A《整式的运算》拔高题专项练习
- 格式:doc
- 大小:152.50 KB
- 文档页数:3
整式的加减拔高及易错题精选(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除整式的加减 拔高及易错题精选(全卷总分100分) 姓名 得分一、选择题(每小题3分,共30分)1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.单项式 −21a 2n −1b 4 与 3a 2m b 8m 是同类项 , 则 (1+n )100⋅(1−m )102= ( )A .无法计算B .14C .4D .13.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A. 6 B. -6 C. 12 D. -12 4.若A 和B 都是五次多项式,则( )A. A +B 一定是多式B. A -B 一定是单项式C. A -B 是次数不高于5的整式D. A +B 是次数不低于5的整式5.a -b=5,那么3a +7+5b -6(a +31b)等于( )A. -7B. -8C. -9D. 106.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( )A .710b a +B .107ba +C .710ab + D .107a b +7.如图,阴影部分的面积是( )A. 211xyB. 213xy C .6xy D .3xy8.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy9.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( ) A .-16 B .-8 C .8 D .1610.一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利( )A. 元B. 元C. 元D. 元 二、填空题(每小题分,共18分)11.单项式32423ab π-的系数是 ,次数是 .12.已知单项式23b c x y 与单项式22112m n x y +-的差是31n m ax y ++,则abc = .13.当x=1时,代数式ax 5+bx 3+cx+1=2017,当x=-1时,ax 5+bx 3+cx +1= .14.已知3a ba b-=+,代数式2()4()3()a b a b a b a b +---+的值为 . 15.已知a ,b ,c 在数轴上的位置如图所示,化简:|a -b|+|b +c|+|c -a|= .16.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 .三、解答题(共52分)17.(5分)已知数轴有A 、B 、C 三点,位置如图,分别对应的数为x 、2、y ,若,BA=BC ,求4x+4y+30的值。
整式的复习与分式练习题1、若0352=-+y x ,则y x 324⋅的值为 。
2、若3622=+=-y x y x ,,则y x -= 。
3、若942++mx x 是一个完全平方式,则m 的值为 。
4、计算2002200020012⨯-的结果是 。
5、已知2131⎪⎭⎫ ⎝⎛-=+x x x x ,则的值为 。
6、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。
7、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。
8、计算()()2222b ab a b ab a +-++的结果是 。
9、已知22124m x x +-是一个完全平方式,则m 的值为 。
10、若x x x 204412,则=+-的值为 。
11、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。
12、计算()()()()205021.010432--⨯-⨯-÷-的结果为 。
13、已知199819992000201x x x x x ++=++,则的值为 。
14、若代数式7322++a a 的值是8,则代数式9642-+a a 的值为 。
15、已知y x y xy xy x -=-=-,则,1220的值为 。
17、如果2221682=⨯⨯x x ,则x 的值为 。
18、计算()20016006125.02⨯-的结果为 。
19、已知()n n n xy y x 245,则,=== 。
20、已知n m n m 2324232-==,则,的值为 。
21、若6242322-++=+n mn m n m ,则的值为 。
22、已知x(x -1)-(x 2-y)=-2.求222x y xy +-的值. 23、a 2-4a+1=0,求1242++a a a 24.观察下列各式:2311= 233321=+ 23336321=++ 23333104321=+++……观察等式左边各项幂的底数与右边幂的底数的关系,猜一猜可以得出什么规律,并把这规律用等式写出来: .25.阅读下列材料:让我们来规定一种运算:c adb =bc ad -, 例如:42 53=212104352-=-=⨯-⨯,再如:1x 42=4x-2 按照这种运算的规定:请解答下列各个问题:①21-- 5.02= (只填最后结果); ②当x= 时, 1x 25.0x -=0; ③求x,y 的值,使815.0-x 3y =5.0x 1--y = —7(写出解题过程).26.如上图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如下图所示,则打包带的长至少要____________(单位:mm )。
