当前位置:文档之家› 浅谈中学几种常用证明不等式的方法

浅谈中学几种常用证明不等式的方法

浅谈中学几种常用证明不等式的方法
浅谈中学几种常用证明不等式的方法

成绩:

江西科技师范大学

毕业论文

题目:浅谈中学几种常用证明不等式的方法

(外文):On the method commonly used in

Middle School to prove inequality

院(系):数学与计算机科学学院

专业:数学与应用数学

学生姓名:吴丹

学号:20091741

指导教师:樊陈

2013年3月20日

目录

1引言 (1)

2放缩法证明不等式 (1)

2.1放缩法 (1)

2.2(改变分子分母)放缩法 (1)

2.3拆补放缩法 (2)

2.4编组放缩法 (3)

2.5寻找“中介量”放缩法 (4)

3反正法证明不等式 (4)

3.1反证法定义 (4)

3.2反证法步骤 (5)

4.换元法证明不等式 (6)

4.1利用对称性换元,化繁为简 (6)

4.2三角换元法 (7)

4.3和差换元法 (8)

4.4分式换元法 (8)

5.综合法证明不等式 (9)

5.1综合法证明不等式的依据 (9)

5.2用综合法证明不等式的应用 (9)

5.3综合法与比较法的内在联系 (10)

6.分析法 (11)

6.1分析法的定义 (11)

6.2分析法证明不等式的方法与步骤 (11)

6.3分析法证明不等式的应用 (11)

7.构造法证明不等式 (13)

7.1构造函数模型 (13)

7.2构造数列模型 (14)

8.数学归纳法证明不等式 (15)

8.1分析综合法 (16)

8.2放缩法 (16)

8.3递推法 (17)

9.判别式法证明不等式 (17)

10.导数法证明不等式 (18)

10.1利用函数的单调性证明不等式 (18)

9.2利用极值(或最值) (20)

11比较法证明不等式 (20)

11.1差值比较法 (20)

11.2商值比较法 (21)

11.3比较法的应用范围 (22)

12结束语: (22)

参考文献 (22)

浅谈中学常用几种证明不等式的方法

摘要:中学数学有关不等式的证明的题型多变,技巧性很强,同时它也没有固定的程序加以规定。因而 他是中学数学考试的难点。不等式的证明的方法很多。本文将列举出中学数学常用的几种方法:放缩法、 反正法、换元法、分析法、综合法、构造法、数学归纳法、判别式法、导数法、比较法。

关键词:不等式 证明方法 1引言

不等式,渗透在中学数学各个分支中。而不等式的证明在不等式中占有极其重要的地位。不等式的证明的方法是中学数学的重要知识,也成为了中学数学考试的热点问题。本文针对以上的情况,提出了中学几种常见的不等式的证明方法来和大家一起分享,希望不仅能够对我们今后碰到类似的问题起到指导的作用,而且还能够培养分析和解决问题的能力。

