传感器整理1
- 格式:doc
- 大小:41.50 KB
- 文档页数:5
传感器的问题解决方案引言概述:传感器是现代科技中不可或缺的一部分,它们广泛应用于各个领域,包括工业、医疗、交通等。
然而,传感器在使用过程中可能会遇到各种问题,如精度不准确、信号干扰、故障等。
本文将介绍传感器常见的问题,并提供解决方案,以帮助用户更好地解决传感器问题。
一、传感器精度问题解决方案:1.1 校准传感器:传感器的精度可能会受到环境因素的影响,如温度、湿度等。
通过定期校准传感器,可以提高其精度。
校准过程可以使用标准样品或专业仪器进行,确保传感器输出的数据准确可靠。
1.2 优化传感器布置:传感器的布置位置也会影响其精度。
在安装传感器时,应考虑周围环境的影响,避免干扰源的存在。
同时,合理选择传感器的安装位置,使其能够最大程度地接触到被测物体,并减少误差。
1.3 更新传感器固件:有些传感器的精度问题可能是由于固件版本较旧引起的。
及时检查并更新传感器的固件,可以解决一些精度问题,并提升传感器的性能。
二、传感器信号干扰问题解决方案:2.1 屏蔽传感器信号:传感器信号可能会受到其他电磁干扰源的影响,如电线、电气设备等。
在安装传感器时,可以使用屏蔽材料将传感器信号线包裹起来,以减少外部干扰的影响。
2.2 优化传感器接线:传感器的接线方式也会影响信号的稳定性。
确保传感器的接线牢固可靠,避免接线松动或接触不良导致的信号干扰。
同时,根据传感器的规格要求选择合适的电缆和连接器,以提高信号传输的质量。
2.3 使用滤波器:在一些特殊环境下,如高频干扰较多的场所,可以使用滤波器来滤除干扰信号。
滤波器可以帮助传感器准确地捕捉到所需的信号,并减少干扰的影响。
三、传感器故障问题解决方案:3.1 检查供电电源:传感器故障可能是由于供电电源不稳定或电压过高导致的。
检查传感器的供电电源,确保电压稳定,避免过高电压对传感器造成损害。
3.2 清洁传感器:一些传感器可能会受到灰尘、污垢等物质的影响,导致故障。
定期清洁传感器表面,保持其干净整洁,可以减少故障的发生。
传感器的维护和调整
传感器的维护
传感器在系统中的作用很大,非常关键,是整个系统的眼睛,位置设置或灵敏度的调整相当关键。
为确保传感器发挥应有的作用,在使用中要特别注意传感器的位置设置。
如气缸运动行程的监控,在气缸运动行程的两端合理放置传感器,可以保证汽缸在其有效范围内运动。
光电传感器的灵敏度调整可以保证其工作的可靠性,避免误动作或不动作。
当传感器工作一段时间以后,要经常测试其检测效果,对开始有误动作或不动作的传感器要及时调整,如调整位置和灵敏度都不能改善的要予以更换。
传感器检测距离的调整
根据MPS设备要求,应把传感器的检测距离调整在最佳位置。
传感器的问题解决方案标题:传感器的问题解决方案引言概述:传感器在现代社会中扮演着重要的角色,它们用于监测和控制各种系统的运行。
然而,传感器在使用过程中可能会遇到各种问题,如灵敏度下降、误差增加等。
本文将针对传感器常见的问题提出解决方案,匡助读者更好地维护和使用传感器。
一、传感器灵敏度下降的解决方案1.1 定期清洁传感器表面:传感器表面的灰尘和污垢会影响传感器的灵敏度,因此定期清洁传感器表面是维护传感器的重要步骤。
1.2 校准传感器:传感器在长期使用后可能会浮现偏差,需要进行校准以确保其准确性和稳定性。
1.3 检查传感器连接:传感器连接不良也会导致灵敏度下降,因此需要检查传感器与设备的连接是否坚固。
二、传感器误差增加的解决方案2.1 调整传感器位置:传感器位置不当可能导致误差增加,需要根据实际情况调整传感器位置。
