排列组合中的分组分配-课件(ppt·精选)
- 格式:ppt
- 大小:836.00 KB
- 文档页数:17
排列组合问题之分组分配问题(一)(五个方面)一、非均匀分组(分步组合法)“非均匀分组”是指将所有元素分成元素个数彼此不相等的组。
例1、7人参加义务劳动,按下列方法分组有多少种不同的分法 ①分成3组,分别为1人、2人、4人;②选出5个人分成2组,一组2人,另一组3人。
解:①先选出1人,有17C 种,再由剩下的6人选出2人,有26C 种,最后由剩下的4人为一组,有44C 种。
由分步计数原理得分组方法共有124764105C C C =(种)。
②可选分同步。
先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有35C 种,分组方法共有2375210C C =(种)。
也可先选后分。
先选出5人,再分为两组,由分步计数原理得分组方法共有523753210C C C =(种)。
二、均匀分组(去除重复法)“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。
㈠全部均匀分组(去除重复法)例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法解:可选分同步。
先选3人为一组,有37C 种;再选3人为另一组,有34C 种。
又有2组都是3人,每22A 种分法只能算一种,所以不同的分法共有33742270C C A =(种)。
也可先选后分。
不同的分法共有3366372270C C C A ⋅=(种)。
㈡部分均匀分组(去除重复法)例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、44C 种,又有3堆都是2个元素,每33A 种分法只能算一种,所以不同的分组方法共有222410864333150C C C C A ⋅=(种)。
【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是均匀的,都有mm A 种顺序不同的分法只能算一种分法。
】三、编号分组㈠非均匀编号分组(分步先组合后排列法)例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法解:分组方法共有232752420C C A =(种)。
排列组合问题之分组分配问题(一)(五个方面)一、非均匀分组(分步组合法)“非均匀分组”是指将所有元素分成元素个数彼此不相等的组。
例1、7人参加义务劳动,按下列方法分组有多少种不同的分法 ①分成3组,分别为1人、2人、4人;②选出5个人分成2组,一组2人,另一组3人。
解:①先选出1人,有17C 种,再由剩下的6人选出2人,有26C 种,最后由剩下的4人为一组,有44C 种。
由分步计数原理得分组方法共有124764105C C C =(种)。
②可选分同步。
先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有35C 种,分组方法共有2375210C C =(种)。
也可先选后分。
先选出5人,再分为两组,由分步计数原理得分组方法共有523753210C C C =(种)。
二、均匀分组(去除重复法)“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。
㈠全部均匀分组(去除重复法)例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法解:可选分同步。
先选3人为一组,有37C 种;再选3人为另一组,有34C 种。
又有2组都是3人,每22A 种分法只能算一种,所以不同的分法共有33742270C C A =(种)。
也可先选后分。
不同的分法共有3366372270C C C A ⋅=(种)。
㈡部分均匀分组(去除重复法)例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、44C 种,又有3堆都是2个元素,每33A 种分法只能算一种,所以不同的分组方法共有222410864333150C C C C A ⋅=(种)。
【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是均匀的,都有mm A 种顺序不同的分法只能算一种分法。
】三、编号分组㈠非均匀编号分组(分步先组合后排列法)例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法解:分组方法共有232752420C C A =(种)。
排列组合问题之分组分配问题(一)(五个方面)一、非均匀分组(分步组合法)“非均匀分组”是指将所有元素分成元素个数彼此不相等的组。
例1、7人参加义务劳动,按下列方法分组有多少种不同的分法 ①分成3组,分别为1人、2人、4人;②选出5个人分成2组,一组2人,另一组3人。
解:①先选出1人,有17C 种,再由剩下的6人选出2人,有26C 种,最后由剩下的4人为一组,有44C 种。
由分步计数原理得分组方法共有124764105C C C =(种)。
②可选分同步。
先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有35C 种,分组方法共有2375210C C =(种)。
也可先选后分。
先选出5人,再分为两组,由分步计数原理得分组方法共有523753210C C C =(种)。