2放缩法证明不等式

2.1放缩法

放缩法的定义:在不等式的证明中,有时可把不等式中的某些项或因式换成数字较大或较小的数或式,以达到证明的目的,这种证明方法称为放缩法。

放缩法的形式:欲证A ≥B ,可通过适当放大或缩小,借助一个或多个中间量,

使得 ,,,211A B B B B B i ≤??????≤≤,,211B A A A A A i ≥??????≥≥,,或再利用传递性,达

到欲证的目的。

2.2(改变分子分母)放缩法

在不等式有分式时,长放大或缩小分式的分子或分母,从而达到“以小代大”或“以大代小”的目的。

例1:求一切3)11(,<+∈n n

N n 证明:n

n n n n n n C n C n C n 1111)11(221++++=+ =n

n n n n n n n n n n !!!3)2)(1(2)1(232++--+-+ ! n n

1!31!212++++< 122

121212-++++

11210-++++n 21121

11--

+=n 321

31<-=-n

∴)(3)11(N n n n ∈<+

2.3拆补放缩法

在证有些不等式的时候,常将其中某些项拆开和或合并以完成证明。

例2:求证:)7(113121

>+>++n n n 证明:k k k 21>++

∴12

1

++>k k k

∴12

432

322

1

41

31

21

+++++++>+++n n n 2211)21(2-+++=-+=n n n 2211)21(2-+++=-+=n n n 02217>-+?>n n

∴11

31

21

+>++n n

2.4编组放缩法

证明不等式有时把某项拆开,重新编组,利用基本不等式完成证明。

例3:求证:)1,()1(141312111>∈+>+++++n N n n n n

n n . 证明:左)11()311()211()11(n

++++++++= n

n 14534232++++++= n n

n n 14534232+???> n n n 1

)1(+=

∴n n n n n 1

)1(14131211+>+++++

2.5寻找“中介量”放缩法

当两式难以比较大小时,可寻找“中介量”牵线搭桥,利用不等式的传递性完成证明。

例4:求证:19

log 319log 219log 1log 1log 123552++>+ππ 证明:

10log 5log 2log log 1log 152πππππ=+=+ 2log 2=>ππ

)895(log 2log 3log 5log 19log 319log 219log 11931921919235??=++=++ 2360log 19<=

∴19

log 319log 219log 1log 1log 123552++>+ππ 小结:放缩法是不等式证明中常见的变形方法之一,具有较高的技巧性。放缩 必须有目标,而且要恰到好处,需要细心观察,目标往往要从证明的结论中寻 找。

3反正法证明不等式

3.1反证法定义

“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、

定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立”.这种证明的方法,叫做反证法.

3.2反证法步骤

1、假设命题的结论不成立;

2、从这个结论出发,经过推理论证,得出矛盾;

3、由矛盾判定假设不正确,从而肯定命题的结论正确,即:提出假设——推出矛盾——肯定结论.

例5:已知:c b a ,,都是小于1的正数;求证:a c a b b a )1(,)1(,)1(---中至少有一个不大于4

1。 分析 :采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾从而证明假设不成立,而原命题成立.对题中“至少有一个不大于

4

1”的否命题是“全都大于41”。 证明:假设4

1)1(,41)1(,41)1(>->->-a c c b b a c b a ,, 都是小于1的正数

∴ 2

1)1(,21)1(,21)1>->->-a c c b b a ( ∴23)1()1()1>

-+-+-a c c b b a ( 又 212121)1()1()1a c c b b a a c c b b a +-++-++-≤

-+-+-( =

23

故与上式矛盾,假设不成立,原命题正确

说明: 反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.

例6:若2,0,033=+>>q p q p ,求证:2≤+q p

证明:假设2>+q p ,则8)(3>+q p ,即8)(333>+++q p pq q p 。

因为233=+q p ,所以2)(>+q p pq

故2)(>+q p pq 33q p +=))((22q pq p q p +-+=

又,0,0>>q p 即0>+q p

所以>pq )(22q pq p +-

故0)(2<-q p

与假设不成立,原命题正确。

总结:反证法是根据“正难则反”的原理,即如果正面证明有困难时,或者直接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法。反证法不仅在几何中有着广泛的应用,而且在代数中也经常出现。用反证法证明不等式就是最好的应用

4.换元法证明不等式

4.1利用对称性换元,化繁为简

例7:设,,,+∈R c b a 求证:()()()c b a b a c a c b abc -+?-+?-+≥.

分析:把c b a ,,中的两个互换,不等式不变,所以这是一个对称不等式,令

=-+=y a c b x ,,b a c -+,c b a z -+=则原不等式等价于:

()()()xyz x z z y y x 8≥+?+?+.

证明:令c b a z b a c y a c b x -+=-+=-+=,,,则 ()z y a +=21,(),21z x b +=()y x c +=2

1. ,,,+∈R c b a 0<∴xyz 当时,有()()()xyz x z z y y x 8≥+?+?+;

当0>xyz 时,有+∈R z y x ,,(否则z y x ,,中必有两个不为正值,不妨设0≤x , 0≤y ,则0≤c ,这与0>c 矛盾), 因此 02>≥+xy y x ,,02>≥+yz z y ,02>≥+zx x z

