%4.45195.979.615.97c =--==cd ed α%6.54%100)1(=⨯-=c d αβ继续冷却时,将从α和β中分别析出βⅡ和αⅡ。
由于从共晶体中析出的次生相常与共晶体中的同类相混在一起,很难分辨,这样,在结晶过程全部结束时合金获得非常细密的两相机械混合物。
样品制备中的腐蚀剂是4%的硝酸酒精,显微镜中,α相呈暗色,β相呈亮色。
参见图3-1。
(3-1)铅锡二元共晶 (3-2)铅锡二元亚共晶⒉ 亚共晶合金凡成分位于共晶点e 以左,c 点以右的合金(如图中的合金Ⅱ)叫亚共晶合金。
合金Ⅱ熔化后在液相线与固相线之间缓慢冷却时,不断地从液相中结晶出α固溶体。
随着温度的下降,液相成分沿ac 线变化,逐渐趋向于e 点;α相的成分沿固相线ac 变化,并逐渐趋向于c 点。
当温度降到共晶温度时,α相和剩余液相的成分将分别到达c 点和e 点。
这时,成分为e 点的液相发生前述的共晶转变,直到剩余液相全部转变为共晶组织为止。
这时,亚共晶合金的组织是由先共晶α相和共晶体(α+β)所组成。
在共晶温度以下继续冷却的过程中,将分别从α和β相中析出βⅡ和αⅡ 。
在显微镜下,除了从先共晶α相晶粒内或边界上析出的βⅡ 有可能观察到外,共晶组织中析出的βⅡ和αⅡ 一般不易辨认。
合金中组织组成物的相对量也可以用杠杆定律来计算。
亚共晶组织中的初晶α呈枝晶状分布。
参见图3-2。
⒊ 过共晶合金凡成分位于共晶点e 以右,d 点以左的合金(如图中的合金Ⅲ)称为过共晶合金。
这类合金的结晶过程类似于亚共晶合金,所不同的是:先共晶相不是α,而是β固溶体。
结晶后的组织是由先共晶β相和共晶体(α+β)所组成。
第五章 二元合金组织的观察一、概述合金的种类不同,合金状态图的形式也不同,有的则十分复杂,但任何复杂的二元合金状态图,都是由一些简单的基体状态图组合起来的。
这些基本类型有匀晶状态图,共晶状态图和包晶状态图等。
熟悉掌握这些相图,是分析合金的结晶过程,组织转变规律及组织特制的必要知识。
1、二元匀晶相图及合金的结晶过程和组织特征这类状态图的特点是合金的二组元在液态与固态下均能完全互溶,Cu -Ni 合金就是其中的一种,如图1所示。
具有这种类型状态图的合金,结晶过程及所获得组织都具有独特的特征,现以合金钢为例,简要叙述如下:改合金加热至液态后自高温缓慢冷却至t 1温度时,开始从液相中结晶处α1固溶体,此时与其平衡存在得液态是L 1,由图可见,α1要比原液相含有较多的Ni 组元。
继续冷却到t 2温度时,合金的相平衡关系则变为:222t L α−−→←−−为了达到这种新的平衡,在t 1温度结晶出的α1相,必须改变为与α2相同的成分,液相成分也必将由L 1向 L 2变化。
在温度不断下降过程中,固相的成分将不断的沿固相线变化,液相的成分也不断的沿液相线变化。
同时固相的量不断增多,而液相量逐渐减少。
在一定温度下两相的相对量可用杠杆定律求出。
当冷却到t 3温度时,结晶全部完了,得到了与原合金成分相同的α固溶体。
在显微镜下观察,固溶体的组织特征与纯金属相似,为多边形晶粒所组成。
但在实际生产中,由于冷却速度比较快,因此,合金不可能完全按照平衡条件进行结晶。
2、二元共晶状态图及合金的结晶过程与组织特征二元合金具有共晶转变特征的状态图叫做共晶状态图,在这种合金系中,二组元在液态下无限互溶,而在固态下可有限互溶。
下面以Pb -Sn 合金(参看图2)为例分析其共晶、亚共晶、过共晶等不同成分合金的结晶过程及结晶后所形成组织形态的特征。
1)含Sn 小于19%的合金由图2可见,含10%Sn 的合金,缓慢冷却到液相线时,从液体中开始结晶出α固溶体。
西安交通大学实验报告课 程:金相技术与材料组织显示分析 实验 日期:年 月 日专业班级: 组别 交报告日期: 年 月 日姓 名: 学号 报 告 退 发: (订正、重做)同 组 者: 教师审批签字:实验名称:二元共晶系合金的组织观察分析实验目的:1. 熟悉共晶系合金的显微组织特征;2. 掌握用相图分析合金结晶组织的方法。
实验原理概述:相图是分析显微组织的最基本的依据。
