实验4
- 格式:doc
- 大小:316.50 KB
- 文档页数:8
实验四S-P表分析法(实验估计时间:120 分钟)1.1.1 背景知识现代教育强调以培养学生的能力为主、传授知识为辅因此, 学生的能力水平及其变化就成为学校考试所要测量的主要对象, 而对试卷中试题难度的操作则是达到测量目的的主要手段之一,但传统的考试及其分析方法在实际运用过程中存在许多缺陷, 对提高学校考试质量往往很难发挥作用。
例如, 对试卷的分析缺乏数量化方法, 科学依据不足而对实际从事教学的教师来说, 传统的统计方法过于繁杂, 其实用性受到限制此外, 有些教师片面注重对学生学习情况的评价,忽视对试卷试题质量的分析, 造成考试模式千篇一律, 考试质量长期停留在原有水平的局面。
为了提高学校考试的质量, 有必要引进即简便易行又直观可靠的试卷分析方法, 以不断改进现有的考试方法。
就一般教师对局限于班级规模或少数学生组织的小测验而言, S一P表是一常用、简便而直观的分析方法。
这种方法可以帮助任课教师不断总结经验, 逐步提高试卷出题质量, 以更准确、更合适的反馈结果来调动学生的学习积极性。
该方法具体直观, 可以将分析结果列成图表, 使分析结果一目了然;其使用简单易懂, 不需复杂计算, 只要会四则运算即可;以其针对性, 可以重点突出某个试题或参试学生, 细致剖析各个方面的特殊问题;S一P表的种种特点使得它在实际教学中具有极大的可应用性。
形成性评价是教学工作者在实际工作中获取数据,并通过这些数据修正教学、提高教学效率的过程,是教学设计中非常重要的一个环节。
形成性评价是在教学过程中进行,一般在某章节或知识点结束时使用。
一般课程教学中,教学内容多,学生情况复杂,很难以某种定量的数据表示。
S-P表分析法将复杂的教学环境中学生和问题两个重要因素抽取出来,以图表的方式进行分析,具有直观、简便等优点,可以用S-P表分析法进行形成性评价。
1.1.2 实验目的(1)掌握教育信息的结构分析的基本方法,理解项目反应模式的性质、意义。
4 实验四金属材料扭转实验
一、实验目的
研究实验材料进行扭转变形后其力学性能。
二、实验原理
扭转变形是指在无限长假想杆材料横截面仅施加弯曲力的完全变形,其中应力均匀分
布于断面,杆材料的截面形状由圆形变成椭圆形。
三、实验环境
良好的室内环境,无电磁干扰,无固体颗粒,提供适当的实验操作场所,如实验室、
实验台等。
四、实验内容
1. 收集相关实验物料:金属标样、变形设备、实验软件等。
2. 安装变形设备,调试设备,使金属标样处于位置稳定性状态;
3. 按照实验计划,在变形设备上,施加一定大小的拉力,观察金属标样形变情况;
4. 在实验软件中,记录金属标样变形、错断、最终变形等信息;
5.根据实验数据对实验结果进行测试,分析实验结果,计算实验结果的重要力学参数;
6. 总结本次实验;
五、实验结果
在实验过程中,金属标样的形状出现变形,横截面形状由圆形变成椭圆形。
另外,通
过计算,可以得出实验材料的断裂应力为450MPa,变形能为385J,变形塑性指数为0.87。
(新)实验四循环伏安法测定亚铁氰化钾的电极反应过程循环伏安法测定亚铁氰化钾的电极反应过程⼀、实验⽬的(1) 学习固体电极表⾯的处理⽅法; (2) 掌握循环伏安仪的使⽤技术;(3) 了解扫描速率和浓度对循环伏安图的影响⼆、实验原理铁氰化钾离⼦[Fe(CN)6]3--亚铁氰化钾离⼦[Fe(CN)6]4-氧化还原电对的标准电极电位为[Fe(CN)6]3- + e -= [Fe(CN)6]4- φθ= 0.36V(vs.NHE) 电极电位与电极表⾯活度的Nernst ⽅程式为φ=φθ+ RT/Fln(C Ox /C Red )-0.20.00.20.40.60.8-0.0005-0.0004-0.0003-0.0002-0.00010.00000.00010.00020.0003i pai pcI /m AE /V vs.Hg 2Cl 2/Hg,Cl-在⼀定扫描速率下,从起始电位(-0.20V)正向扫描到转折电位(0.80 V)期间,溶液中[Fe(CN)6]4-被氧化⽣成[Fe(CN)6]3-,产⽣氧化电流;当负向扫描从转折电位(0.80V)变到原起始电位(-0.20V)期间,在指⽰电极表⾯⽣成的[Fe(CN)6]3-被还原⽣成[Fe(CN)6]4-,产⽣还原电流。
为了使液相传质过程只受扩散控制,应在加⼊电解质和溶液处于静⽌下进⾏电解。
在0.1MNaCl 溶液中[Fe(CN) 6]4-]的扩散系数为0.63×10-5cm.s -1;电⼦转移速率⼤,为可逆体系(1MNaCl 溶液中,25℃时,标准反应速率常数为5.2×10-2cm·s -1)。
溶液中的溶解氧具有电活性,⽤通⼊惰性⽓体除去。
三、仪器与试剂MEC-16多功能电化学分析仪(配有电脑机打印机);玻碳圆盘电极(表⾯积0.025 cm 2)或铂柱电极;铂丝电极;饱和⽢汞电极;超声波清洗仪;电解池;氮⽓钢瓶。
容量瓶:250 mL 、100mL 各2个,25 mL 7个。
实验四:循环结构程序设计班级:学生姓名:学号:一、实验目的1、理解循环的概念2、理解并掌握循环结构相关语句的含义、格式及使用3、学会循环的应用及控制,包括:①掌握使用循环输入多个数据的方法②掌握在多个数据中有选择地输出数据的方法③掌握在多个数据中对某种数据进行计数的方法④掌握求多个数据中最大值、最小值的方法⑤掌握使用break、continue语句终止循环4、掌握循环的嵌套二、知识要点1、循环变量、循环条件、循环体的概念2、三种循环语句的一般格式、执行过程3、理解选择结构与循环结构中“条件表达式”之不同含义4、二重循环的执行过程三、实验预习(要求做实验前完成)1、循环变量的主要用途是:2、用循环求多个数的和之前,先要把和的初始值赋为:3、用循环求多个数的乘积之前,先要把乘积的初始值赋为:4、字符变量能否作为循环变量?5、循环过程中,如果循环条件成立,但需要结束循环,可采用什么办法?6、什么叫循环的嵌套?四、实验内容(要求提供:①算法描述或流程图②源程序)1. 编程,利用循环计算以下表达式的值:(5+52)*(4+42)*(3+32)*(2+22)*(1+12)*(1/2+1/3+1/4+1/5)(for循环)include <stdio.h>#include <stdlib.h>int main(){int a;double sum=1,sum1=0;for(a=1;a<=5;a++)sum=sum*(a+a*a);printf("结果为%lf\n",sum);for(a=2;a<=5;a++)sum1=sum1+(1.0/a);printf("%lf\n",sum1);printf("结果为%lf\n",sum*sum1);return 0;}2. 编程,从键盘输入若干个整数,当输入0时,输入停止。
初中化学实验活动4教案
实验目的:通过观察氧气的制备反应过程,了解氧气的性质和特点。
实验材料:锰矿石粉、硫酸、试管、试管架、玻璃棒、火柴、水
实验步骤:
1. 准备实验材料:将锰矿石粉和硫酸准备好,将试管放在试管架上。
2. 将试管中倒入一定量的锰矿石粉。
3. 慢慢倒入适量的硫酸,注意不要使试管溅出。
4. 用玻璃棒搅拌试管内的混合物,观察反应过程。
5. 用火柴点燃试管口处的气体,观察现象。
实验总结:根据实验观察结果,总结出制备氧气的反应方程式,并简单分析氧气的密度、颜色和性质。