()()()xyz x z z y y x 8≥+?+?+,

综上所述,()()()xyz x z z y y x 8≥+?+?+

把z y x ,,代入上式得: ()()()c b a b a c a c b abc -+?-+?-+≥

4.2三角换元法

三角换元法的基本思想是根据已知条件,引进新的变量---三角函数,把一个复杂的不等式问题转化为三角不等式的问题,再利用三角函数的性质及三角恒等式去证明,从而使不等式得证。

例8:已知122≤+y x ,求证2222≤-+y xy x

分析:由已知122≤+y x ,令?α?αsin ,cos ==y x ,则1≤a

证明:令?α?αsin ,cos ==y x ,1≤a 2222≤-+y xy x ??α?α?αsin cos 2sin cos 2222+-= 22)42sin(22sin 2cos 222≤≤+?=+=απ

???a a

说明:换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1)若1≤x ,可设αsin =x ,R ∈α;

(2)若122=+y x ,可设ααcos ,sin ==y x ;

(3)若122≤+y x ,可设?α?αsin ,cos ==y x ,1≤a 。

4.3和差换元法

在题中有两个变量y x ,,可设b a y b a x -=+=,,这称为和差换元法,换元后有可能简化代数式。

例9:对任意实数b a ,,求证:2

2226

63322b a b a b a b a +≤+?+?+ 分析:对于任意实数a 与b ,都有22,22b a b a b b a b a a --+=-++=

。令 2

,2b a t b a s -=+=,则有t s b t s a -=+=,。 证明:设t s b t s a -=+=,,

下面只须证: 64224623221515)3)((t t s t s s st s t s s +++≤++

∵不等式右边—不等式左边=0121164224≥++t t s t s

∴64224623221515)3)((t t s t s s st s t s s +++≤++

即2

2226

63322b a b a b a b a +≤+?+?+ 说明:利用“和差换元”可以简证难度较大的不等式.

4.4分式换元法

例10:已知 9)11)(11(,1,,≥++=+∈+b

a b a R b a 求证:且 分析:本题的证明方法很多,下面我们利用分式换元来进行证明 证明:设0,0,,>>+=+=y x y

x y b y x x a 且

)(25)2)(2()1)(1()11)(11(y

x x y y x x y y y x x y x b a ++=++=++++=++ 9)11)(11(≥++b

a 当且仅当时等号成立即2

1,===b a y x x y 说明:不等式的证明中,我们知道证明不等式时,可以利用分式换元,使其分式结构变得简单,分母变为单项式,然后把逐项分离,便于利用均值不等式。 5.综合法证明不等式

5.1综合法证明不等式的依据

(1)已知条件和不等式性质;

(2)基本不等式:

“=”号). 5.2用综合法证明不等式的应用

例11:已知c b a ,,是不全等的正数,求证:

abc b a c a c b c b a 6)()()(222222>+++++.

分析:观察题目,我们很容易想到利用性质ab b a 222≥+.

证明:bc c b 222≥+ ,0>a

∴abc c b a 2)(22≥+ ①

同理可得:abc c a b 2)(22≥+ ②

abc b a c 2)(22≥+ ③

c b a ,,是不全等的正数,

∴①,②, ③至少有一个不等式不能取等号

∴①+②+③?abc b a c a c b c b a 6)()()(222222>+++++

5.3综合法与比较法的内在联系

由于作为综合法证明依据的不等式本身是可以根据不等式的意义、性质或比较法证出的,所以用综合法可以获证的不等式往往可以直接根据不等式的意义、性质或比较法来证明;摆在我们面前的问题恐怕是方法的选择.方法选择不当,不是证不出来就是难度加大;方法合理使用,会使题目难度大大下降.因此我们不要学过某种方法就抱定不放,要善于观察,根据题目的特征选择证题方法。

6.分析法

6.1分析法的定义

从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题。如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种证明方法叫做分析法。

6.2分析法证明不等式的方法与步骤

用分析法论证“若A 则B ”这个命题的格式是:

欲证命题B 为真,

只需证命题B1为真,

只需证命题B2为真,

……

只需证命题Bn 为真,

只需证命题A 为真,

令已知命题A 为真,

故命题B 为真。

6.3分析法证明不等式的应用

例12:若b c a c >>>,0,求证:ab c c a ab c c -+<<--22

分析: 采用分析法证明.