以下是Pb-Sn 合金的相图:1. 固溶体位于相图的两端,这类合金在结晶终了将得到单相固溶体,a 固溶体和β固溶体,将其冷到固溶度线以下将析出二次β或二次a ,通常呈粒状或小条状分布于晶界与晶内。
2.共晶线上的合金成分处于共晶线上的合金,在温度讲到共晶温度时,都要发生共晶反应,组织中有共晶组织特征。
按成分分为亚共晶合金、共晶合金和过共晶合金。
3.枝晶偏析与离异共晶、伪共晶当二元合金不平衡洁净时,固相成分分散不均匀,固相成分偏离平衡相图上固相线的位置,结晶后的组织成分不均匀,先结晶的枝杆,含高熔点组元多,后结晶的枝间含低熔点的组元多,即所谓的枝晶偏析现象。
结合相图,分析所画组织的结晶过程:1.亚共晶结晶过程:其室温下显微组织都是α+βⅡ组成,只是两相的相对量不同。
从液相冷却至液相线首先从L相中析出α相,在继续冷却到共晶线时发生共晶反应析出β相成为两相固溶体。
2.共晶结晶过程:当液相成分为共晶成分时,液态冷却到共晶线时才开始析出,并同时析出α和β相,其析出成分比例也为共晶比例。
3.过共晶结晶过程:其过程和亚共晶结晶过程相似,不同的是当液相冷却至液相线时先析出β相,再到共晶线发生共晶反应是才析出α相。
用杠杆定律计算所画共晶合金中两相的相对量:因Sn的质量分数为61.9%,则由杠杆定律:α相的含量wtα=X100%=38.1%;β相的含量wtβ=X100%=61.9%。
实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:陈越凡门明达王光王晓宇魏瑛康何林温雅欣杨多雪杨俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2实验结果:金相组织分析:何林温雅欣杨多雪杨俊杰组:成分组织相理论相对量相实际相对量90%Pb-10%Sn α+βⅡα90% 87.1% β10% 12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶内。
实验六:二元合金组织观察一、实验目的观察几种不同类型的二元合金显微组织,结合状态图分析讨论各类合金的组织特点二、实验说明1. Cu-Ni合金铜和镍两组元在液态及固态下都能无限互溶,在L+α两相区,自由度为1,结晶是在一个温度区内进行的(图5所示)。
任一Cu-Ni合金由液态极缓慢地冷却到室温时,可得到均匀的单相α固溶体,但在快速冷却(生产条件)时,扩散未能充分进行,使凝固过程偏离平衡条件而出现枝晶偏析,显微组织呈树枝状组织,枝干为富Ni的α(高熔点组元先凝固),枝间为富Cu的α(低熔点组元多)2. Pb-Sn合金Pb-Sn合金为液态下无限溶解,固态下有限互溶的共晶系(图6)。
当缓慢冷却时,合金按照相图平衡凝固。
合金Ⅰ为共晶组织(α+β),室温下全部为层片交替的共晶体,合金Ⅱ室温组织为β+(α+β)。
由于固溶体溶解度的变化,从初晶或共晶的α会析出β,(α+β)共晶保持共晶的特征,经4%硝酸酒精浸蚀,黑色为α相,白色为β3. Sn-Sb合金图7为Sn-Sb合金状态图,从图中可知,Sn-Sb在液态下完全互溶,在固态下有限互溶,具有如下两个包晶反应:其中β是金属化合物SnSb,冷却到325~320℃间转变为有序相β′;α是Sb在Sn中的固溶体;γ是Sn在Sb中的固溶体。
合金Ⅰ,室温显微组织为α固溶体的基体上分布由β′相,有时能看到β′呈枝晶状(达不到平衡条件所至)且在其上观察到αⅡ。
合金Ⅱ,冷却时首先析出γ固溶体,到425℃进行包晶反应,生成β相(包晶),反应结束仍有过剩液相,随后冷却过程,液相不断结晶成β,一直到结晶完毕,继续冷却β转变为β′。
若是平衡条件下最后得到均匀的单相组织β′。
但在包晶转变过程中,扩散极为困难,达不到平衡条件,所以当试样经4%硝酸酒精溶液浸蚀后,往往能看到白色的外包着灰色的β(富Sb)而基体为L转变成的β(暗黑色,富Sn)。
三、实验材料及设备1.典型试样(见下表)2.金相显微镜四、实验步骤及内容1.熟悉匀晶、共晶、包晶三类相图2.结合相图对已制好的典型试样进行观察3.绘制典型合金的组织示意图五、实验报告要求1.绘制六种典型合金的组织示意图,用箭头标明示意图中所示的组织,并注明处理状态、腐蚀剂和放大倍数。
