铁路工程抗震设计规范17页
- 格式:ppt
- 大小:1.73 MB
- 文档页数:17
1 总则1.0.1 为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震的性能要求,特制定本规范。
1.0.2 本规范适用于设防烈度为6度、7度、8度、9度地区的新建、改建标准轨距客货共线铁路工程的线路、路基、挡土墙、桥梁、隧道等工程的抗震设计。
客运专线铁路的抗震设计可参照本规范执行。
设防烈度大于9度的地区或有特殊抗震要求的工程及新型结构,其抗震设计应作专门研究。
1.0.3 抗震设防烈度应采用《中国地震动参数区划图》(GB 18306-2001)附录D规定的地震基本烈度值。
1.0.4一般情况下,抗震设计可按《中国地震动参数区划图》(GB 18306-2001)规定的地震动参数执行。
对做过专门地震研究的地区,可按批准的设计地震动参数或抗震设防烈度进行抗震设计。
对特别重要的铁路工程,其场地所在位置应进行地震安全性评价。
1.0.5铁路工程应按多遇地震、设计地震、罕遇地震三个水准进行抗震设计。
1.0.6 铁路工程抗震设计除应符合本规范外,尚应符合国家现行有关标准、规范的要求。
2 术语和符号 2.1 术语 2.1.1 抗震设计 seismic design 抗御地震灾害的工程设计,包括抗震验算及抗震措施。
2.1.2 抗震设防烈度 seismic fortification intensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。
2.1.3 地震动峰值加速度 seismic peak ground acceleration与地震动加速度反应谱最大值相应的水平加速度。
2.1.4多遇地震 low-level earthquake地震重现期为50年的地震动。
2.1.5设计地震 design earthquake地震重现期为475年的地震动。
2.1.6 罕遇地震 high-level earthquake地震重现期为2450年的地震动。
2.1.7 地震动反应谱特征周期 characteristic period of the seismicresponse spectrum地震动加速度反应谱曲线开始下降点的周期。
铁路工程抗震设计规范为贯彻抗震以预防为主的方针,做好铁路工程的抗震设计,以保障铁路运输的畅通和人民生命财产的安全,特制订本规范。
本规范适用于基本烈度为7度、8度、9度所在地区的新建国家铁路网1435mm标准轨距铁路(以下简称铁路)和工业企业标准轨距铁路(以下简称工企铁路)的线路、路基、挡土墙、桥梁,隧道工程的抗震设计。
有特殊抗震要求的建筑物和新型结构应进行专门研究设计。
按本规范经抗震设防后的铁路工程,当遭受相当于基本烈度的地震影响时,Ⅰ、Ⅱ级铁路的损坏部份稍加整修后即可正常使用;Ⅲ级铁路及Ⅰ级工企铁路经短期抢修后即能恢复通车;Ⅱ、Ⅲ级工企铁路的桥梁、隧道等工程不发生严重破坏。
建筑物的设计烈度,除国家有特殊规定外,Ⅰ、Ⅱ、Ⅲ级铁路和Ⅰ级工企铁路应采用所在地区的基本烈度;Ⅱ、Ⅲ级工企铁路除桥梁支座、桥梁和棚洞的防止落梁设施应采用所在地区的基本烈度外,其它工程的设计烈度均应按基本烈度降低1度采用。
跨越铁路的跨线桥、天桥、立交明洞、渡槽等建筑物应按不低于该处铁路工程的设计烈度进行抗震设计。
建筑物的抗震设计,应按本规范采取抗震措施,并按规定范围验算抗震强度和稳定性。
验算建筑物的抗震强度和稳定性时,应只计水平地震的作用。
水平地震系数应按采用。
设计烈度(度)7 8 9水平地震系数Kh 0.1 0.2 0.4设计烈度为9度的悬臂结构和预应力混凝土刚构桥等,还应计入竖向地震作用,并应按水平与竖向地震作用同时发生的最不利的情况组合。
竖向地震作用可取结构恒载和活荷载的7%,有条件时也可按竖向地震系数KV等于0.2进行计算。
铁路工程抗震设计方案,应符合下列原则:一、选择在基本烈度较低和对抗震有利的地段。
二、建筑物体形简单、自重轻、刚度和质量分布匀称、重心低。
三、采用有利于提高结构整体性的连接方式。
四、技术上先进、经济上合理和便于修复加固。
铁路工程抗震设计除应符合本规范外,尚应符合现行有关标准、规范的要求。