证明:ab c c a ab c c -+<<--22

ab c c a ab c -<-<--?22

c

b a ac

ab a ab c c ac a ab

c c a ab

c c a 222)(2222222<+?<+?-<+-?-<-?-<-?

b c a c >>>,0

∴b a c +>2

∴原不等式成立。

说明:从这道题目我们不难看出“分析法”的证明格式,是用“?”符号,不断用充分条件代替前面的不等式

6.4综合法与分析法的综合应用

条件和结论之间的关系比较复杂,根据既定法则和事实条件,由因导果,一直推究下去,有时会在中途迷失方向,使解题无法进行下去.在这种情况下,可以同时运用综合法与分析法的解题方法,执行.

例13: 若c b a ,,是不全相等的正数,求证

c b a a c c b b a lg lg lg 2

lg 2lg 2lg ++>+++++。 分析:利用对数的性质,所要证的不等式等价于

abc a c c b b a lg )2

22lg(>+?+?+,所以只要证abc a c c b b a >+?+?+2

22,于是我们可以利用不等式的性质:ab b a 22

≥+即可得证。

证明:c b a a c c b b a lg lg lg 2

lg 2lg 2lg ++>+++++ ?abc a c c b b a lg )222lg(

>+?+?+ ?abc a c c b b a >+?+?+2

22 0,0,>>>c b o a

∴ab b a ≥+2,bc c b ≥+2 ,ac a c ≥+2

,且这三个不等式的等号不能同时成立(它们是3个不全等的正数)

∴abc a c c b b a >+?+?+2

22 ∴c b a a c c b b a lg lg lg 2

lg 2lg 2lg ++>+++++ 说明:分析法和综合法是对立统一的两个方面.在这道题目中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推。

7.构造法证明不等式

构造法作为一种数学思维方法,在解题过程中通过观察分析给出式和欲证式,充分挖掘题目的隐含信息,并进行联想与思考,恰当地构造出一个与题目相关的数学模型,将欲证的问题转化到我们所熟悉的情景之中,从而达到证题的目的,这是构造法证题的解题模式。本文以证明不等式为例,介绍几种常见的构造法。

7.1构造函数模型

我们常常利用一次函数的线性性质、二次函数的最值以及函数的单调性等性质证明某些不等式问题。在证明不等式时,抓住不等式与函数的密切关系,以问

题的结构特征为起点,构造相应函数,从函数的思想和方法来解决问题。 例14:已知: ,11<<-a ,11<<-b 11<<-c

求证: 1->++ac bc ab

证明: 构造函数bc x c b x f ++=)()( )11(<<-x ,此图象为一条直线.

∵1)1)(1()1(-++=++=c b bc c b f

01>+b 01>+c

∴1)1(->f

1)1)(1()1(---=+-=-c b bc c b f

又01,01>->-c b

∴1)1(->-f

∴1)()(->++=bc a c b a f

例15:已知y x ,都是正数,1=+y x ;求证

()51)1(2

922<+++≤y x 证明: 22)1()1()(+++=y x x u 设 5

22)(1,102+-=∴-=<

y x 在(0,1)上的值域为.5,29??????

所以,

()51)1(2922<+++≤y x . 7.2构造数列模型

对于某些自然数的不等式问题,与数列有着密切的联系,这时可构造有关数列模型,利用其单调性解决。

例16: 求证:.11

312111>++???++++n n n 证明: 构造数列模型,11312111-++???++++=

n n n a n 则有1

12313314311+-+++++=-+n n n n a a n n 3

31231431+-+++=n n n 0)

43)(33)(23(2>+++=n n n ,所以数列}{n a 为递增数列。 又因为012

114131211>=-++=

a ,故)(0+∈>N n a n 其中 即原不等式得证。 总结:欲证含有与自然数n 有关的和的不等式)()(n g n f >,可以构造函数模型)()(n g n f a n -=,只需证明数列}{n a 是单调递增,且01>a 。另外,本题也可以用数学归纳法证明,但是构造数列模型证明简洁。