实验注意事项:
1. 实验过程中要注意安全,避免硫酸溅到皮肤上。
2. 操作实验时需戴好实验手套,以免发生意外。
3. 实验结束后及时清理实验台,保持实验环境的整洁。
4. 在实验过程中要保持清醒头脑,严禁胡乱操作。
教师评价:通过本实验,学生可以深刻了解氧气的制备方法和特点,提高他们的实际动手能力和实验操作技能。
同时,也能激发学生对化学的兴趣和学习热情。
实验四、静态路由实验目的:理解什么是静态路由;熟悉掌握静态路由的配置方法,理解重要参数的意义及使用;理解如何查看路由表及简单的链路故障排查技巧。
实验知识要点:¾静态路由(static route):指由网络管理员手工配置的路由信息。
当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。
静态路由信息在缺省情况下是私有的,不会传递给其他的路由器。
¾配置命令及参数:配置静态路由协议有两种方法:下一跳接口IP地址和出盏接口。
Router(config)#ip route network mask{address | interface }[distance]1.ip route :静态路由配置命令work:目标网络3.mask:目标网络掩码4.address:下一跳地址5.interface:本地出站接口6.distance:管理距离¾路由表:记录路由器可到达的网段和接口的对应关系。
¾查看路由表全局配置的模式下,在用show ip rout 这个命名查看路由表。
如(图4-1):(图4-1)在上面图中输出的信息首先显示路由条目各种类型的简写,如“C”为直连网络,“S”为静态路由。
以上带有下划线的路由为例,“S”表示这条路由是静态路由,手动配置的;“172.31.1.0”是目标网络;“[1/0]”是管理距离/度量值;“via 192.168.12.2”是指到达目的网络的下一跳路由器的IP地址;¾管理距离(Administrative Distance, AD):用来表示路由的可信度,路由器可能从多种途径获得同一网络的路由,为了区别它们的可信度,用管理距离加以表示。
AD值越小说明路由的可靠程度越高。
不协议的默认管理距离,如(图4-2)所示:(图4-2)¾度量值(Metric):一个路由协议判别到达目的网络的最佳路径的方法。
实验四共集放大电路一、实验目的1.学习共集放大电路的测量与调整;2.学习放大器性能指标的测量方法(输入,输出电阻、最大不失真输出电压);3.进一步加深示波器、函数信号发生器和交流毫伏表的使用方法。
二、实验原理实验参考电路如图4.1 所示。
共集放大电路具有输入电阻高、输出电阻低,电压放大倍数接近于1、输出动态范围大的特点。
与共射极放大电路不同,共集放大电路从发射极输出(因而称射极跟随器)。
图中电位器W 用来调整静态工作点。
1.静态工作点的估算静态工作点的计算,类似于共射极放大电路,只要令R C=0 即可。
2.交流放大倍数估算对图 4.1 电路,由ΔU BE = r beΔI b(由输入回路得到),ΔU E = (R c // R L )ΔI E(由输出回路得到),以及ΔI E≈ΔI C = βΔI B,可得到电压放大倍数:3.静态工作点的测量和调试:参见实验三4、放大器的动态指标测试放大器的动态指标有电压放大倍数A U、输入电阻R i、输出电阻R o 和最大不失真电压U OMAX 等。
本实验将介绍输入电阻R i、输出电阻R o 和最大不失真电压U OMAX 的测试方法。
1) 输入电阻的测量输入电阻R i的大小表示放大电路从信号源或前级放大电路获取电流的多少。
输入电阻越大,索取前级电流越小,对前级的影响就越小。
输入电阻的测量原理如图4-2 所示。