整式运算拔高一、选择题1、下列运算正确的是( ) A .a+b=ab B .a 2•a 3=a 5C .a 2+2ab-b 2=(a-b )2D .3a-2a=12、求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012的值为( )A .52012-1 B .52013-1C .4152013-D .4152012-3、若3×9m ×27m =321,则m 的值为( ) A .3B .4C .5D .64、若3x =4,9y =7,则3x-2y 的值为( ) A .74 B .47 C .-3 D .72 5、若(-5a m+1b 2n-1)(2a n b m )=-10a 4b 4,则m-n 的值为( ) A .-3B .-1C .1D .36、下列运算正确的是( )A .(2x 2)3=2x 6B .(-2x )3•x 2=-8x 6C .3x 2-2x (1-x )=x 2-2xD .x÷x -3÷x 2=x 27、已知(x-3)(x 2+mx+n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( ) A .m=3,n=9B .m=3,n=6C .m=-3,n=-9D .m=-3,n=98、(-81x n+5+6x n+3-3x n+2)÷(-3x n-1)等于( ) A .27x 6-2x 4+x 3 B .27x 6+2x 4+x C .27x 6-2x 4-x 3 D .27x 4-2x 2-x9、、已知a 1-|a|=1,a1+|a|的值为( )A .±5 B .5C .±3D .无解10、如图所示,从边长为a 的大正方形中挖去一个边长是b 的小正方形,小明将图甲中的阴影部分拼成了一个如图乙所示的矩形,这一过程可以验证( )A .a 2+b 2-2ab=(a-b )2B .a 2+b 2+2ab=(a+b )2C .2a 2-3ab+b 2=(2a-b )(a-b )D .a 2-b 2=(a+b )(a-b )11、图①是一个边长为(m+n )的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ) A .(m+n )2-(m-n )2=4mn B .(m+n )2-(m 2+n 2)=2mn C .(m-n )2+2mn=m 2+n 2 D .(m+n )(m-n )=m 2-n 2(第十题) (第十一题)12、由m (a+b+c )=ma+mb+mc ,可得:(a+b )(a 2-ab+b 2)=a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3,即(a+b )(a 2-ab+b 2)=a 3+b 3…①。
《整式的乘除》提高测试(一)填空题(每小题2分,共计24分)1.a 6·a 2÷(-a 2)3=________.2.( )2=a 6b 4n -2.3. ______·x m -1=x m +n +1.4.(2x 2-4x -10xy )÷( )=21x -1-25y .5.x 2n -x n +________=( )2.6.若3m ·3n =1,则m +n =_________.7.已知x m ·x n ·x 3=(x 2)7,则当n =6时m =_______.8.若x +y =8,x 2y 2=4,则x 2+y 2=_________.9.若3x =a ,3y =b ,则3x -y =_________.10.[3(a +b )2-a -b ]÷(a +b )=_________.11.若2×3×9m =2×311,则m =___________.12.代数式4x 2+3mx +9是完全平方式则m =___________.(二)选择题(每小题2分,共计16分)13.计算(-a )3·(a 2)3·(-a )2的结果正确的是……() (A )a 11 (B )-a 11 (C )-a 10 (D )a 1314.下列计算正确的是……( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2(C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =115.4m ·4n 的结果是……( )(A )22(m +n ) (B )16mn (C )4mn (D )16m +n16.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为()(A )5 (B )25(C )25 (D )1017.下列算式中,正确的是…( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91(C )(0.00001)0=(9999)0 (D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于…( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 419.若(x +m )(x -8)中不含x 的一次项,则m 的值为……( )(A )8 (B )-8 (C )0 (D )8或-820.已知a +b =10,ab =24,则a 2+b 2的值是 …( )(A )148 (B )76 (C )58 (D )52(三)计算(19题每小题4分,共计24分)21.(1)(32a 2b )3÷(31ab 2)2×43a 3b 2; (2)(4x +3y )2-(4x -3y )2; (3)(2a -3b +1)2;(4)(x 2-2x -1)(x 2+2x -1);(5)(a -61b )(2a +31b )(3a 2+121b 2); (6)[(a -b )(a +b )]2÷(a 2-2ab +b 2)-2ab .22.化简求值(本题6分)[(x +21y )2+(x -21y )2](2x 2-21y 2),其中x =-3,y =4.(四)计算(每小题5分,共10分)23.9972-1001×999.22.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值.(五)解答题(每小题5分,共20分)23.已知x +x 1=2,求x 2+21x ,x 4+41x的值.24.已知(a -1)(b -2)-a (b -3)=3,求代数式222b a -ab 的值.25.已知x 2+x -1=0,求x 3+2x 2+3的值.26.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.。
《整式的运算》练习题及答案第一篇:《整式的运算》练习题及答案一、选择题。
1、下列判断中不正确的是()①单项式m的次数是0 ②单项式y的系数是1③,-2a都是单项式④ +1是二次三项式2、如果一个多项式的次数是6次,那么这个多项式任何一项的次数()A、都小于6B、都等于6C、都不小于6D、都不大于63、下列各式中,运算正确的是()A、B、C、D、4、下列多项式的乘法中,可以用平方差公式计算的有()A、B、C、D、、在代数式中,下列结论正确的是()A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的是()A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项分别为()A、2和8B、4和-8C、6和8D、-2和-88、若关于的积中常数项为14,则的值为()A、2B、-2C、7D、-79、已知,则的值是()A、9B、49C、47D、110、若,则的值为()A、-5B、5C、-2D、2二、填空题11、=_________。