8.数学归纳法证明不等式

说明数学归纳法是一种证明与正整数有关的数学命题的重要方法。主要有 两个步骤一个结论:

(1) 证明当n 取0n (如0n =1或2等)时结论正确

(2) 假设n=k (k 0,n k N ≥∈+且)时结论正确,证明n=k+1时结论也正确

由(1)、(2)得出结论正确。因此,熟悉归纳步骤的证明方法是十分重要的其实归纳步骤可以看作是一个独立的证明问题,归纳假设“P (k )成立”是问题的条件而“命题P (k+1)成立”就是所要证明的结论,因此,合理运用归纳假设这一条件就成了归纳步骤中的关键,下面简要分析用数学归纳法证明不等式常涉及的方法。

8.1分析综合法

例17:求证:+∈<++

+?+?N n n n n ,)1(1321211

证明:(1)当,所以原不等式成立。时,因为121211

1<=?=n

(2)假设时,原不等式成立,),1(+∈≥=N k k k n

即有:k k k <+++?+

?)1(1321211

1+=k n 时:)2)(1(1

)2)(1(1)1(1321

211+++<++++++?+?k k k k k k k

因此,要证明当1+=k n 时,原不等式成立, 只要证明1)

2)(1(1

+<+++k k k k 成立 即证明23111

)2)(1(112++>++?++>-+k k k k k k k k 也就是证明k k k k ++>++1232 即[]01)1()1(21)1()23(2

2222>-+=

+-++=++-++k k k k k k k k k k 从而k k k k ++>++1232

于是当1+=k n 时,原不等式也成立。

由(1)、(2)可知,对于任意的正整数n ,原不等式都成立。 8.2放缩法

例18:求证:)(22

1312111+-∈>++++

N n n n 证明:(1)当1=n 时,211>,不等式成立。 (2)假设22

131211),1(1k N k k k n k >++++∈≥=-+ 时不等式成立,即

当1+=k n 时

212

12221213121111+=?+>++++++--k k k k k k 所以当1+=k n 时,不等式成立 由(1)、(2)可知,)(221312111+-∈>++++

N n n n 8.3递推法

例19:设10<

+=+1,111,求证:对一切,+∈N n 有a

a n -<<111 证明:(1)当a

a a a n -<+=>=111,1111又时,,显然命题成立 (2)假设时),1(+∈≥=N k k k n ,命题成立, 即a

a k -<<111 当1+=k n 时,由递推公式,知1)1(1=+->+=+a a a a a k k

同时,a

a a a a a a k k -<--=+<+=+1111121 当1+=k n 时,命题也成立。

即a

a k -<<+1111 由(1)、(2)可知,对一切正整数n ,有a a n -<

<111 说明:证明不等式的题型多种多样,所以不等式证明是一个难点,在由n=k 成立,推导n=k+1不等式也成立时,过去讲的证明不等式的方法再次都可以使用,如比较法、放缩法、分析法、反证法等,有时还要考证与原不等式的等价的命题.

9.判别式法证明不等式

判别式法是根据已知的或构造出来的一元二次方程、一元二次不等式、二次函数的根、解集、函数的性质等特征确定出其判别式所应满足的不等式,从而推出欲证的不等式的方法。

二次函数时,当0,)(2>++=a c bx ax x f 若判别式0)(,042≥≤-=?x f ac b 则恒成立。

例20:已知R b a ∈,,求证:122-++≥+b a ab b a

证明:令)1()(22-++-+=b a ab b a a G

)1()1(22+-++-=b b a b a

0)1(3)1(4)1(222≤--=+---=?b b b b

∴0)(≥a f 恒成立 ∴122

-++≥+b a ab b a 说明:用判别式法证不等式关键在于构造二次函数,操作简单,使用方便。

10.导数法证明不等式

证明有些不等式的题目,看似简单,但是我们无从下手,几种常用的方法都一一尝试,却没有任何作用。这时我们不妨从已有的知识下手,构造一个函数,再借助导数来确定单调性,利用单调性实现问题的转化,从而使不等式得到证明。