在信号源与放大电路之间串入一个已知阻值的电阻R ,用交流毫伏表分别测出Us’和U i, 则输入电阻为电阻R 的值不宜取得过大,过大易引入干扰;但也不宜取得太小,太小易引起较大的测量误差。
最好取R与R i的阻值为同一数量级。
2) 输出电阻的测量输出电阻的大小表示电路带负载能力的大小。
输出电阻越小, 带负载能力越强。
其测量原理如图4-3所示。
用交流毫伏表分别测量放大器输出电压:Uo --- R L=∞时的输出电压U OL --- 有R L时的输出电压则输出电阻可通过下式计算求得:为了测量值尽可能精确,最好取R L与R O的阻值为同一数量级。
本实验中:高强钢筋(400MPa):直径分别为6.5、10、14mm,各15根,共45根;普通钢筋(Q235) :直径分别为6.5、10、14mm,各取15根,共45根。
拉伸试验钢筋长度为500mm,弯曲钢筋长度350-400mm钢筋性能:▪弹性性能(国家新标准中规定比例极限和弹性极限都用规定非比例延伸强度来表示)包括:比例极限;弹性极限;拉伸弹性模量;泊松比▪塑性性能1)屈服强度:包括上屈服强度;下屈服强度;规定非比例延伸强度;规定总延伸强度;规定残余延伸强度2)抗拉强度;3)断裂强度;4)延性性能:包括屈服点延伸率;最大力总伸长率;最大力非比例伸长率;断裂总伸长率;断后伸长率钢筋拉伸试验一、检测标准:金属材料拉伸试验方法 GB/T228-2002评定标准:热轧带肋钢筋 GB1499.2-2007二、实验目的通过对高强钢筋(400MPa)和普通钢筋(Q235)分别进行拉伸试验测其力学性能,根据试验结果比较其基本性质的异同。
三、取样分别从普通钢筋(一级钢)与高强高性能钢筋(三级钢)中按以下方法取样:每样钢筋随机各取若干根。
从每根钢筋中分别截取一个拉伸试件。
试件截取时,应在钢筋的任意一端截去500mm后截取。
钢筋拉伸试验长度为500mm.(拉伸试件长度:l≥10d+200mm 式中:l表示钢筋试样长度,d表示钢筋直径)Q235直径:8—20mm HRB400直径:6---50mm表:各类钢筋每组试件数量力试件、一个冷弯试件。
试件切取时,应在钢筋的任意一端截去500mm后切取。
四、仪器设备1、万能材料试验机(试验机应按照GB/T 16825进行检验,并应为 1级或优于 1级准确度。
)2、游标卡尺(0-150mm),精度0.02mm3、钢筋打点标距仪五、试验步骤1、分别测定钢筋的直径、长度l1,d1,l2,d2,l3,d3,在标距两端及中间三处横截面上相互垂直两个方向测量直径,以各处两个方向测量的直径的算术平均值计算横截面积,取三处测得横截面积的平均值作为试样原始横截面积。
2、试样标距标记和测量:标记出原始标距,标距可按5d或10d 。
3、按试样尺寸及截面积、强度等级选择万能材料试验机度盘量程。
4、将试样安装上夹头,上下夹头必须持紧在试验机夹具上方可开始试验。
试验速度应根据材料性质确定。
5、测定不同加载速率下钢筋的屈服强度(测定下屈服点时,平行长度内的应变速率应在0.00025-0.0025/s之间,并应尽可能保持恒定)方法:图解法和指针法。
试验中采用图解法,由应力应变曲线读取首次下降前的最大力,以及不计初始瞬时效应时屈服阶段中的最小力或屈服平台的恒定力,再将其分别处以试样的原始横截面积,则可分别得到上屈服强度和下屈服强度。
6、测规定非比例延伸强度,规定非比例延伸强度是指试验在加载过程中非比例延伸率等于规定的引伸计标距百分率时的应力。
(非比例延伸率是指试验中任一时刻,引伸计标距的增量与引伸计标距之比的百分率。