2.2 检查传感器供电:传感器供电不稳定也会导致误差增加,需要检查传感器的供电情况并及时更换电池或者电源。
2.3 更新传感器固件:传感器固件过时也会导致误差增加,需要及时更新传感器固件以提高其性能和准确性。
三、传感器数据异常的解决方案3.1 检查传感器数据线:传感器数据线连接不良可能导致数据异常,需要检查数据线是否坚固连接。
3.2 重置传感器:传感器在长期使用后可能浮现异常,可以尝试重置传感器以恢复其正常工作状态。
3.3 检查传感器环境:传感器工作环境不良也会导致数据异常,需要检查传感器周围环境是否符合要求。
四、传感器响应速度慢的解决方案4.1 优化传感器参数:根据实际需求调整传感器参数,以提高传感器的响应速度。
4.2 更新传感器驱动程序:传感器驱动程序过时也会导致响应速度慢,需要及时更新驱动程序。
4.3 检查传感器信号线:传感器信号线连接不良也会导致响应速度慢,需要检查信号线是否正常连接。
五、传感器故障的解决方案5.1 替换传感器部件:传感器部件损坏时需要及时更换,以恢复传感器的正常工作。
传感器是能感受规定被测量并根据肯定规律转换成可用输出信号的器件或装置。
传感器的组成: 1敏感元件, 作用: 直接感受被测量并以确定关系输出另一物理量的原件2转换原件, 作用: 将敏感元件输出的非电量转换成电路参数及电流或电压等信号3基本转换电路, 作用: 将该电信号换成便于传输, 处理的电量。
传感器按测量对象分为: 1内部信息传感器和外部信息传感器。
工作机理;1物性型2结构型按输出信号的性质分为开关型, 模拟型和数字型传感器的特性主要是指输出与输入之间的关系, 有静态和动态之分。
当传感器的输入量为常量或随时间缓慢变化时, 传感器的输出与输入之间的关系成为静态特性。
输出量随时间变化的输入量的相应特性称为动态特性。
传感器是非电量电测的首要环节和关键部件。
传感器的性能要求: 1高精度, 低成本2高灵敏度3工作牢靠4稳定性5抗干扰实力强6动态特性良好7结构简单, 小巧, 运用维护便利, 通用性强, 功耗低等。
计算机集成制造系统CIMS柔性制造系统FMS传感器的性能指标评价及选用原则: 1测量范围及量程2灵敏度3线性度4稳定性(稳定性即在相同条件下, 相当长的时间内, 其输入输出特性不发生变化的实力。
稳定性一般以诗文条件下经过肯定的时间间隔后, 传感器的输出与起始标定时输出的差异来表示)5精确度6重复读7动态特性8环境参数影响传感器稳定性的因素是时间和环境。
一般状况下, 在不致引起传感器的规定性能指标永久改变的条件下, 传感器允许超过其测量范围的实力称为过载实力。
线性度是以肯定的拟合直线作基准与校准曲线作比较, 用其不一样的最大偏差与理论满量程输出值得百分比进行计算。
在明确传感器输入/输出关系的前提下, 利用某种标砖器具产生已知的标准非电量输入, 确定其输出电量与其输入电量之间关系的过程, 称为标定。
标定的实质是待标定传感器与标准传感器之间的比较。
传感器静态标定:是给传感器输入已知不变的标准非电量, 测出其输出, 给出标定曲线, 标定方程和标定常数。
传感器调校制度一、制度背景和目的为了保证企业生产过程中传感器工作准确、稳定,提高产品质量和生产效率,制定本《传感器调校制度》。
本制度旨在规范传感器调校工作流程,明确相关职责和要求,确保传感器调校工作顺利进行。
二、适用范围本制度适用于企业的生产部门、质量检验部门,以及相关从业人员。
三、主要内容和要求1. 职责分工1.1 生产部门:负责安装和连接传感器,并进行初步调试工作。