建筑抗震设计规范GB50011-2001第1章总则第1.0.1条为贯彻执行《中华人民共和国建筑法》和《中华人民共和国防震减灾法》并实行以预防为主的方针,使建筑经抗震设防后,减轻建筑的地震破坏,避免人员伤亡,减少经济损失,制定本规范。
按本规范进行抗震设计的建筑,其抗震设防目标是:当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用,当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用,当遭受高于本地区抗震设防烈度预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。
第1.0.2条抗震设防烈度为6度及以上地区的建筑,必须进行抗震设计。
第1.0.3条本规范适用于抗震设防烈度为6、7、8和9度地区建筑工程的抗震设计及隔震、消能减震设计。
抗震设防烈度大于9度地区的建筑和行业有特殊要求的工业建筑,其抗震设计应按有关专门规定执行。
注:本规范一般略去"抗震设防烈度"字样,如"抗震设防烈度为6度、7度、8度、9度",简称为"6度、7度、8度、9度"。
第1.0.4条抗震设防烈度必须按国家规定的权限审批、颁发的文件(图件)确定。
第1.0.5条一般情况下,抗震设防烈度可采用中国地震动参数区划图的地震基本烈度(或与本规范设计基本地震加速度值对应的烈度值)。
对已编制抗震设防区划的城市,可按批准的抗震设防烈度或设计地震动参数进行抗震设防。
第1.0.6条建筑的抗震设计,除应符合本规范要求外,尚应符合国家现行的有关强制性标准的规定。
第2章建筑抗震设计规范术语第2.1.1条抗震设防烈度seismicfortificationintensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。
第2.1.2条抗震设防标准seismicfortificationcriterion衡量抗震设防要求的尺度,由抗震设防烈度和建筑使用功能的重要性确定。
《铁路工程抗震设计规范》的修订及对铁路桥桥墩的影响倪燕平【摘要】主要介绍新版<铁路工程抗震设计规范>的编制背景和修订要点,同时为了直观地反映新旧规范关于地震作用计算的差异,文中给出了简支梁和连续梁桥墩按新旧规范计算的结果对比.【期刊名称】《铁道标准设计》【年(卷),期】2005(000)011【总页数】3页(P82-84)【关键词】抗震规范;修订;地震作用【作者】倪燕平【作者单位】铁道第一勘察设计院,兰州,730000【正文语种】中文【中图分类】U442.5+51 概述我国现行的国家标准《铁路工程抗震设计规范》(GBJ111—87,以下简称“87规范”),自1989年颁布至今已经使用15年。
在过去的15年中,特别是近10年以来,有关结构抗震的理论和工程实践都有了迅速的发展。
从抗震理论角度,延性抗震理论和非线性有限元技术的发展,使得结构抗震由过去以强度为基础的抗震设计过渡到了以位移为基础的延性抗震设计;在对地震作用的对策上讲,由过去被动地依靠结构自身强度和刚度来抵抗地震作用过渡到主动设置减、隔振装置改变结构的动力行为来减小结构的地震反应;从抗震设防的目标值来讲,由过去的一水准过渡到目前的以概率理论为基础的三水准,在实现手段方面,由过去的“一阶段设计”过渡到“两阶段设计”。
在这个大背景下,需要对“87规范”进行全面修订,铁道第一勘察设计院承担了新版《铁路工程抗震设计规范》(以下简称“新规范”)的修订和编制工作,下面将主要的修订内容叙述如下。
2 主要修订内容2.1 结构多水准设防“87规范”中规定的设防目标是当遭遇设计烈度的地震作用时,Ⅰ级、Ⅱ级铁路的损坏部分,稍加整修后,即可正常使用;按强度设计,引入综合影响系数考虑材料的非线性影响。
近年来,针对不同超越概率的地震作用,结构具有不同的抗震能力的分级设防思路为各国规范所采用,新规范也采用了这一思路。
结合中国铁路工程在唐山、海城等地震区的震害经验,并参考“87规范”的设防标准,新规范规定了铁路工程构筑物应达到的3个抗震性能标准,以及与3个抗震性能标准对应的构筑物的设防目标及分析方法(表1)。
1 总则1.0.1 为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震的性能要求,特制定本规范。