12、若,则。
13、若是关于的完全平方式,则。
14、已知多项多项式除以多项式A得商式为,余式为,则多项式A为________________。
15、把代数式的共同点写在横线上_______________。
16、利用_____公式可以对进行简便运算,运算过程为:原式=_________________。
17、。
18、,则P=______,=______。
三、解答题19、计算:(1)(2)(3)20、解方程:21、先化简后求值:,其中。
参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C10、C二填空题1、12、2;413、或714、15、(1)都是单项式(2)都含有字母、;(3)次数相同16、平方差;17、18、;三、解答题19、(1)1(2)(3)20、21、34第二篇:第一章整式的运算以下是查字典数学网为您推荐的第一章整式的运算,希望本篇文章对您学习有所帮助。
整式的加减拔高题11、m,n都是正整数,多项式x m+2y n-3m+n的次数是()A.2m+2n B.m或nC.m+n D.m,n中较大的数2、已知m、n为正整数,且m>n,则多项式x m-y n+8m+n的次数为()A.m+n B.m C.n D.m-n3、如果一个多项式是4次多项式,那么它任何一项的次数A. 都小于4B. 都不小于4C. 都大于4D. 都不大于44、二次三项式ax2+bx+c为一次单项式的条件()A、a≠0,b=0,c=0B、a=0,b≠0,c=0C、a=0,b=0,c≠0D、a=0,b=0,c=05、多项式2x3-x2y2+y3+25的次数是()A、二次B、三次C、四次D、五次6、若m,n为自然数,则多项式x m-y n-4m+n的次数应是()A、mB、m+nC、nD、m,n中较大的数7、(1)当x= ___时,27-(x-1)2有最大值,最大值是__。
(2)若(a+b)2-80有最小值,则最小值是___,且此时a、b 应满足关系___。
8、假期的一天上午,小明看一本课外书,他从第m页开始看到第n页结束,他这天上午看的书共有()A.(m+n)页B.(n-m)页C.(n-m-1)页D.(n-m+1)页9、(-a+1)x3+x b -2是关于x的二次二项式,则a b=______10、.已知代数式mx+nx合并同类项后等于零,下列说法中一定正确的是:A. n=m=0B. m=nC. m-n=0D.m+n=011、已知关于x,y的多项式ax2+2bxy+x2-x-2xy+y不含二次项,则5a-8b的值是_____12、如果a,b均为有理数,且b<0,则a,a-b,a+b的大小关系是()A.a<a+b<a-b B.a<a-b<a+b C.a+b<a<a-b D.a-b<a+b<a 13.下列各组数中:①-52和(-5)2;②(-3)3和-33;③-(-0.3)5和0.35;④0100和0200;⑤(-1)3和-(-1)2.相等的共()A.2组B.3组C.4组D.5组14.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…根据上述算式中的规律,你认为22130的个位数字是()A.2 B.4 C.6 D.815.已知代数式3y2-2y+6的值为8,那么代数式3/2y2?y+1的值为____16、将(x+y)+2(x+y)﹣4(x+y)合并同类项得____A、x+y B.﹣x+y C.﹣x﹣y D.x﹣y17、如果x-y=2那么7-2x+x2=____18、已知7a m+2b|m|+1和12a2+2是同类项,且m,n互为相反数,求m-mn-3(m-1/4n)-1/4n-1的值。
整式的运算拔高题一、选择题1、下列语句中错误的是( )A 、数字0也是单项式B 、单项式-a 的系数与次数都是 1C 、21xy 是二次单项式 D 、-32ab 的系数是 -32 2、下列计算正确的是( )A 、422642a a a =+B 、()53282a a =C 、()53222a a a -=-⋅D 、33236a a a m m =÷ 3、已知532++x x 的值为3,则代数式1932-+x x 的值为( )A 、0B 、-7C 、-9D 、34.若()()1532-+=++kx x m x x ,则m k +的值为( )(A )3- (B )5 (C )2- (D )2 5.3a =5 ,9b =10, 3a+2b =( )A.50B.-5C.15D.27a+b6、如果多项式92++mx x 是一个完全平方式,则m 的值是( ) A 、±3 B 、3 C 、±6 D 、67、如果1,3=-=-c a b a ,那么()()()222a c c b b a -+-+-的值是( ) (A )14 (B )13 (C )12 (D )11 8、如果n 32732=⨯,则n 的值为( )A 、6B 、1C 、5D 、8 9、已知032=-+a a ,那么()42+a a 的值是( ) (A )9(B )12-(C )18-(D )15-10、化简()()()()131********++++得( )A 、()2813+ B 、()2813- C 、1316- D 、()132116-11、若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是( ) A.互为倒数 B.相等 C.互为相反数 D.b a ,都为0 12、不论x 、y 为什么数,代数式74222+-++y x y x 的值( ) A .总不小于2 B .总不小于7 C .可为任何有理数 D .可能为负数 二、填空题1、(-3x 2y 3 )2= _____________ 4x 2+______+1=(2x+_____)22、计算:31131313122⨯--= ,6a 2÷[2a·(-a)2]=_________.3、如图,用a 表示图中的阴影部分的面积_____________________。