1.2 质量检验部门:负责传感器的准确性测试和最终调校。
1.3 相关从业人员:负责协助生产部门和质量检验部门进行传感器调校工作。
2. 传感器安装和连接2.1 生产部门负责根据生产工艺要求正确安装传感器,并确保传感器与相关设备的正确连接。
2.2 传感器连接过程中,应注意避免过度扭曲、拉伸或过度弯曲传感器,避免损坏传感器。
3. 初步调试3.1 生产部门在安装完传感器后,应进行初步调试,确保传感器的基本功能运行正常。
3.2 初步调试包括传感器开关功能测试、信号输出测试等环节,生产部门应按照相关工艺要求进行调试。
4. 传感器准确性测试和最终调校4.1 质量检验部门负责对已安装和初步调试完成的传感器进行准确性测试。
4.2 准确性测试包括传感器输出值与标准值的比对,质量检验部门应使用先进的测试设备和标准工艺进行测试。
4.3 若传感器准确性存在偏差,质量检验部门应进行最终调校。
4.4 最终调校包括传感器的校正、调整和校准,调校方法应符合相关工艺要求,避免对传感器造成损坏。
5. 管理标准5.1 传感器调校工作由专业人员进行,要求具备相关技术和实践经验。
5.2 调校前,生产部门应对传感器进行详细记录,包括型号、安装位置等信息。
5.3 调校过程中,应按照相关工艺要求进行操作,记录每次调校的结果和调整参数。
5.4 调校记录应详实、准确,并妥善保存,以备随时查阅。
6. 考核标准6.1 对传感器调校工作进行绩效考核,主要考核指标包括:准确性、稳定性、效率和效果。
第1篇传感器技术绪论1.传感器引言当我们看见“传感器技术”的时候,大多数同学都不陌生。
传感器已经渗透到了我们生活的各个层面。
看看下表,就知道了。
请同学们自己补充2-3项举例。
看来传感器技术确实是喜欢电子的人必不可少的一项技术。
那么,什么是传感器呢?就做电子技术的人来说,狭义上传感器是将被测量转换为电信号的一种器件或装置。
但是,我们看见上表中出现了体温计和血压计,很多同学认为它们并不是电信号输出。
实际上,国家标准GB7665-87对传感器的定义是:“能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。
这里所说的“可用输出信号”是指便于加工处理、便于传输利用的信号。
现在电信号是最易于处理和便于传输的信号。
所以,我们可以暂时以电信号输出作为我们课程的学习对象的。
传感器也可以定义为是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
1.1人类进步发展与传感器在人类文明史的历次产业革命中,感受、处理外部信息的传感技术一直扮演着一个重要的角色。
在l8世纪产业革命以前,传感技术由人的感官实现:人观天象而仕农耕,察火色以冶铜铁。
从18世纪产业革命以来,特别是在20世纪信息革命中,传感技术越来越多地由人造感官,即工程传感器来实现。
传感器的发展是推动人类进步的巨大力量。
传感器系统代替了人类实现了大量的自动化检测与控制,是把人从繁重的体力劳动中解放出来的关键器件。
那么,把它与人的感觉相比较可以帮助我们学习传感器更多知识。
1.2人的感官与传感器技术人类最早感受周围环境的变化是通过人体感知的,我们的耳可以听见声音、鼻可以闻到味道、眼可以看见周围环境、舌可以品尝各种味道、皮肤可以感受冷暖。
有人说传感器就是电五官,这是说如果将计算机比作人的大脑的话,那么传感器的地位和功能就相当于我们的身体。
一、埴空题1、电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这一现象叫做电阻丝的(应变效应)。
