zemax设计 - 双胶合设计
- 格式:doc
- 大小:1018.50 KB
- 文档页数:28
XX大学课程设计说明书201X/201X 学年第 1 学期学院:信息与通信工程学院专业:XXXXXXXX学生姓名:XXXXX 学号:XXXXX课程设计题目:双胶合望远镜头设计起迄日期:20XX年12月22日~20XX年01月02日课程设计地点:XX大学5院楼513、606指导教师:XXXX 职称: 教授摘要 (1)关键词 (1)第一章课题要求1.1课题背景 (2)1.2设计目的 (2)1.3设计内容和要求 (2)第二章方案分析2.1课题名称 (3)2.2主要数据 (3)2.3设计思路 (3)2.4实现原理 (3)2.5主要过程 (4)第三章光学系统设计3.1光圈参数设定 (5)3.2视场参数设定 (5)3.3波长设定 (6)3.4玻璃厚度的设定 (6)3.5像空间的设定 (7)第四章光学系统分析4.1 2D光路分布草图 (7)4.2 标准点列图Spot Diagram (8)4.3 光路图OPD FAN (9)4.4 光线相差图RAY FAN (10)4.5波前分布图 (11)第五章光学系统优化5.1光学系统调焦 (12)5.2设置可变参数 (13)5.3优化函数设定 (13)5.4最终优化 (14)第六章系统优化前后比较6.1优化后的2D草图 (15)6.2优化后的标准点列 (15)6.3优化后光路图 (16)第七章心得体会心得体会 (17)ZEMAX是一款多功能的光学设计软件,可建立反射、折射、绕射等光学模型,可以用来模拟、分析和辅助设计光学系统,并对光学系统进行优化。
双胶合透镜不仅有较好的横向分辨率,而且有较高的轴向分辨率,能够作为共焦3-D成像的一种理想光学元件,在光学领域得到了广泛的应用。
本次课程设计,我们将利用ZEMAX软件设计一个双胶合望远镜头,展示利用ZEMAX设计、分析和优化一个简单光学系统的过程,进一步掌握该软件。
关键词:ZEMAX双胶合望远镜头光学系统设计分析第一章课题要求1.1课题背景随着计算机技术的不断进步和发展,在光学系统的设计过程中越来越多得利用到计算机技术,其中ZEMAX就是一款应用十分广泛的的光学设计软件,具有功能完善、操作简单、准确性高、人机交互性好等特点,极大地简化了光学系统的设计过程。
15. 4利用ZEMAX 像质优化与设计举例ZEMAX 提供了十分强大的像质优化功能,可以对合理的初始光学系统结构进行优化设计。
设计中光学结构参变量可以是曲率、厚度、玻璃材料参数、圆锥系数、参数数据、特殊数据和多重结构数值数据。
本节首先,通过消色差双胶合望远镜物镜设计和参数分析,介绍利用ZEMAX 默认评价函数的优化设计过程。
然后,通过光路中有棱镜的望远物镜、显微物镜和目镜设计举例能,介绍像差补偿、几何像差控制等在ZEMAX 中的实现以及锤形( Hammer)优化的简单应用。
最后通过变焦物镜设计介绍ZEMAX 中多重结构设计实现。
15.4.1消色差双胶合望远镜物镜设计消色差双胶合物镜设计要求见表15.131)初始结构参数确定初始结构参数确定通常有两种方法,本设计采用初级像差理论求解初始结构方法。
望远系统一般由物镜、目镜和棱镜式或透镜式转像系统构成。
望远物镜是望远系统的一个组成部分,其光学特性的特点是:相对孔径和视场都不大。
因此,望远物镜设计中,校正的像差较少,一般不校正与像高的二次方以上的各种单色像差(像散、场曲、畸变)和垂轴色差,只校正球差、彗差和轴向色差。
在这三种像差中通常首先校正色差,因为初级色差和透镜形状 无关,校正了色差以后,保持透镜的光焦度不变,再用弯曲透镜的方法校正球差和彗差,对已校正的色差影响很小。
由初级像差理论可知,双胶合透镜成为消色差双胶合透镜的条件是,双胶合透镜的正负光焦度分配应满足下式:12φφφ=+,1112V V V φφ=-,2212V V V φφ=- (15.22)式中:φ、1φ,和2φ分别双胶合物镜、正透镜和负透镜的光焦度(焦距值的倒数),1V 和2V 为正负透镜所选玻璃的阿贝数V 。
本示例中,正、负透镜的玻璃材料分别选用K9和ZF1,对应的n 1d =1.. 51637 , V 1=64. 07 , n 2d == 1. 64767 ,v 2=33. 87。
ZEMAX 光学设计报告一、设计目的通过对设计一个双胶合望远物镜,学会zemax 软件的根本应用和操作。
二、设计要求设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。
三、设计过程1.双胶合望远物镜系统初始构造的选定1.1选型由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。