二、均匀分组(去除重复法)“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。
㈠全部均匀分组(去除重复法)例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法解:可选分同步。
先选3人为一组,有37C 种;再选3人为另一组,有34C 种。
又有2组都是3人,每22A 种分法只能算一种,所以不同的分法共有33742270C C A =(种)。
也可先选后分。
不同的分法共有3366372270C C C A ⋅=(种)。
㈡部分均匀分组(去除重复法)例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、44C 种,又有3堆都是2个元素,每33A 种分法只能算一种,所以不同的分组方法共有222410864333150C C C C A ⋅=(种)。
【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是均匀的,都有mm A 种顺序不同的分法只能算一种分法。
】三、编号分组㈠非均匀编号分组(分步先组合后排列法)例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法解:分组方法共有232752420C C A =(种)。
排列组合问题之分组分配问题(一)(五个方面)一、非平均分组 (分步组合法)“非平均分组”是指将全部元素分成元素个数互相不相等的组。
例 1、 7 人参加义务劳动,按以下方法分组有多少种不相同的分法?①分成 3组,分别为 1人、 2 人、 4 人;②选出 5个人分成 2 组,一组 2 人,另一组 3人。
解:①先选出 1人,有 C 17 种,再由剩下的 6 人选出 2 人,有 C 62 种,最后由剩下的 4 人为一组,有 C 44 种。
由分步计数原理得分组方法共有C 71C 62 C 44 105 (种)。
②可 选分同步 。
先从 7 人中选出 2 人,有 C 72 种,再由剩下的 5 人中选出 3 人,有 C 53种,分组方法共有 C 72C 53210 (种)。
也可 先选后分 。
先选出 5 人,再分为两组,由分步 计数原理得分组方法共有C 75C 52 C 33 210 (种)。
二、平均分组 (去除重复法)“平均分组”是指将全部元素分成全部组元素个数相等或部分组元素个数相等的组。
㈠全部平均分组 (去除重复法)23例 2、 7人参加义务劳动,选出6人,有多少种不相同的分法?个人,分成 组,每组都是 解: 可选分同步 。
先选 3 人为一组,有 C 73 种;再选 3 人为另一组,有 C 43 种。
又有 2 组都 是 3人,每 A 22 种分法只能算一种,因此不相同的分法共有 C 73C 43 70 (种)。
A 22也可 先选后分 。
不相同的分法共有 C 76 C 63C 3370 (种)。
A 22㈡部分平均分组 (去除重复法)例 3、 10个不相同零件分成 4 堆,每堆分别有 2 、 2 、 2 、 4 个,有多少种不相同的分法?解:分成 2 、 2 、 2 、 4 个元素的 4 堆,分别有 C 102 、 C 82 、 C 62 、 C 44 种,又有 3 堆都是 2个元素,每 A 33 种分法只能算一种,因此不相同的分组方法共有C 102C 82 C 62 C 44 3150 (种)。
排列组合中的分组分配问题在排列组合教学中,分组分配问题是一个重要且难以理解的概念。
有些排列组合问题看起来不是分配问题,但实际上可以用分配问题的方法来解决。
一、区分分组与分配问题将n个不同的元素按照某些条件分配给k个不同的对象,称为分配问题,分为定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题。
分组问题有不平均分组、平均分组和部分平均分组三种情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同就不区分;而后者即使两组元素个数相同,但因对象不同,仍然是可区分的。
对于后者必须先分组后排列。
二、基本的分组问题例如,六本不同的书分为三组,求在下列条件下各有多少种不同的分配方法?1.每组两本。
分组与顺序无关,是组合问题。
分组数是C6^2C4^2=90种,但这90种分组实际上重复了6次。
我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。
以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数A3^3,所以分法是C6^2C4^2/A3^3=15种。
2.一组一本,一组二本,一组三本。
先分组,方法是C6^1C5^3,不需要除以A3,因为每组的书的本数不一样,不会出现相同的分法,即共有60种分法。
3.一组四本,另外两组各一本。
分组方法是C6^4C2^1C1^1=30种,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,C6^2C1^1不可能重复。
所以实际分法是15种。
通过以上三个小题的分析,我们可以得出分组问题的一般方法。
结论1:一般地,n个不同的元素分成p组,各组内元素数目分别为m1,m2,…,mp,其中k组内元素数目相等,那么分组方法数是m1n/m2(n-m1)Cm3(n-m1-m2)…Cmp(m-k+1)。