金属工艺学
- 格式:docx
- 大小:1.47 MB
- 文档页数:10
判断题1、自由锻是锻造大件的唯一加工方法。
(√)2、在正确控制化学成分的前提下,退火是生产可锻铸铁件的关键,球化处理和孕育处理是制造球墨铸铁件的关键。
(√)3、工程材料包括金属材料、陶瓷材料、高分子材料和复合材料四大类。
(√)4、由于石墨的存在,可以把铸铁看成是分布有空洞和裂纹的钢(√)5、熔化焊的本质是小熔池熔炼与铸造,是金属熔化与结晶的过程。
(√)6、直流正接:焊件接正极,焊条接负极(厚板、酸性焊条)。
(√)7、电阻点焊是用圆柱电极压紧工件,通电、保压获得焊点的电阻焊方法。
(√)8、铜的电阻极小,不适于电阻焊接。
(√)9、反复弯折铁丝,铁丝会越来越硬,最后会断裂。
(√)10、冲裁变形过程可以分为:(1)弹性变形阶段;(2)塑性变形阶段;(3)断裂分离阶段(√)11、板料弯曲时应尽可能使弯曲线与坯料纤维方向平行。
(×)12、落料时,凹模基本尺寸应取工件尺寸公差范围内的较大的尺寸。
(×)13、粗基准是指粗加工时所使用的基准,精基准是指精加工时所使用的基准。
(×)14、高速钢虽然它的韧性比硬质合金高,但并不是现代高速切削的刀具材料。
(√)15、在一个工序中只可以有一次安装。
(×)16、刃倾角是主切削刃与基面间的夹角,有正、负。
(√)17、逆铣时刀齿从已加工表面开始进刀,刀具磨损较大,且影响已加工表面质量。
(√)18、零件在加工、和装配中,所依据的点、线或面称为工艺基准。
(√)19、合金收缩经历三个阶段。
液态收缩是铸件产生内应力、变形和裂纹的主要原因。
(×)20、焊接接头中的融合区和过热区是两个机械性较差的区。
(√)21、氩气为惰性气体,高温下不溶入液态金属,也不与金属发生化学反应,因此,氩气是一种理想的保护气体。
(√)22、拉深系数越大,变形程度越大;所以后续的拉深系数比前面的拉深系数小。
(×)23、冷热变形是以回复温度为界的。
(×)24、拉伸件中最危险的部位是直壁与底部的过渡圆角处,当拉应力超过材料的强度极限时,此处将被“拉裂”。
第1篇一、选择题1. 金属工艺学的研究对象是()A. 金属材料的加工工艺B. 金属材料的性能与结构C. 金属材料的制备与应用D. 金属材料的力学性能答案:A解析:金属工艺学主要研究金属材料的加工工艺,包括铸造、锻造、焊接、热处理等。
2. 金属材料的性能主要包括()A. 强度、塑性、硬度B. 热稳定性、抗氧化性、耐腐蚀性C. 磁性、导电性、导热性D. 磁性、磁性、磁性答案:A解析:金属材料的性能主要包括强度、塑性、硬度等力学性能。
3. 金属材料的制备方法主要有()A. 冶炼、铸造、锻造、焊接B. 冶炼、烧结、热处理、电镀C. 冶炼、铸造、热处理、焊接D. 冶炼、烧结、电镀、焊接答案:A解析:金属材料的制备方法主要包括冶炼、铸造、锻造、焊接等。
4. 热处理工艺包括()A. 退火、正火、淬火、回火B. 退火、正火、氧化、回火C. 退火、正火、电解、回火D. 退火、正火、烧结、回火答案:A解析:热处理工艺主要包括退火、正火、淬火、回火等。
5. 焊接方法主要有()A. 焊条电弧焊、熔化极气体保护焊、激光焊B. 焊条电弧焊、气体保护焊、钎焊C. 焊条电弧焊、熔化极气体保护焊、钎焊D. 焊条电弧焊、气体保护焊、激光焊答案:A解析:焊接方法主要包括焊条电弧焊、熔化极气体保护焊、激光焊等。