又因为其相对孔径较小,所以选用双胶合即可满足设计要求。
本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。
1.2确定根本像差参量根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差0'0=FC l δ。
那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得根本像差参量为0===I ∞∞C W P 。
1.3求0P)(()⎪⎩⎪⎨⎧+-+-=∞∞∞∞火石玻璃在前时冕牌玻璃在前时2202.085.01.085.0W P W P P因为没有指定玻璃的种类,故暂选用冕牌玻璃进展计算,即0085.00-=P 。
1.4选定玻璃组合鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。
查表发现当000.0=I C ,与0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。
此系统选定9K 与2ZF 组合。
9K 的折射率5163.11=n ,2ZF 的折射率6725.12=n ,038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=ϕ,44.2=A ,72.1=K 。
1.5求形状系数Q一般情况下,先利用下式求解出两个Q 的值:AP P Q Q 00-±=∞再与利用下式求的Q 值相比较,取其最相近的一个值:)(1200+-+=∞A P W Q Q 因为 0P P ≈∞,所以可近似为284074.40-==Q Q ,06099.00-==∞W W 。
2.要求设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:设计过程: 1.求h ,h z ,J1006.14365.7148.01'''4365.7)tan(''0621.335/5tan 58.12'/'tan 148.0502/tan 8.147.34'/tan '/'tan =⨯⨯===--==⇒==⇒===⨯==⨯=Γ=⇒=Γ==y u n J mmw f y mm h h mmh f h u D u mm D D D D uf h u z z o入入出入计算平行玻璃板的像差和数S 1、S 2、S 3 平行板入射光束的有关参数为:5912.0,0875.0)5tan(,148.0-=-=-==u u u u zz根据已知条件,平行玻璃板本身参数为:64.11.5163,n 31mm,d ===υ则平行平板的初级像差为:3.列出初级像差方程式求解双胶合物镜的C W P ,,∞∞ 根据整个系统物镜的像差要求:mmL SC mm L FC m m 05.0,001.0,1.0'''=∆-==δ系统的像差和数为:0010952.000220.0)(2200438.02S '2'''3''''''''2''''1-=∆-==-=-=-=-=FC m s m L u n S y SC u n k u n S L u n δ 由于S 系统=S 物镜+S 棱镜,双胶合物镜的像差和数为:0.00128480.00238-0.001095S -0.0010750.003275-0.0022S 0.001160.00554-0.00438S =+====+=I ∏I C列出初级像差方程,求P,W,C00238.0n1-n -dS 0.0032765/u)(u S S 00554.0n1-S 223z 124321-====-=⨯-=u du n υ00000812.0001285.000123.0001075.00000922.00016.058.1223=⇒===⇒-=-==⇒===∏I C C h S W JW P h S P P hP S z由P,W,C,求C W P ,,∞∞ 由于''1,85,58.12f f h ===ϕ所以00069.005591.0)(02846.0)('23======Cf C h WW h PP ϕϕ由于望远镜物镜对无限远物平面成像,无须对平面位置再进行优化。
ZEMAX 光学设计报告一、设计目的通过对设计一个双胶合望远物镜,学会zemax 软件的基本应用和操作。
二、设计要求设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。