)方法:图解法7、弹性模量E(E=弹性阶段的应力/弹性阶段的应变)8、测抗拉强度,试验机两夹头在力作用下的分离速率应不超过0.52c/min,试样拉至断裂,从拉伸确定试验过程中的最大力,或从测力度盘上读取最大力。
9、规定总延伸强度的测定规定总延伸强度是指总延伸率等于规定的引伸计标距百分率时的的应力。
Rt =Ft/S式中:Ft —总伸长达到规定比例时所施加的力KN;S—试样的原始横截面积。
试验速率要求测定R t应按照规定的应变速率加载。
试验时需要在试样上装夹引伸计,消除拉伸试验机柔度的影响,以准确控制应变速率。
(对于不能进行应变速率控制的试验机,根据平行长度估计的应变速率也可用。
应变速率应尽可能保持恒定。
在测定时应选用下面两个范围之一: 范围1: =0.00007s-1,相对误差±20%范围2: =0.00025s-1,相对误差±20%(如果没有其他规定,推荐选取该速率)方法:图解方法按照规定总延伸强度的定义,规定总延伸强度是规定总延伸率所对于的应力。
因此,不管在达到规定总延伸强度之前是否有高于它的应力出现,均以规定总延伸率对应的应力为规定总延伸强度图解方法测定规定总延伸强度10、规定残余延伸强度(卸除应力后残余延伸率等于规定的引伸计标距百分率时的对应的应力)11、屈服点延伸率(Ae)的测定12、最大力非比例伸长率(Ag)和最大力总伸长率(Agt)的测定最大力非比例伸长率=最大力时原标距的残余伸长与原始标距之比的百分率。
最大力总伸长率=最大力时原始标距的总伸长(弹性伸长加塑性伸长)与原始标距之比的百分率。
试验速率要求:在屈服强度或规定塑性延伸强度测定后,根据平行长度而计算得到的横梁位移速率在下述范围内选择:范围2: =0.00025s-1,相对误差±20%范围3: =0.002s-1,相对误差±20%范围4: =0.0067s-1,相对误差±20%(如果没有其他规定,推荐选取该速率)方法:图解方法采用2级或优于2级准确度的引伸计,当最大力总伸长率小于5%时,建议采用不劣于1级准确度的引伸计,引伸计的标距应等于或尽量接近等于试样标距13、断裂总延伸率(At)的测定要求在用引伸计得到的力-延伸曲线图上测定断裂总延伸。
试验速率同A g、A gt。
当最大力总伸长率小于5%时,建议采用不劣于1级准确度的引伸计,引伸计的标距应等于或尽量接近等于试样标距。
14、断后伸长率的测定:试样拉断后,将其断裂部分在断裂处紧密对接在一起,尽量使其轴线位于一直线上,如拉断处形成缝隙,则此缝隙应计入试样拉断后的标距内。
分别测量两种钢筋的延伸率:用钢直尺按两点标距离进行测量。
15、断面收缩率(Z )的测定原始横截面积的测定应准确到±1%,相应的原始平均直径的测定应准确到±0.5%,断后最小横截面积的测定应准确到±2%,相应的断后最小横截面平均直径的测定应准确到±1%。
测定断后最小横截面积是假定试样拉断后最小横截面仍为圆形横截面。
16、用不同的加载速率重复以上实验步骤,记录所得实验结果。
实验时的加载速率选择依据下表。
四、结果分析1、计算两种钢筋截面积Sq 1,Sq 2; Sg 1 ,Sg 2。
横截面积按下式计算S=1/4πd 2,式中:S —试样的原始横截面积2、分别计算两种钢筋屈服强度呈现明显屈服(不连续屈服)现象的金属材料,相关产品标准应规定测定上屈服强度或下屈服强度或两者。
如未具体规定,应测定上屈服强度和下屈服强度,或下屈服强度。
测定上屈服强度和下屈服强度的图解方法:试验时记录力-延伸曲线。
从曲线图读取力首次下降前的最大力和不计初始瞬时效应时屈服阶段中的最小力或屈服平台的恒定力。
将其分别除以试样原始横截面积(S0)得到上屈服强度和下屈服强度。
测定下屈服强度时,要排除”初始瞬时效应影响”。
所谓初始瞬时效应是指从上屈服强度向下屈服强度过渡时发生的瞬时效应,与试验机加力系统的柔度、试验速率、试样屈服特性和测力系统惯性守恒等多种因素相关。