整式的乘除较难题(二)一.学新知识应用1、阅读解答题:有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,比较x 、y 的大小. 解:设123456788=a ,那么x=(a+1)(a-2)=2-a 2a -,y=a (a-1)=2a a - . ∵x-y=2-a 2a --(2a a -)=-2<0∴x <y看完后,你学到了这种方法吗再亲自试一试吧,你准行!问题:计算1.345×0.345×2.69-31.345-1.345×20.345计算3.456×2.456×5.456-33.456-21.456.2、我们把符号“n!”读作“n 的阶乘”,规定“其中n 为自然数,当n ≠0时, n!=n •(n-1)•(n-2)…2•1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720. 又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加碱,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!= ;(2)(3+2)!-4!= ;(3)用具体数试验一下,看看等式(m+n )!=m!+n!是否成立?3. 小明和小强平时是爱思考的学生,他们在学习《整式的运算》这一章时,发现有些整式乘法结果很有特点,例如:(x-1)3+x+1x =3-1x ,(2a+b )(224a -2ab+b )=338a +b ,小明说:“这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式”,小强说:“是啊!而且右边都可以看成是某两项的立方的和(或差)”小明说:“还有,我发现左边那个二项式和最后的结果有点像”小强说:“对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2倍”小明说:“二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系”亲爱的同学们,你能参与到他们的讨论中并找到相应的规律吗?(1)能否用字母表示你所发现的规律?(2)你能利用上面的规律来计算(-x-2y )22-24x xy y +吗?(3)下列各式能用你发现的乘法公式计算的是.A .(a-3)(239a a -+)B .(2m-n )(2222m mn n ++)C .(4-x )(16+4x+2x )D .(m-n )(222m mn n ++)(4)直接用公式计算:(3x-2y )(22964x xy y ++)=(2m-3)(246m m ++9)=4、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.例:用简便方法计算195×205.解:195×205=(200-5)(200+5)①=2002-52②=39975(1)例题求解过程中,第②步变形是利用(填乘法公式的名称);(2)用简便方法计算:9×11×101×10001.问题2:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2(+a)x 的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完 全平方式,再减去2a ,整个式子的值不变,于是有: 2223x ax a +-=222x ax a ++-223a a --=22(+a)(2a)(+3a)(-a)x x x -=像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:2412a a -- 二.乘法公式应用5、一个单项式加上多项式29(-1)-25x x -后等于一个整式的平方,试求所有这样的单项式.6、设,求整式的值 若x-y=5,xy=3,求:①22x y +;②44x y +的值.三.整式的计算7、化简:(1);(2)多项式2-x x y 与另一个整式的和是222+x 3x y y +,求这一个整式解:8、已知整式22+ax-y+6x 与整式22-3x+5y-1bx 的差与字母x 的值无关,试求代数式7(232+2b ab a b -)+23a -(2222b-3ab 3a a -)的值.9. 甲乙两人共同计算一道整式乘法:(2x+a )(3x+b ),由于甲抄错了第一个多项式中a 的符号,得到的结果为62x +11x-10;由于乙漏抄了第二个多项中的x 的系数,得到的结果为22x -9x+10.请你计算出a 、b 的值各是多少,并写出这道整式乘法的正确结果解:10. 由于看错了运算符号,某学生把一个整式减去-42a +22b +32c 误以为是加上-42a +22b +32c ,结果得出的答案是2a -42b -22c ,求原题的正确答案.11. 根据题意列出代数式,并判断是否为整式,如果是整式指明是单项式还是多项式.(1)友谊商店实行货物七五折优惠销售,则定价为x 元的物品,售价是多少元?(2)一列火车从A 站开往B 站,火车的速度是a 千米/小时,A ,B 两站间的距离是120千米,则火车从A 站开往B 站需要多长时间?(3)某行政单位原有工作人员m 人,现精简机构,减少25%的工作人员,后又引进人才,调进3人,该单位现有多少人?12. 某村小麦种植面积是a 亩,水稻种植面积比小麦种植面积多5亩,玉米种植面积是小麦种植面积的3倍.(1)玉米种植面积与水稻种植面积的差为m ,试用含口的整式表示m ;(2)当a=102亩时,求m 的值.13. 红星中学校办工厂,生产并出售某种规格的楚天牌黑板,其成本价为每块20元,若由厂家直销,每块售价30元,同时每月要消耗其他人工费用1200元;若委托商场销售,出厂批发价为每块24元.(1)若每月销售x 块,用整式分别表示两种销售方式所获得的利润.(注:利润=销售总额-成本-其他费用)(2)新学期各学校教学黑板维修较多,销路较好,预计11月份可销售300块,采取哪一种销售方式获得的利润多?(3)若你是红星中学校办工厂的厂长,请你进行决策:当预计销售200块黑板时,应选择哪一种销售方式较好?14. (1)化简:32x y-[2xy-(xy-2x y+2xy )](2)已知A=22x +xy+32y ,B=2x -xy+22y ,C 是一个整式,且A+B+C=0,求C .15、如图所示,是一个正方体的平面展开图,标有字母A 的面是正方体的正面,如果正方体的相对的两个面上标注的代数式的值与相对面上的数字相等,求x 、y 的值.16计算:(1)(-845a b c )÷(4a 5b )•(332a b ) (2)[232()a x -9a 5x ]÷(3a 3x ) (3)(3mn+1)(-1+3mn )-2(32)mn (4)运用整式乘法公式计算2123-124×122 三.写多项式方法17. 阅读下面学习材料:已知多项式23x -2x +m 有一个因式是2x+1,求m 的值.根据上面学习材料,解答下面问题:已知多项式4x +m 3x +nx-16有因式x-1和x-2,试用两种方法求m 、n 的值. 四.余角和补角18、一个角的补角是它的余角的度数的3倍,则这个角的度数是多少?19、已知一个角的补角等于这个角的余角的4倍,求这个角的度数.。