二、填空题1. 金属工艺学是研究()的科学。
答案:金属材料的加工工艺2. 金属材料的性能主要包括()、()、()等。
答案:强度、塑性、硬度3. 金属材料的制备方法主要包括()、()、()、()等。
答案:冶炼、铸造、锻造、焊接4. 热处理工艺主要包括()、()、()、()等。
答案:退火、正火、淬火、回火5. 焊接方法主要包括()、()、()等。
答案:焊条电弧焊、熔化极气体保护焊、激光焊三、简答题1. 简述金属材料的加工工艺流程。
答案:金属材料的加工工艺流程主要包括以下步骤:(1)冶炼:将金属矿石提炼成金属。
(2)铸造:将熔融金属浇铸成所需形状的铸件。
金属学及金属工艺学概述金属学是研究金属材料的学科,涉及金属材料的结构、性能、加工和应用等方面。
金属工艺学是研究金属的加工和成型过程的学科,包括金属的切削、锻造、铸造、焊接等工艺。
金属是人类历史上最重要的材料之一,广泛应用于建筑、交通、机械、电子、化工等领域。
金属学和金属工艺学的研究对于开发新型金属材料、提高金属材料的性能和开发新型金属工艺具有重要意义。
金属学结构金属的结构主要由原子和晶格构成。
金属中的原子呈规则排列,并形成晶格结构。
金属的晶格结构决定了其性能、塑性和导电性能等特点。
金属的常见晶格结构有面心立方结构、体心立方结构和六方最密堆积结构。
不同的晶格结构会导致金属的性能差异,例如铜的面心立方结构使其具有良好的导电性能。
性能金属的性能包括力学性能、物理性能和化学性能等方面。
力学性能是指金属材料的抗拉强度、屈服强度、硬度和韧性等特性。
金属材料的力学性能对其在不同领域的应用具有重要影响。
物理性能是指金属材料的热膨胀系数、导热系数和电阻率等特性。
金属材料的物理性能决定了其在热传导和电传导方面的应用。
化学性能是指金属与其他物质的反应性。
金属在不同环境下可能会发生氧化、腐蚀、传递等化学反应,这些化学反应对金属材料的稳定性和耐久性有重要影响。
应用金属材料广泛应用于各个行业。
以钢铁为例,它是一种由铁和一定量的碳组成的金属材料,具有较高的强度和耐磨性,广泛用于建筑、汽车、船舶等领域。
铜是具有良好导电性能的金属材料,被广泛应用于电子、通信、电力等领域。
铝是一种轻、强、耐腐蚀的金属材料,广泛应用于航空、汽车、包装等领域。
其他金属材料如锌、镁、钛等也都具有特定的优良性能,在不同领域有重要应用。
金属工艺学切削工艺切削工艺是金属加工中常用的一种方式,通过切削加工来使金属材料得到所需形状和尺寸。
切削工艺包括车削、铣削、钻削、磨削等方法。
这些工艺依靠切削工具对金属材料进行削除和变形,从而得到所需的形状。
锻造工艺锻造工艺是将金属材料在受控温度和应力下进行塑性变形的加工方法。
1.加工塑性材料时,不会产生积屑瘤。
(× )2.顺铣法适合于铸件或锻件表面的粗加工。
(× )3.拉削加工适用于单件小批零件的生产。
(× )4.单件小批生产条件下,应采用专用机床进行加工。
(× )5.插齿的生产率低于滚齿而高于铣齿。
(√ )6.作为定位基准的点或线,总是以具体的表面来体现的。
(√ )7.轴类零件如果采用顶尖定位装夹,热处理后需要研磨中心孔。
(√ )8.生产率是单位时间内生产合格零件的数量。