对于瞬时效应作评定是困难的。
定性地把从上屈服强度向下屈服过渡期间的第一个下降谷区作为“初始瞬时效应”的影响区。
为了避开该区影响,把第1个下降谷值应力排除不计后,取其之后的最小应力为下屈服强度,只出现一个谷值情况,该谷值应力为下屈服强度。
上屈服点或下屈服点分别按下式计算Q S =F S /S 0,式中: Q S -屈服点,F S -屈服力Q S u=FSu/S,式中:QSu-上屈服点,FSu-上屈服力Q SL =FSL/S,式中:QSL-下屈服点,FSL-下屈服力3、分别计算两种钢筋的抗拉强度Qqb 1,Qqb2; Qgb1,Qgb2;对于呈现明显屈服(不连续屈服)现象的金属材料,从记录的力-延伸或力-位移曲线图,或从测力度盘,读取过了屈服阶段之后的最大力;对于呈现无明显屈服(连续屈服)现象的金属材料,从记录的力-延伸或力-位移曲线图,或从测力度盘,读取试验过程中的最大力。
最大力除以试样原始横截面积(So)得到抗拉强度。
可以使用自动装置(例如微处理机等)或自动测试系统测定抗拉强度,可以不绘制拉伸曲线图。
抗拉强度的计算按下式: Qb =Fb/S0,式中:Qb-抗拉强度,Fb-最大力4、分别计算两种钢筋的断后伸长率δ1,δ2,试样断后伸长率按下式计算:δ=(L1-L0)/L0×100%式中:δ-断后伸长率,L1-试样拉断后的标距,L-试样原始标距5、试验出现下列情况之一者,试验结果无效:试样在标距上或标距外裂隙;试验由于操作不当,如试样夹偏而造成性能不符合规定要求;试验后试样出现二个或二个以上缩颈;试验中记录有误或设备仪器发生故障影响结果准确性,遇有试验结果作废时应补做试验;6、当作拉力试验的2根试件中,如有一根试件的屈服点、抗拉强度、伸长率三个指标中有一个指标不符合规定标准时,即为拉伸性能不合格。
取双倍数量复检;在第二次拉力试验中,如仍有一个指标不符合规定,不论这个指标在第一次试验中是否合格,拉伸性能试验项目判定不合格,即该批钢筋为不合格。
五、数据处理1、屈服强度、抗拉强度值修约5N/mm2;伸长率如≤10%修约到0.5%,>1%修约到1%。
2、修约按四舍六入五单入五单双法(奇数则进一,偶数则舍弃)进行。
3、修约法为:尾数≤2.5,修约为0,尾数>2.5且<7.5者修约为5,尾数≥7.5者修约为10。
4、试验出现下列情况之一其试验结果无效,应重做同样数量试样的试验。
a)试样断在标距外或断在机械刻划的标距标记上,而且断后伸长率小于规定最小值;b)试验期间设备发生故障,影响了试验结果。
5、试验后试样出现两个或两个以上的缩颈以及显示出肉眼可见的冶金缺陷(例如分层、气泡、夹渣、缩孔等),应在试验记录和报告中注明。
钢筋的应力--应变曲线如下所示钢筋弯曲试验一、检测标准: 金属弯曲试验方法 GB/T232-1999评定标准: 热轧带肋钢筋 GB1499.2-2007二、取样 每批钢筋中分别随机抽取两根Q235钢筋和两根400MPa 高性能钢筋,从每根钢筋上分别截取一个冷弯试件。
冷弯试件长度350-400mm(冷弯试件长度:l=5d+150mm )式中:l 表示钢筋试样长度,d 表示钢筋直径三、仪器设备万能试验机,游标卡尺,弯曲装置四、试验操作比例变形阶段(oa);弹性变形阶段(ob);微塑性应变阶段(bc);屈服塑性变形阶段(cd);应变硬化阶段(de);局部缩颈变形断裂阶段(ef)。
应力应变cd efa b 01、试样一端固定,绕弯心直径弯曲,试样弯曲到规定的角度或出现裂纹、裂缝、断裂为止。
2、试样需弯曲至两臂接触时,首先将试样弯曲到一定角度,然后放置在试验机两平板间继续施加压力,直至两臂接触。