2、引用误差是指测量的(绝对误差)与仪表的(满量程)之比,这一指标通常用来表征仪器本身的精度,而不是(测量)的精度。
3、传感器的动态数学模型是指传感器在受到随时间变化的(输入量)作用时,输出-输入之间的关系,通常称为(响应特性)。
4、静态标定是指在静态标准条件下,对传感器的(静态特性)、(静态灵敏度)、(非线性)、(滞后)、(重复性)等指标的确定。
5、应变片由金属丝栅(敏感栅)、绝缘基片及覆盖片三部分组成。
金属丝栅两头焊有引出线,作连接测量导线用。
6、在应用中电容式传感器有三种基本类型,即(变极距)型或称(变间隙)型、(变面积)型和(变介电常数)型。
而它们的电极形状又有(平板)形、(圆柱)形和(球平面)形三种。
7、容栅传感器是在(变面积)型电容传感器的基础上发展的一种新型传感器,它分为(长容栅)和(圆容栅)两种。
8、电容式传感器是将被测量的变化转换成(电容量)变化的一种传感器。
9、变极距式电容传感器的电容变化量与极距的变化量之间不是(线性)关系。
但当量程远小于极板间初始距离时,可以认为它们之间是(线性)的。
这种类型的传感器一般用来测量(微小变化)的量。
10、传感器在正(输人量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞,它一般由实验方法测得。
11、某些晶体沿着一定方向受到外力作用时,内部会产生极化现象,同时在某两个表面上产生大小相等符号相反的电荷;当外力去掉后,又恢复到不带电状态;当作用力方向改变时,电荷的极性也随着改变:晶体受力所产生的电荷量与外力的大小成正比。
这种现象叫(压电效应)。
反之,如对晶体施加电场,晶体将在一定方向上产生机械变形;当外加电场撤去后,该变形也随之消失。
这种现象称为(逆压电效应),也称作电致伸缩效应。
12、磁栅传感器有(长磁栅式)和(圆磁栅式)两种,分别用来测量(线位移)和(角位移)。
13、磁头的作用是读取磁栅上记录信号,按读取信号方式的不同,磁头可分为(静态)磁头和(动态)磁头。
14、压电式传感器既可等效为(电荷源),又可等效为(电容器),其等效电路可认为是二者的并联,也可认为是一个(电压源)和一个(电容器)的串联。
15、压电式传感器中常采用两片或两片以上压电晶片组合在一起使用,两片压电晶体构成的传感器有(串联)和(并联)两种接法。
16、压电材料可分为三大类:(压电晶体)、(压电陶瓷)和(新型压电材料)。
17、铁磁材料在外力的作用下,内部产生应变,从而产生应力,导致各磁畴间的界限发生移动,各个磁畴的磁化强度矢量转动,破坏了平衡状态,使材料的总磁化强度随之发生变化,这种现象称为(压磁效应)。
18、用于检测的超声波换能器有(压电型)、磁致伸缩型、电磁型、有振板型和弹性表面波型等。
19、当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),这种现象叫做(帕尔贴效应)·20、在自动化探伤中,声源和工件之间有相对运动,由缺陷反射回来的超声波的频率将与声源发射超声波的频率有所不同,这种现象即为(多普勒效应),由此效应引起的频率变化称为(多普勒频移)。
21、应变片由(金屈丝栅(敏感栅))、(绝缘基片)及覆盖片三部分组成。
(金属丝栅(敏感栅))两头焊有引出线,作连接测量导线用。
22、传感器在正(输人量增大)反(输入量减小)行程中输出输入曲线不重合称为(迟滞),它一般由实验方法测得。