三、设计过程1.双胶合望远物镜系统初始结构的选定1.1选型由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。
又因为其相对孔径较小,所以选用双胶合即可满足设计要求。
本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。
1.2确定基本像差参量根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差0'0=FC l δ。
那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得基本像差参量为0===I ∞∞C W P 。
1.3求0P)(()⎪⎩⎪⎨⎧+-+-=∞∞∞∞火石玻璃在前时冕牌玻璃在前时2202.085.01.085.0W P W P P因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计算,即0085.00-=P 。
1.4选定玻璃组合鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。
查表发现当000.0=I C ,与0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。
此系统选定9K 与2ZF 组合。
9K 的折射率5163.11=n ,2ZF 的折射率6725.12=n ,038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=ϕ,44.2=A ,72.1=K 。
1.5求形状系数Q一般情况下,先利用下式求解出两个Q 的值:AP P Q Q 00-±=∞再与利用下式求的Q 值相比较,取其最相近的一个值:)(1200+-+=∞A P WQ Q因为 0P P ≈∞,所以可近似为284074.40-==Q Q ,06099.00-==∞W W 。
实验二双胶合透镜
光电信息科学与工程14级2班江晓佳3114008611 一、实验目的
练习ZEMA软件使用
对软件中镜头参数优化
评价镜头的参数
二、实验内容
图像空间F数:8 光波长:F D C 视场:0
参数窗口:
优化前曲面参数
优化后的曲面参数及EFFL和TOTR函数:
优化前的2D图
优化后2D图
优化前MTF和极限衍射图:
优化后MTF和极限衍射图:
优化前SPT和艾里斑直径:
优化后SPT和艾里斑直径:
优化前光线像差:
优化后光线像差:
优化前视场场曲失真:
优化后视场场曲失真:
三、实验结果
在优化前,镜头调制函数曲线与极限衍射曲线有一定的差距,弥散斑也较为分散,场区较大,镜头波长像差有较大差值。
在优化之后,镜头的成像质量有了明显的改善,通过上下对比可以得出,其中看MTF和极限衍射图效果最为明显,在优化后更加接近极限衍射曲线,因为优化后的镜头成像质量更高,这就说明优化已经成功。
四、实验总结
本次实现让我能够更加熟练的使用ZEMAX软件,认识到理论与实践必须相结合的学习方法,同时学习到软件中的优化镜头的功能。
设计双胶合望远物镜设计性实验一、实验目的掌握zemax光学设计软件的使用,能进行光学器件的设计和仿真,理解各种光学设计的基本分析原理,了解像差的基本概念、意义。
二、实验内容1.设计要求:焦距:f’=250 mm通光孔径:D=35 mm视场角:2ω=6°,工作中心波长为在可见光波段,入瞳与物镜重合,物镜后棱镜系统的总厚度为150 mm,要求:δL’m=0.1 5mm,SC’m、=-0.003,ΔL’FC=0.05 mm2.给出设计结果,并对设计结果进行分析和评价。
三.实验1.总体思路和基本方法与其他光学自动设计软件相似,Zemax软件进行光学系统设计时的基本流程如图1-1其中,光学系统模型的建立是光学系统设计的第一步。
其中各个参数的取值可以采用标准的PW算法,同时也可以通过查阅光学设计的镜头手册来选择一组合理的初始化数据。
在Zemax中,光学系统建模分为两个方面:系统特性参数的输入和初始结构的输入。
Zemax软件同时还具有非常强大的像质分析功能。
可以在主窗口中的Analysis下拉菜单中选择相应的像质评价工具。
一些常用的分析功能也能通过工具栏中的图标按钮来快速选择。
使用者可以通过对这些图形和文本窗口提供的菜单命令进行操作,设置需显示或计算的内容。
Zemax中的分析窗口都具有“Update(刷新)”菜单命令,当系统特性参数或结构参数改变时,可以通过刷新命令使Zemax重新计算并重新显示当前窗口中的数据。
Zemax的优化功能可以根据设定的一系列目标值去自动改变光学系统的曲率﹑厚度﹑玻璃﹑二次曲面系数及其他附加参数和多重结构数据等,以满足光学系统的光学特性和像差的要求。