1.0.2 本规范适用于设防烈度为6度、7度、8度、9度地区的新建、改建标准轨距客货共线铁路工程的线路、路基、挡土墙、桥梁、隧道等工程的抗震设计。
客运专线铁路的抗震设计可参照本规范执行。
设防烈度大于9度的地区或有特殊抗震要求的工程及新型结构,其抗震设计应作专门研究。
1.0.3 抗震设防烈度应采用《中国地震动参数区划图》(GB 18306-2001)附录D规定的地震基本烈度值。
1.0.4一般情况下,抗震设计可按《中国地震动参数区划图》(GB 18306-2001)规定的地震动参数执行。
对做过专门地震研究的地区,可按批准的设计地震动参数或抗震设防烈度进行抗震设计。
对特别重要的铁路工程,其场地所在位置应进行地震安全性评价。
1.0.5铁路工程应按多遇地震、设计地震、罕遇地震三个水准进行抗震设计。
1.0.6 铁路工程抗震设计除应符合本规范外,尚应符合国家现行有关标准、规范的要求。
2 术语和符号2.1 术语2.1.1 抗震设计seismic design抗御地震灾害的工程设计,包括抗震验算及抗震措施。
2.1.2 抗震设防烈度seismic fortification intensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。
2.1.3 地震动峰值加速度seismic peak ground acceleration与地震动加速度反应谱最大值相应的水平加速度。
2.1.4多遇地震low-level earthquake地震重现期为50年的地震动。
2.1.5设计地震design earthquake地震重现期为475年的地震动。
2.1.6 罕遇地震high-level earthquake地震重现期为2450年的地震动。
2.1.7 地震动反应谱特征周期characteristic period of the seismicresponse spectrum地震动加速度反应谱曲线开始下降点的周期。
1 总则1.0.1 为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震的性能要求,特制定本规范。
1.0.2 本规范适用于设防烈度为6度、7度、8度、9度地区的新建、改建标准轨距客货共线铁路工程的线路、路基、挡土墙、桥梁、隧道等工程的抗震设计。
客运专线铁路的抗震设计可参照本规范执行。
设防烈度大于9度的地区或有特殊抗震要求的工程及新型结构,其抗震设计应作专门研究。
1.0.3 抗震设防烈度应采用《中国地震动参数区划图》(GB 18306-2001)附录D规定的地震基本烈度值。
1.0.4一般情况下,抗震设计可按《中国地震动参数区划图》(GB 18306-2001)规定的地震动参数执行。
对做过专门地震研究的地区,可按批准的设计地震动参数或抗震设防烈度进行抗震设计。
对特别重要的铁路工程,其场地所在位置应进行地震安全性评价。
1.0.5铁路工程应按多遇地震、设计地震、罕遇地震三个水准进行抗震设计。
1.0.6 铁路工程抗震设计除应符合本规范外,尚应符合国家现行有关标准、规范的要求。
2 术语和符号2.1 术语2.1.1 抗震设计seismic design抗御地震灾害的工程设计,包括抗震验算及抗震措施。
2.1.2 抗震设防烈度seismic fortification intensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。
2.1.3 地震动峰值加速度seismic peak ground acceleration与地震动加速度反应谱最大值相应的水平加速度。
2.1.4多遇地震low-level earthquake地震重现期为50年的地震动。
2.1.5设计地震design earthquake地震重现期为475年的地震动。
2.1.6 罕遇地震high-level earthquake地震重现期为2450年的地震动。
2.1.7 地震动反应谱特征周期characteristic period of the seismicresponse spectrum地震动加速度反应谱曲线开始下降点的周期。
地铁抗震设计规范杨林德正文-.4地铁抗震设计规范杨林德正文-.4地铁抗震设计规范杨林德正文-.4第1章总则1.0.1 为贯彻执行《中华人民共和国建筑法》和《中华人民共和国防震减灾法》并实行以预防为主的方针,使地下铁道建筑、构筑物经抗震设防后,减轻地震破坏,避免人员伤亡,减少经济损失,制定本指南。