23、某些晶体沿着一定方向受到外力作用时,内部会产生极化现象,同时在某两个表面上产生大小相等符号相反的电荷;当外力去掉后,又恢复到不带电状态;当作用力方向改变时,电荷的极性也随着改变:晶体受力所产生的电荷量与外力的大小成正比。
这种现象叫(正压电效应)。
反之,如对晶体施加电场,晶体将在一定方向上产生机械变形;当外加电场撤去后,该变形也随之消失。
这种现象称为(逆压电效应),也称作电致伸缩效应。
24、超声波探伤作为无损探伤的主要手段,在工业检测中应用十分广泛,常用的超声波探伤方法有共振法、(穿透法(透射法))和脉冲反射法等。
25、电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这一现象叫做(电阻丝的应变效应)二、单项选择题:选择正确的答案,将其对应的字母填入括号内。
1.声波在介质中向前传播的速度称为声速。
对于不同波型的超声波,其传播速度(A)A不同 B相同 C成线性关系 D纵波的声速约是横波的一半2、传输信息的载体称为(A)。
A信号 B数据 C数量 D信息3、静态误差是指传感器在全量程内任一点的输出值与其(C)的偏离程度。
A 平均值 B实际值 C理论输出值 D标定值4、引用误差是指测量的(A)与仪表的满量程之比。
A绝对误差 B相对误差 C 静态值 D理论输出值5、环境温度变化后,光敏元件的光学性质也将随之改变,这种现象称为(D )。
温度变化会引起光敏元件的光电流及光谱特性等变化。
A 光谱特性B 光照特性C 频率特性D 温度特性6、(D)型电容传感器可根据极间介质的介电常数随温度、湿度改变而改变来测量温度、湿度等。
A变大小B变极距C变面积D变介电常数7、零位误差是评定差动变压器性能的重要指标之一,产生零位误差的原因主要有两个:一是由于次级绕组两线圈电气参数和几何尺寸不对称,致使产生的感应电动势幅值不等,相位不同。
这种情况下,不管怎样调整衔铁位置也不能使零位输出电压调到零;二是由于(B)。
A电源幅值及频率的不稳定 B磁性材料磁化曲线的非线性C温度变化引起线圈的铜电阻值的变化,从而引起激磁电流和输出电流的变化D骨架材料高频损耗小,温度膨胀系数小8、超声波在固体中可穿透几十米的长度,在液体、固体中衰减( A ),碰到杂质或分界面就会有显著( C )A 小B 大C 反射D 折射E 透射9、在光的作用下,能够使物体内部产生一定方向的电动势的现象叫( D )。
A声光效应 B 热释电效应 C 光电导效应 D 光生伏特效应10、为了改善变极距式电容传感器的非线性,可以采用(A),并使输出为两电容量之差。
A差动形式B动态形式C静态形式D减动形式11、声波在介质中传播的速度称为声速。
对于不同波型的超声波,其传播速度(A)A.不同 B.相同C成线性关系 D.纵波的声速约是横波的一半12、(C)是测试系统的第一个环节,将被测系统或过程中需要观测的信息转化为人们所熟悉的各种信号。
A 敏感元件 B.转换元件 C传感器 D.被测量13、当超声波在一种介质中传播到界面或遇到另一种介质时,若其方向不垂直于界面,将产生声波的反射、折剔·及(D)现象。
A.表面波 B.兰姆波 C驻波 D波型转换14、利用(E)制成的光电举件有光敏二极管、光敏三极管和光电池等:利用(F)可制成半导体光敏电阻;利用——制成的光电铝件有真空光电管、充气光电管和光电倍增管。
A压电效应 B.外光电效应 C磁电效应 D.声光效应 E.光生伏特效应 F.光电导效应15、为了消除应变片的温度误差,可采用的温度补偿措施包括:(A)、(C)和(F)A.双丝自补偿法 B.温度补偿法C单丝自补偿法 D.电流补偿法 E.电压补偿法 F.桥路补偿法16、如图所示的结构由线圈、铁芯、衔铁三部分组成。