整式训练基础+拔高题1总分:120分日期:____________ 班级:____________ 姓名:____________一、解答题(每小题4分,共5题,共20分)1、我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等等.(1)根据上面的规律,则(a+b)5的展开式=______.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1=______.2、某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?3、已知:a 是﹣1,且a 、b 、c 满足(c ﹣6)2+|2a+b|=0,请回答问题: (1)请直接写出b 、c 的值:b= ,c=(2)在数轴上,a 、b 、c 所对应的点分别为A 、B 、C ,点P 为易动点,其对应的数为x , (a )当点P 在AB 间运动(不包括A 、B ),试求出P 点与A 、B 、C 三点的距离之和. (b )当点P 从A 点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x ﹣2|+2|x ﹣6|(请写出化简过程)4、已知a 、b 、c 的大小关系如图所示,求a b b c c aa b b c c a----+---的值.5、若符号“a b c d”成为二阶行列式,规定它的运算法则为:a bad bc c d =-,若m 满足等式236131mm m -=--.(1)请你根据上述规定求出m 的值; (2)若12mx ≤-,求x m x m ++-的值.二、填空题(每小题4分,共14题,共56分)6、如图是某同学在沙滩上用石子摆成的小房子:观察图形的变化规律,写出第n 个小房子用了__________块石子.7、下列图形:它们是按一定规律排列的,依照此规律,第n 个图形共有____个★.8、如图所示,由一些点组成的三角形图案,每条边(包括两个顶点)有n (n >1)个点,每个图形中总的点数为s ,当n=9时,s=____.9、用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍 根,拼成第n 个图形(n 为正整数)需要火柴棍 根(用含n 的代数式表示).10、某电影院第一排座位是18个,第二排座位是20个,以后每排都比前一排多2个座位,那么第n 排有 个座位. 11、将1927化成小数,则小数点后第2009位数字为 . 12、代数式ab ﹣35πxy ﹣18x 3的次数是__,其中﹣35πxy 项的系数是__.13、单项式﹣3πa 3bc 的系数是 ,次数是 . 14、2449x y π的系数与次数的积为_____.15、单项式﹣323x y z π的系数是 ,次数是 .16、已知0a b a b +=,则ab ab的值为_____ 17、若5x 2y m 与4x n+m ﹣1y 的和是单项式,则代数式m ﹣n 的值是 .18、一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是 .19、我国宋朝数学家杨辉在他的著作《祥解九章算法》中提出下表,此表揭示了()na b +(n 为非负数)展开式的各项系数的规律.例如:()1a b +=,它只有一项,系数为1; ()1a b a b +=+,它有两项,系数分别为1,1;()2222a b a ab b +=++,它有三项,系数分别为1,2,1;()3322333a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1;……根据以上规律()4a b +展开式共有五项,系数分别为_____________________三、单选题(每小题4分,共11题,共48分)20、对于每个非零自然数n ,抛物线2211(1)(1)n y x x n n n n +=-+++与x 轴交于A n 、B n 两点,以A n B n 表示这两点间的距离,则A 1B 1+A 2B 2+…+A 2017B 2017的值是( ) A .20152016B .20162017C .20172018D .11 1 1 13 …2 1 1 1321、下列说法正确的是( ) A .25xy -单项式的系数是﹣5B .单项式a 的系数为1,次数是0C .2325a b -次数是6D .xy+x ﹣1是二次三项式22、下列说法错误的是( ) A .单项式x 的系数和次数都是1B .12不是单项式C .多项式3x 2y+2xy ﹣3x+y 中一次项的系数分别是﹣3,1D .﹣23xy 是系数为﹣23的二次单项式23、下列判断中,正确的是()A .单项式﹣223ab 的系数是﹣2 B .单项式﹣23的次数是1C .多项式2x 2﹣3x 2y 2﹣y 的次数是2 D .多项式1+2ab+ab 2是三次三项式24、下列语句中错误的是( ) A .数字0也是单项式 B .单项式a 的系数与次数都是1 C .xy 是二次单项式D .﹣3ab的系数是﹣3 25、下列代数式中,不是单项式的是() A .1xB .﹣12C .tD .3a 2b26、在下列代数式:3ab ,﹣4,2-3abc ,0,x-y ,3x 中,单项式有()A .3个B .4个C .5个D .6个27、若|x ﹣12|+(2y ﹣1)2=0,则x 2+y 2的值是() A .38B .12 C .﹣18D .﹣3828、下列式子:x2+2,1a +4,237ab,abc,﹣5x,0中,整式的个数是()A.6B.5C.4D.329、根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.30、两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点。
《整式的运算》拔高题专项练习1、若0352=-+y x ,则y x 324⋅的值为 。