在优化过程中,使用者可以根据需要,对系统设定约束条件和目标。
Zemax通过构造评价函数(Merit function),并采用一定的算法计算评价函数的取值,由取值的大小判断实际系统是否满足约束条件及目标的要求。
2.初始结构的选择Surf:Type Radius Thickness Glass Semi-Diameter OBJ Standard Infinity Infinity InfinitySTO Standard 153.10000 6.0000000 K9 20.0692362 Standard -112.93000 4.0000000 ZF1 20.0391343 Standard -361.6800 50.000000 20.0633294 Standard Infinity 150.00000 K9 18.6284755 Standard Infinity Infinity M 15.818629IMA Standard Infinity 13.2204113.优化函数的确立及Zemax实现(一)建立光学系统的模型(1)初始结构的输入;其中因为没有告诉后工作距,将厚度设为Marginal Ray Height(边缘光线高度)(2)系统特性参数的输入;(主要是对孔径﹑视场﹑波长进行设定)(二)像质评价(1) 焦距:(2)球差:Analysis—Miscellaneous—Longitudinal aberration—text所以可得δL’m=-0.06974mm;(3)正弦差:根据初级彗差和初级正弦差的关系SC’m= K’s/y’=-6.276404μm/13.154mm=-0.000477K’s:y’(4)轴向色差ΔL’FC一般指0.707h的轴向色差,可以由Chormatic Focal Shift 获得,即ΔL’FC= L’F-L’C设置Setting中的孔径:观察text:所以可得ΔL’FC= L’F-L’C=0.17395333-0.08541441=0.08853892mm(三)优化(1)像差控制:显然我们所得的像差与要求的像差数据有差距,所以必须要进行进一步的像差优化。
双胶合设计设计一:
透镜参数:
1.焦距为100mm。
2.相对孔径为1/5。
3.全视场2ω为10度。
4.物距为无穷远。
5.双胶合透镜一个采用BK7玻璃,另一个采用F2玻璃。
页脚内容1
页脚内容2
页脚内容3
1.Prescription Date
页脚内容4
页脚内容5
页脚内容6
具体参数:
1.Lens Data Editor
2.系统二维图
3.系统三维图
页脚内容7
4.点列图
页脚内容8
从图中我们可以看到,系统的弥散斑并不太大,弥散斑随着视场的增加而增加。
当ω=5度时,系统的弥散斑半径为60.847,保持在可接受的范围内。
页脚内容9
将Show Airy Disk选中,并选择ω=2.5度时作为观察对象,可以得到上面的图形。
虽然大部分光线并不集中在中心区域,但是这种效果对于双胶合设计来说也足够了。
5.MTF曲线
页脚内容10
TS 5.0000 degree这条曲线在10(lp/mm)时大致为0.35,满足设计需求。
其他的曲线也较接近最上面的黑线(衍射极限),且较为平滑。
S曲线(弧矢曲线)与T曲线(子午曲线)也比较重合。
6.Ray Fan(光线扇面)
页脚内容11
7.OPD Fan(光程差扇形图)
页脚内容12
8.Field Curv/Dist(场曲)
页脚内容13
页脚内容14
设计二:
设计二的MTF曲线更高,但弥散斑也比设计一高,当ω=5度时,弥散斑半径为69.830。
透镜参数:
6.焦距为100mm。
7.相对孔径为1/5。
8.全视场2ω为10度。
9.物距为无穷远。
10.双胶合透镜一个采用BK7玻璃,另一个采用F2玻璃。
页脚内容15
页脚内容16
页脚内容17
2.Prescription Date
页脚内容18
页脚内容19
页脚内容20
具体参数:
3.Lens Data Editor
页脚内容21
4.系统二维图
5.系统三维图
页脚内容22
6.点列图
页脚内容23
在上图中,当ω=5度时,弥散斑半径为69.830,比设计一中的要高。
7.MTF曲线
页脚内容24
TS 5.0000 degree这条曲线在10(lp/mm)时大致为0.4,比设计一的效果要好。
8.Ray Fan(光线扇面)
页脚内容25
9.OPD Fan(光程差扇形图)
页脚内容26
10.Field Curv/Dist(场曲)
页脚内容27
页脚内容28。