线圈套在铁芯上,在铁芯与衔铁之间有一个空气隙,空气隙厚度为s。
传感器的运动部分与衔铁相连。
当外部作用力作用在传感器的运动部分时,衔铁将会运动而产生位移,使空气隙J 发生变化。
这种结构可作为传感器用于(B)。
A.静态测量B.静态测量和动态测量 C动态测量D.既不能用于静态测量,也不能用于动态测量17、零位误差是评定差动变压器性能的重要指标之一,产生零位误差的原因主要有两个:一是由于次级绕组两线圈电气参数和几何尺寸不对称,致使产生的感应电动势幅值不等,相位不同。
这种情况下,不管怎样调整衔铁位置也不能使零位输出电压调到零;二是由于(B)A电源幅值及频率的不稳定 D.磁性材料磁化曲线的非线性C温度变化引起线圈的铜电阻值的变化,从而引起激磁电流和输出电流的变化D骨架材料高频损耗小,温度膨胀系数小18、为了满足测试的需要,应对传感器的灵敏度、线性度、信噪比、滞后、漂移、(A)、(E)和负载效应等技术性能提出基本要求。
A.久重复性 B.体积 C.温度性能 D.抗震性E.动态性能 F.质量三、问答题1、什么是电阻应变片的温度效应?为了消除温度误差,可采取哪些温度补偿措施?答:粘贴到试件上的电阻应变片,除感受机械应变而产生电阻相对变化外,在环境温度变化时,也会引起电阻的相对变化,产生虚假应变,这种现象称为温度效应。
为了消除温度误差,可采取如下温度补偿措施。
1)单丝自补偿法; 2)双丝自补偿法; 3)桥路补偿法。
2、声波形成干涉的条件是什么?答:声波形成干涉的条件是频率相同、振动方向相同,相位相同或相位差恒定的两个波在空间相遇。
3、光电传感器的光谱特性和频率特性有何区别?选用光电元件时考虑这两种特性有何意义?答:当光敏元件加一定电压时,如果照射在光敏元件上的是一单色光,当入射光功率不变时,光电流随入射光波长变化而变化的关系I=f(λ),称为光谱特性。
光谱特性对选择光电器件和光源有重要意义,当光电器件的光谱特性与光源的光谱分布协调一致时,光电传感器的性能较好,效率也高。
在检测中,应选择最大灵敏度在需要测量的光谱范围内的光敏元件,才有可能获得最高灵敏度。
在相同的电压和相同幅值的光强度下,当入射光以不同的正弦交变频率调制时,光敏元件输出的光电流I和灵敏度S随调制频率f 变化的关系I=f1(f)、S=f2(f)称为频率特性。
选择光电器件时应选用响应频率高的元件,以保证测量时对传感器响应时间的要求。
4、压电传感器的信号变换电路主要有哪几种形式?其功能是什么?答:压电传感器的信号变换电路主要有两种形式:电压放大器和电荷放大器。
电压放大器的功能是将压电传感器的高输出阻抗变为较低阻抗,并将压电式传感器的微弱电压信号放大,电荷放大器是一种输出电压与输入电荷量成正比的前置放大器。
5、什么是莫尔条纹?答:将栅距相同的两块光栅的刻线面相对重叠在一起,并且使二者栅线有很小的交角θ,这样就可以看到在近似垂直栅线方向上出现明暗相间的条纹,称为莫尔条纹。
莫尔条纹是基于光的干涉效应产生的。
6、磁电式传感器有何优点?答:磁电式传感器直接从被测物体吸收机械能并转换成电信号输出,且输出功率大,性能稳定,它的工作不需要电源,调理电路简单,由于磁电式传感器通常具有较高的灵敏度,所以一般不需要高增益放大器。
7、压电传感器的信号变换电路主要有哪几种形式?其功能是什么?答:压电传感器的信号变换电路主要有两种形式:电压放大器和电荷放大器。
电压放大器的功能是将压电传感器的高输出阻抗变为较低阻抗,并将压电式传感器的微弱电压信号放大,电荷放大器是一种输出电压与输入电荷量成正比的前置放大器。