利用导数证明不等式的步骤:构造可导函数——研究单调性或最值——得出不等式关系——整理得出结论。

10.1利用函数的单调性证明不等式

例20:当),0(π∈x 时,证明不等式x x

证明:设1cos )(,sin )('-=-=x x f x x x f 则

),0(π∈x

∴0)('

不等式证明的基本方法

'、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 、知识分析 定理1 若a,b为实数,贝当且仅当ab>0时,等号成 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a 与一b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与—b的距离严格小于a与b到原点距离之和(下图为ab<0, a>0, b<0的情况,ab<0的其他情况可作类似解释)。 |a —b|表示a—b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,贝等号成立,即b落在a,c之间 推论1 推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到

判别式法证 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是 错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A> B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 典型例题】 例1已知函数,设a、b€ R,且a^b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一: ① 当ab< —1时,式①显然成立; 当ab>—1时,式①② b,A式②成立。故原不等式成立。 证法二:当a=—b 时,原不等式显然成立; 当a M— b 时, ???原不等式成立。

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.doczj.com/doc/0f7827930.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.doczj.com/doc/0f7827930.html,) 原文地址: https://www.doczj.com/doc/0f7827930.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题

选修4-5 第二节 不等式证明的基本方法例题 1.已知a 、b 、x 、y 均为正实数,且1a >1 b ,x >y . 求证: x x +a > y y +b . 证明:∵ x x +a - y y +b = bx -ay x +a y +b , 又1a >1 b ,且a 、b 均为正实数, ∴b >a >0. 又x >y >0, ∴bx >ay . ∴ bx -ay x +a y +b >0,即x x +a >y y +b . 2.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2 +(1a +1b +1c )2≥63,并确定a ,b ,c 为何值时,等号成立. 证明:法一:因为a ,b ,c 均为正数,由平均值不等式得 a 2+ b 2+ c 2 ≥3(abc )23 ,① 1 a +1 b +1 c ≥3(abc )1 3-,② 所以(1 a +1 b +1c )2 ≥9(abc ) 2 3-. 故a 2 +b 2 +c 2 +(1a +1b +1 c )2 ≥3(abc ) 23 + 9(abc ) 23 - . 又3(abc ) 23 +9(abc ) 23 -≥227=63,③ 所以原不等式成立. 当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23 =9(abc ) 23 - 时,③式 等号成立. 即当且仅当a =b =c =314 时,原式等号成立. 法二:因为a ,b ,c 均为正数,由基本不等式得

a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac. 所以a2+b2+c2≥ab+bc+ac,① 同理1 a2+ 1 b2 + 1 c2 ≥ 1 ab + 1 bc + 1 ac ,② 故a2+b2+c2+(1 a + 1 b + 1 c )2≥ab+bc+ac+ 3 1 ab +3 1 bc +3 1 ac ≥6 3.③ 所以原不等式成立. 当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立. 即当且仅当a=b=c=31 4时,原式等号成立. 3.(2012·豫南九校联考)已知x,y均为正数,且x>y,求证:2x+1 x2-2xy+y2 ≥2y +3. 解:因为x>0,y>0,x-y>0, 2x+ 1 x2-2xy+y2 -2y=2(x-y)+ 1 x-y2 =(x-y)+(x-y)+ 1 x-y2 ≥33 x-y2 1 x-y2 =3, 所以2x+ 1 x2-2xy+y2 ≥2y+3. 4.已知正实数a,b,c满足 1 a + 2 b + 3 c =1,求证:a+ b 2 + c 3 ≥9.证明:因为a,b,c均为正实数, 所以 1 a + 2 b + 3 c ≥3 31 a · 2 b · 3 c .同理可证: a+ b 2 + c 3 ≥3 3 a· b 2 · c 3 . 所以(a+ b 2 + c 3 )( 1 a + 2 b + 3 c )≥ 3 3 a· b 2 · c 3 ·3 31 a · 2 b · 3 c =9. 因为 1 a + 2 b + 3 c =1,所以a+ b 2 + c 3 ≥9, 当且仅当a=3,b=6,c=9时,等号成立.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

文本预览
相关文档 最新文档