2、在()()y x y ax -+与3的积中,不想含有xy 项,则a 必须为 。
3、若3622=+=-y x y x ,,则y x -= 。
4、若942++mx x 是一个完全平方式,则m 的值为 。
5、计算2002200020012⨯-的结果是 。
6、已知()()71122=-=+b a b a ,,则ab 的值是 。
7、若()()q a a pa a +-++3822中不含有23a a 和项,则=p ,=q 。
8、已知2131⎪⎭⎫⎝⎛-=+x x x x ,则的值为 。
9、若n m n m 3210210,310+==,则的值为 。
10、已知2235b a ab b a +==+,则,的值为 。
11、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。
12、已知()()22123--==+b a ab b a ,化简,的结果是 。
13、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。
14、计算()()2222b ab a b ab a +-++的结果是 。
15、若()()[]1320122---=+++ab ab ab b b a ,则的值是 。
16、计算()()123123-++-y x y x 的结果为 。
17、若x x x 204412,则=+-的值为 。
18、()2101--= 。
19、若()()206323----x x 有意义,则x 的取值范围是 。
20、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。
21、计算()()()()205021.010432--⨯-⨯-÷-的结果为 。
22、已知199819992000201x x x x x ++=++,则的值为 。
23、多项式621143--++b a ab a m 是一个六次四项式,则=m 。
第一章《整式的运算》拔高题专项练习1、若0352=-+y x ,则y x 324⋅的值为 。
2、在()()y x y ax -+与3的积中,不想含有xy 项,则a 必须为 。
3、若3622=+=-y x y x ,,则y x -= 。
4、若942++mx x 是一个完全平方式,则m 的值为 。
5、计算2002200020012⨯-的结果是 。
6、已知()()71122=-=+b a b a ,,则ab 的值是 。
7、若()()q a a pa a +-++3822中不含有23a a 和项,则=p ,=q 。
8、已知2131⎪⎭⎫ ⎝⎛-=+x x x x ,则的值为 。
9、若n m n m 3210210,310+==,则的值为 。
10、已知2235b a ab b a +==+,则,的值为 。
11、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。
12、已知()()22123--==+b a ab b a ,化简,的结果是 。
13、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。
14、计算()()2222b ab a b ab a +-++的结果是 。
15、若()()[]1320122---=+++ab ab ab b b a ,则的值是 。
16、计算()()123123-++-y x y x 的结果为 。
17、若xx x 204412,则=+-的值为 。
18、()2101--= 。
19、若()()206323----x x 有意义,则x 的取值范围是 。
20、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。
21、计算()()()()205021.010432--⨯-⨯-÷-的结果为 。
22、已知199819992000201x x x x x ++=++,则的值为 。
整式的加减第一部分:合并同类项例1. 1.已知︱a-2︱+(b-3)2=0,求3a 2-4ab+5-a 2+3ab-3的值2.已知m,x,y 满足:①32(x-5)2+5︱m ︱=0 ②-2a 2by+1与7b 3a 2的和是一个单项式求代数式2x 2-6y 2+mxy-9my 2-3x 2+3xy-7y 2的值例2. 1. 已知x+y=5,xy=-4, 求xy y x x y xy x x 336315643122+-+-+--的值2.已知a+b=2,,求4(a+b)2+2(a+b)-7(a+b)+3(a+b)2的值。
例3 1.下面两个多项式是否相等?5x 3-3x 2+2x-x 3+6x 2, 4x 3+5x 2+3x-2x 2-x.2.已知关于x 多项式x 3+ax 2-2x 2+3x-bx-c 与多项式x 3-3x 2+4x-1相等,求a+b+c 的值。
例4 1.若化简关于x, y 的整式x 3+2a(x 2+xy)-bx 2-xy+y 2,得到的结果是一个三次二项式,求a 3+b 2的值。
2.若关于x, y 的单项式(2+m)x a y 4与4x 2y b+5的和等于0,求3m+2a+4b的值。
提升训练:1. 三个连续偶数,若中间的一个是2x ,则这三个连续偶数的和是_____________.2. 写出一个整式,使其至少含有三项,且合并同类项后的结果为3xy 2。
3. 已知-2x my 与3x 3y n是同类项,求m-m 2n-3m+4n+2nm 2-3n 的值。
4. 已知(a+1)2+︱b-2︱=0,求多项式a 2b 2+3ab-7a 2b 2-25ab+1+5a 2b 2的值。
5. k 为何值时,关于x, y 的多项式x 2+2kxy-3y 2-6xy-y 中不含xy 项。
第二部分:去括号,整式的加减例1. 1.已知关于a 的多项式-3a 3-2ma 2+5a+3与8a 2-3a+5相加后,不含二次项,求的m 值2.已知多项式(m+4)x4-x n+x-n是关于x的二次三项式,求m与n的差的相反数。
卜人入州八九几市潮王学校整式的运算〔1〕〔辅导〕例1、多项式6335-3212--++x xy y x m 是六次四项式,单项式z y x m n -536的次数与这个多项式次数一样,求n 的值。
例2、化简求值:()()()1,2,5112314-=+=+----+n m mn mn m mn m m mn 其中例3、A=.1,123222-+-=--+xy x B x xy x (1)求A+2B 〔2〕假设3A+6B 与x 的值无关。