二元系合金的显微组织分析实验指导书一、实验目的1)掌握根据相图分析合金凝固组织的方法。
2)熟悉典型共晶系合金的显微组织特征。
3)了解初晶及共晶形态。
4)分析二元合金的不平衡凝固组织,掌握其组织特征及某与平衡组织的差别二、原理概述研究合金的显微组织时,常根据该合金系的相图,分析其凝固过程,从而得知合金缓慢冷却后应具有的显微组织。
显微组织是指各组成物的本质、形态、大小、数量和分布特征。
特征不同,即使组成物的本质相同,合金的性能也不一样。
具有共晶反应的二元合金系有:Pb-Sb、Pb-Sn、Al-Si、Al-Cu、Cu-O、Zn-Mg等。
根据合金在相图中的位置,可分为端部固溶体、共晶、亚共晶和过共晶合金来研究其显微组织特征。
1、端部固溶体合金端部固溶体合金位于相图两端。
如Pb-Sn相图中含锡的质量分数小于19%的合金,见图3-1;Pb-Sb相图中含锑的质量分数小于3.5%的合金,见图3-2。
这类合金慢冷凝固终了得到单相固溶体α,继续冷却到固溶度曲线以下,将析出二次相βⅡ,一般合金中的二次相常呈粒状或小条状分布在α固溶体的晶界和晶内。
图3-3为含锡10%的Pb-Sn合金的显微组织,其中暗色的基体为铅基固溶体α,亮色颗粒为二次相β,记为βⅡ,β是以锡为基体的固溶体。
图3-1 Pb-Sn相图图3-2Pb-Sb相图图3-3 Pb-10%Sn合金的显微组织2、共晶合金位于二元相图中共晶点成分的合金液体L E 冷至共晶温度t E 时,发生共晶反应,b a t E EL βα+→凝固终了得共晶体组织。
共晶体是由两种一定成分的固相(b a βα+)组成,两相的本质和成分可由相图上得知。
如Pb-Sn 合金的共晶体中两个相的本质分别为以铅和锡为基的固溶体α和β,在共晶温度时,α和β中锡的质量分数分别为19%和97.5%(见图3-1)。
而在Pb-Sb 合金中,由于铅在锑中的固溶度很小,β相的成分接近纯锑,故其共晶体由α+Sb 所组成。
实验九金属及合金凝固组织的观察和分析摘要:通过对金属及合金凝固组织的观察和分析,掌握样品组织的的一般特点。
并结合相图了解几种类型二元合金、三元合金的结晶过程及结晶后的组织,掌握金相组织的分析方法。
关键词:相图、合金凝固组织,结晶过程正文:一、实验背景了解纯金属铸锭粗型组织的一般特点,并结合相图了解几种类型二元合金,三元合金的结晶过程及结晶后的组织。
同时通过实验加深对课程中“凝固”“相图”两章的认识,了解实际组织与组织示意图的关系,达到掌握金相组织分析方法的目的。
二、实验内容1、金属材料的组织分析显微组织指光学显微镜下能够看到的金属材料内部所具有的各组成相的直观形貌。
包括各种相,相的形状、大小、分布以及相对量等。
宏观组织指30倍以下的放大镜或者人的眼睛直接能够观察到的金属材料内部所具有的各组成物的直观形貌。
经侵蚀后的样品在显微镜下可以看到各种形态的组织一般可以归纳成:①单相组织,在显微镜下看到的是许多多边形晶粒组成的多晶体。
可以研究它的晶界、晶粒形状、大小以及晶粒内出现的亚结构。
②两相,可以观察到有两相的花样。
③多相。
2、影响组织变化的条件:①合金成分。
成分不一样,组织就不一样。
②工艺条件。
凝固条件、锻压条件、热处理工艺等。
3、金属及合金凝固组织的观察与分析①铝铸锭低倍组织观察。
②二元合金(匀晶、共晶、包晶)Ni-Cu, Pb-Sn Sn-Sb。
③三元合金(共晶)Bi-Pb-Sn。
三、实验设备及材料1.光学显微镜2.标准样品1)铝锭(用于低倍组织观察)2)显微组织分析样品①二元合金的显微组织观察(分析时参考附录中的相图)1)匀晶类型(Ni-Cu系)样品:a)25%Ni+75%Cu,处理过程:铸造。
b)25%Ni+75%Cu,处理过程:退火。
2)共晶类型(Pb-Sn系)样品:a)70%Pb + 30%Sn;b)38.1%Pb + 61.9%Sn;c) 20%Pb + 80%Sn;铸造。
3)包晶类型(Sn-Sb系)样品:a)80%Sn + 20%Sb;b) 35%Sn + 65%Sb。