1.0.2 本指南适用于上海市软土地下铁道建筑、构筑物的抗震设计。
1.0.3 本指南所指的地下铁道建筑、构筑物,主要为地铁车站、区间隧道、竖向通风口和出入口通道,以及属于地铁系统的部分地面建筑物。
1.0.4 按本指南进行抗震设计的建筑,其抗震设防目标是:当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或无须修理可继续使用;当遭受相当于本地区抗震设防烈度的地震影响时,地下建筑一般不受损坏或无须修理可继续使用,地面建筑可能损坏,经一般修理或无须修理仍可继续使用;当遭受相当于本地区抗震设防烈度的罕遇地震影响时,地下建筑可能损坏,经一般修理或无须修理仍可继续使用,地面建筑不致倒塌或发生危及生命的严重破坏。
1.0.5 上海市区地下铁道建筑、构筑物的地震设防烈度,应按《建筑抗震设计规范》GB50011-2001的规定确定。
1.0.6 对地震设防烈度为6度及以上地区的地下铁道建筑结构,必须进行抗震设计。
1.0.7 地下铁道建筑、构筑物的抗震设计, 除应符合本指南要求外,尚应符合国家现行的有关强制性标准的规定。
1第2章术语和符号2.1 术语2.1.1 抗震设防烈度 seismic fortification intensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。
2.1.2 抗震设防标准 seismic fortification criterion衡量抗震设防要求的尺度,由抗震设防烈度和建筑使用功能的重要性确定。
2.1.3 地震作用 earthquake action由地震动引起的结构动态作用,包括水平地震作用和竖向地震作用。
--本页仅作为文档封面,使用时请直接删除即可-- -- 内页可以根据需求调整合适字体及大小--路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。
路基主体工程应按土工结构物进行设计,设计使用年限应为 100 年。
基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。
基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。
路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。
路堤填筑前应进行现场填筑试验。
路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在路线纵向的均匀变化。
路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和 地质条件、路堤高度、填料及工期等进行计算分析确定。
对路基与桥台及 路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处, 应采取逐渐过渡的地基处理方法,减少不均匀沉降。
路基施工应进行系统 的沉降观测,铺轨前应根据沉降观测资料进行分析评估,确定路基工后沉 降满足要求后方可进行轨道铺设。
路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基 边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地 等要求。
路基排水工程应系统规划,满足防、排水要求,并及时实施。
路基设计应重视防灾减灾,提高路基反抗连续强降雨、洪水及地震 等自然灾害的能力。
路基上的轨道及列车荷载换算土柱高度和分布宽度应符合表的规 定。
表 轨道和列车荷载换算土柱高度及分布宽度计算高度(m) 分布土的重度(kN/m3) 宽度(m)18 19 20 21列车 活载 种类设计轴重 (kN)轨道形式22CRTSⅠ型板式无砟轨道CRTSⅠ型双块式无砟轨道ZK 活载 200CRTSⅡ型板式无砟轨道有砟轨道车站两端正线、利用既有铁路地段、联络线、动车组走行线和养护维修列车走行线等路基设计标准按其设计最高速度确定,路基基床结构变化处应设置长度不小于 10m 的渐变段。