求y 的值。
例4、有这样一道题:当a=0.36,b=—0.27时,求多项式()()()323322310363367a b a b a a b a b a a +-+++-的值。
小明说:此题中的a=0.36,b=—0.27是多余的条件;小强马上反对说:这不可能,多项式中每一项都有a 和b ,不给出a,b 的值,怎么能求出多项式的值呢?你同意那位同学的观点?请说明理由。
例5、〔1〕假设==-+n ,6121则a a a n n 。
〔2〕3×9×27×n 3=,〔3〕2()=⨯-⨯+2n 282n 。
(4)假设a 、b 、c 满足,1352,52,32a ===c b 那么a 、b 、c 之间满足怎么的关系式?试探究(5)()()[]=--22531(6)()()()=-⋅⋅--a a a 322(7)()()=-⋅32243n n n x x x(8)()[]()[]=+⋅+3432y x y x(9),2168222=⋅⋅n n 求正整数n 的值。
例6、计算①424×〔-0.25〕23-1②假设a 2n=3,那么2a 6n-1=.例7、从小到大的顺序是、、、那么d c b a d c b a ,6,5,3,222334455====。
例8、假设的数量关系为与为整数,则其中y x n ,22,22211--++=+=n n n n y x 。
《整式的运算》拔高题专项练习1、若2x+5y-3=0,则4,•32,的值为。
2、在(αx+3y)⅛(x-y)的积中,不想含有个项,则α必需为。
3^若,一9=6,χ+y=3,则工-产。
4、若4/+如+9是一个完全平方式,则机的值为O5、计算20012-2000x2002的结果是o6、已知(a+h)2=11,(«-Z?)2=7,则ab的值是。
7、若("+2〃+8储-3α+q)中不含有和a?项,则〃=,q-。
8、已知x+^=3,贝(X-L)的值为O9、若10'"=3,10〃=2,则K)2"∣+3"的值为o10、已知4+8=5,ab=3,则。
2+/的值为©11、当X=,y=时,多项式4/+9/一4χ+12y-l有最小值,此时这个最小值是o12、已知α+b=∣,时=1,化简(α-2)(b-2)的结果是。
13、(2+汝2+1匿+1版+1)……侬2+1)的个位数字是O14>计算(a2+ab+b2∖a2-ab-∖-b2)的结果是。
15、若(α+b)2+12⅛+1∣=0,贝00⅛-∖λab—3(cιb-1)]的值是.16、计算(3x-2y+1/3X+2y-l)的结果为44 ?17、若l-2+3=O,则士的值为oXX' X19、若(X-3)°-2(3x-6)2有意义,则X的取值范围是o20>若代数式/+y2-i4χ+2y+50的值为0,则X=,y=21、计算(-2)2÷(-3)O×(-4×1O5)°-(0.1)-2的结果为o22、已知/+χ+1=0,则χ20∞+P弼+y998的值为023、多项式/+'"4一4'"'6-6是一个六次四项式,则m=224、若代数式2/+34+7的值是8,则代数式44+64—9的值为25、已知x-∙xy=20,xy-y=12,贝∣Jx-y的值为。
(完整)整式的乘除拔高题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)整式的乘除拔高题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)整式的乘除拔高题的全部内容。
1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007 200820061⨯+.3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
整式的加减拔高及易错题精选一、选择题(每小题3分,共30分)1.计算3a 3+a 3,结果正确的是()1 ・2.单项式-/叫与3a2瞰是同类项,则⑴俨0?(1-m-一 1 /一5 . a —b=5,那么 3a+ 7 + 5b —6(aH ■—b)等于(36 .随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价 a 元后,再次打7折,现售价为b 元,则原售价为()8 . 一个多项式A 与多项式B = 2x 2—3xy —y 2的和是多项式C = x 2+xy+y 2,则A 等于9 .当 x = 1 时,ax+ b+1 的值为一2,则(a+b —1)(1—a —b )的值为() A. — 16 B -8 C. 8 D. 1610 . 一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利()A. 0.125a 元B. 0.15a 元C. 0.25a 元D. 1.25a 元 二、填空题(每小题分,共18分)23 2a b411 .单项式 2―结的系数是一3(全卷总分100分)姓名 得分A. 3a 6B. 3a 3C. 4a 6D. 4a 3A.无法计算3.已知a 3bm+ x B. ■ C. 4n 1 y 3m-iA. 6B. -6 -a 1-s b n+1+x : C. 12 2m 5y s +3nD. -12D. 1的化简结果是单项式,那么mns=( 4,若A 和B 都是五次多项式,则A. A + B 一定是多式C. A —B 是次数不高于5的整式B. A- B 一定是单项式 D. A + B 是次数不低于5的整式 A. -7 B. — 8C. —9D. 10 A. aC. b10b7 10aB. aD. b 77.如图,阴影部分的面积是 ()A. 11 xyB. 13xyC. 6xy7b 10 7a10D. 3xyA . x 2—4xy —2y2C. 3x2-2xy-2y 2B. -x 2 + 4xy+2y 2D. 3x 2- 2xy⑵已知单项式2x by c与单项式2x m2y2n1的差是则a b c ——.13.当x=1 时,代数式ax5+bx3+cx+1=2017,当x=—1 时,ax5+bx3+cx+1=14已知4 3,代数式天然的值为15.已知a, b, c在数轴上的位置如图所示,化简:|a- b|+ |b+c|+|c— a|=.I I 1 hme0 b16.平移小菱形◊可以得到美丽的中国结”图案,下面四个图案是由◊平移后得到的类似中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 .⑴⑵⑶(4)三、解答题(共52分)17.(5分)已知数轴有A、B、C三点,位置如图,分别对应的数为x、2、y,若,BA=BC ,求4x+4y+30 的值。