试验四二元合金显微组织分析组织和结构是有区分的,主要表现在它的尺度不同。
组织是显微尺度,结构是原子尺度。
组织是指用肉眼和显微镜观看到的金属内部情景,如晶粒尺寸和外形以及组成物的特点等。
而结构是指组成金属的同类或异类原子在三维空间的排列状况。
目前一般是用X射线衍射分析才能确定。
合金在室温下可以同时存在几种晶体结构,即可以多相共存,因而组织比纯金属简单许多。
合金的组织,既可由单相组成,也可由两相甚至多相组成。
不同的相可以构成不同的组织。
单相合金是以金属为溶剂的固溶体0两相或多相合金的组织中,数量较多的一相,称为基体相,大多是以金属为溶剂的固溶体。
其余的相可以是合金的另一组元为基体形成的固溶体或另一-组元的纯金属;也可是合金各组元形成的化合物或以化合物为溶剂的固溶体。
合金的相组成是说明合金由几种相和那几种相组成。
合金的显微组织分析就是进一步分析相组成、相分布和相形态,即讨论各相的生成条件、数量、外形、大小以及它们之间的相互分布状态。
1. 试验目的依据凝固理论,采用二元相图,在金相显微镜下,识别二元合金组织特征,进行显微组织分析。
合金中的基本组织特征合金成份不同时,二元合金可构成不同的组织,成份相同、但凝固及处理条件不同时,也可构成不同的组织。
合金的显微组织与合金的成份、组成相的性质、冷却速度及其他处理条件、组成相相对量等因素有关,一般可有以下几种形貌:2.1单相固溶体固溶体结晶时,先从溶体中析出的固相成分与后从溶体中析出的固相成份是不同的。
冷却速度慢(平衡凝固)时,固相原子经过充分集中,因而可以得到成份匀称的单相固溶体;冷却快时,固相原子来不及集中匀称,从而使凝固结束后晶粒内各部分存在浓度差别,故各处耐腐蚀性能不同,浸蚀后在显微镜下呈现树枝状特征。
下面以Cu-20%Ni合金为例进行说明。
Cu-20⅜Ni的铜合金铸态组织图所示为热力学不平衡组织,在固态匀称化退火后,则消失类同纯金属一样的多边形晶粒,Cu-20%Ni的铜合金匀称化退火组织图所示为单相固溶体平衡组织。
实验四二元合金组织观察目的1.加深对二元合金相图的认识,学习利用相图分析合金的铸态组织;2.学习显微组织示意图的绘制方法。
一、相图及相关的组织转变铸造组织就是从液态冷却凝固后未进行其它有改变组织的处理,如冷态压力加工、热处理等,所以其组织可以直接用相图的凝固冷却过程的组织变化来分析。
1.固溶体的凝固时,析出的固相成分和原液体有一定的差别。
金属的结晶生长通常都是以树枝晶方式,未达到平衡时便有晶内偏析,成树枝状分布。
2.共晶转变是液体可以在恒温下,同时析出两固相,其产物为两相交替分布的共晶体。
由于构成共晶体的两相自身的性能差别,形成的共晶体的形貌也各不相同。
常见的有层片、棒状、纤维、球状、针状、骨骼状、螺旋状等。
3.具有共晶转变的非共晶成分的合金,在平衡冷却时,共晶转变前有先共晶的初生相析出,它们在液体中自由生长,到达共晶温度剩余液体发生共晶转变,生成的共晶体填充剩余空间,所以初生相保留生长的形状。
一般金属性强的往往一树枝状生长,形貌为排列有一定规律的卵圆形;呈非金属强的初生相生长成多面体,观察形貌为多边形。
4.具有包晶转变时,剩余的初生固相通常在生成相的晶粒内部,由于包晶反应的消耗,初生相为残缺不全。
二、实验内容观察几种典型合金的铸造组织形貌,①.Cu-Sn6%合金较快冷却凝固组织,认识枝晶偏析组织。
②.Pb-Sb12.6%共晶组织,由于锑几乎接近非金属,对铅的溶解度较小,呈现亮色针状,黑底为铅为基的固溶体。
③.Pb-Sb5%合金有暗色树枝状的铅为基的固溶体初晶析出。
④.Pb-Sb75%合金有亮色块状的锑为基的固溶体初晶析出。
⑤.Cu-Zn36%合金,常称两相黄铜,具有包晶转变。
组织中暗色的为残余α相,亮色的是包晶转变生产的β相。
⑥.Cu-Sb70%合金也是具有初生行析出后发生共晶转变,其初生相为化合物η相(Cu2Sb),组织中初生相为粗片,片间有层片状的共晶体。
三、实验报告要求画出前五个组织示意图,每一个注明组织特征,简述形成组织的原因(或过程)。