七年级第2章整式的加减拔高题汇总(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级第2章整式的加减拔高题汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级第2章整式的加减拔高题汇总(word版可编辑修改)的全部内容。
一、1、如果a <0,ab <0,那么a b +1+a –b-3的值等于____________________ 2、有一块长为a ,宽为b 的长方形铝片,四角各截去一个相同的边长为x 的正方形,折起来做成一个没有盖的盒子,则此盒子的容积V 的表达式应该是( )A 。
V=x 2(a-x )(b-x ) B.V=x(a —x)(b-x ) C 。
V=31x (a —2x)(b-2x) D 。
V=x(a-2x )(b-2x )3、若P 是关于x 的三次三项式,Q 是关于x 的五次三项式,则P+Q 是关于x 的_____次多项式,P -Q 是关于x 的______次多项式.4、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式 二、找规律题1、已知一组数:1,43,95,167,259,…,用代数式表示第n 个数为2、如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表: 所剪次数 1 2 3 4 … n 正三角形个数471013…a nn3、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图15-12(1)所示;第2次把第1次铺的完全围起来,如图15-12(2)所示;第3次把第2次铺的完全围起来,如图15-12(3)所示……依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块块数为 .4、观察下列各等式:①9-1=8 ②16—4=12 ③25—9=16 ④36—16=20 ……这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为 ___________ .15、如图1是小明用火柴搭的1条、2条、3条“金鱼",则搭n条“金鱼”需要火柴根.16、根据如图所示的程序计算,若输入x的值为1,则输出y的值为;三、拓展延伸1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C.2、的为多少?,则的值为代数式634964322+-+-xxxx1条2条3条图1输入x输出y平方乘以2减去4若结果大于0否则3、()[](){}2222223111432437bab ab b a ab ab ab b a ab b a -------+-计算:4、试说明:不论x 取何值代数式)674()132()345(323223x x x x x x x x x +--+--+---++的值是不会改变的。
《整式的运算》拔高题专项练习
1、若0352=-+y x ,则y x 324⋅的值为 。
2、在()()y x y ax -+与3的积中,不想含有xy 项,则a 必须为 。
3、若3622=+=-y x y x ,,则y x -= 。
4、若942++mx x 是一个完全平方式,则m 的值为 。
5、计算2002200020012⨯-的结果是 。
6、已知()()7112
2=-=+b a b a ,,则ab 的值是 。
7、若()()q a a pa a +-++3822中不含有23a a 和项,则=p ,=q 。
8、已知2
131⎪⎭⎫ ⎝
⎛-=+x x x x ,则的值为 。
9、若n m n m 3210210,310+==,则的值为 。
10、已知2235b a ab b a +==+,则,的值为 。
11、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。
12、已知()()2212
3--==+b a ab b a ,化简,的结果是 。
13、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。
14、计算()()2222b ab a b ab a +-++的结果是 。
15、若()()[]1320122
---=+++ab ab ab b b a ,则的值是 。
16、计算()()123123-++-y x y x 的结果为 。
17、若x x x 204412,则=+-
的值为 。
18、
()2101--= 。
19、若()()206323----x x 有意义,则x 的取值范围是 。
20、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。
21、计算()()()()205021.010432--⨯-⨯-÷-的结果为 。
22、已知199819992000201x x x x x ++=++,则的值为 。
23、多项式62
1143--++b a ab a m 是一个六次四项式,则=m 。
24、若代数式7322++a a 的值是8,则代数式9642-+a a 的值为 。
25、已知y x y xy xy x -=-=-,则,1220的值为 。
26、已知()3
353x y y x y x -++-=-,则代数式的值等于 。
27、如果2221682=⨯⨯x x ,则x 的值为 。
28、若()4323n n a a ,则=的值为 。
29、计算()
20016006125.02⨯-的结果为 。
30、已知()9322
=x ,则x = 。
31、已知()n
n n xy y x 245,则,=== 。
32、若y x x x 2254,32+==,则的值为 。
33、已知n m n m 2324232-==,则,
的值为 。
34、若22=ab ,则代数式()b ab b a ab ---352的值为 。
35、已知22124m x x +-是一个完全平方式,则m 的值为 。
36、若22110y xy x xy y x +--==+,则,的值为 。
37、若()2
32b a b a ab -=+=,则,的值为 。
38、已知93222=⋅x
,则x 的值是 。
39、若6242322-++=+n mn m n m ,则的值为 。
40、已知()()xy y x y x ,则,592
2=-=+的值为 。