(√ )9.镗孔主要用于加工箱体类零件上有位置精度要求的孔系。
(√ )10.剃齿必须在工件淬火之后进行。
(× )1.钢的质量好坏是按其中的碳含量来区分的。
(× )2.钢的质量好坏是按其中的合金元素含量来区分的。
(× )3.钢的质量好坏是按其中的硫、磷含量来区分的。
(√ )4.沸腾钢不能进行热处理。
(√ )5.沸腾钢也可以进行热处理。
(× )6.一般进行热处理的钢都是镇静钢。
(√ )7.把钢加热成为奥氏体后速冷到Ms线以上等温一段时间再冷却下来的热处理叫分级淬火。
(× )8.把钢加热成为奥氏体后速冷到Ms线以上等温一段时间再冷却下来的热处理叫等温淬火。
(× )9.铸件在凝固末期收缩受阻产生的裂纹叫热裂纹。
(√ )10.铸件在固态收缩过程中,收缩应力超过合金在相应温度下的强度极限,则在应力集中的部位产生冷裂纹。
(√ )11.铁水的流动性就是充满铸型的能力。
(× )12.流动性差的金属铸造时易产生缩孔和缩松缺陷。
(√ )13.含碳量﹪的灰口铸铁铁水的流动性最好。
(× )14.铁水温度越高,流动性越好,铸件的成品率就越高。
(× )15.铸钢由于熔点高,收缩率大,所以铸造性能差。
(√ )16.铸铁中的碳元素是否能够石墨化,是由含C、Si量多少来决定。
(× )17.铸造合金的铸造性能主要包括合金的流动性和合金的收缩。
《金属工艺学》课程笔记第一章绪论一、金属工艺学概述1. 定义与重要性金属工艺学是研究金属材料的制备、加工、性能、组织与应用的科学。
它对于工程技术的进步和工业发展至关重要,因为金属材料在建筑、机械、交通、电子、航空航天等几乎所有工业领域都有广泛应用。
2. 研究内容(1)金属材料的制备:包括金属的提取、精炼、合金化等过程,以及铸造、粉末冶金等成型技术。
(2)金属材料的加工:涉及金属的冷加工(如轧制、拉伸、切削)、热加工(如锻造、热处理)、特种加工(如激光加工、电化学加工)等。
(3)金属材料的性能:研究金属的物理性能(如导电性、热导性)、化学性能(如耐腐蚀性)、力学性能(如强度、韧性)等。
(4)金属材料的组织与结构:分析金属的晶体结构、相变、微观缺陷、界面行为等。
(5)金属材料的应用:研究金属材料在不同环境下的适用性、可靠性及寿命评估。
3. 学科交叉金属工艺学是一门多学科交叉的领域,它与物理学、化学、材料学、力学、热力学、电化学等学科有着紧密的联系。
二、金属工艺学发展简史1. 古代金属工艺(1)铜器时代:人类最早使用的金属是铜,掌握了简单的铸造技术。
(2)青铜器时代:铜与锡的合金,青铜,使得工具和武器的性能得到提升。
(3)铁器时代:铁的发现和使用,推动了农业和手工业的发展。
2. 中世纪至工业革命(1)炼铁技术的发展:如鼓风炉、熔铁炉的发明,提高了铁的产量。
(2)炼钢技术的进步:如贝塞麦转炉、西门子-马丁炉的出现,实现了钢铁的大规模生产。
3. 近现代金属工艺(1)20世纪初:金属物理和金属学的建立,为金属工艺学提供了理论基础。
(2)第二次世界大战后:金属材料的快速发展,如钛合金、高温合金的出现。
4. 当代金属工艺(1)新材料的开发:如形状记忆合金、超导材料、金属基复合材料等。
(2)新技术的应用:如计算机模拟、3D打印、纳米技术等。
三、金属工艺学在我国的应用与发展1. 古代金属工艺的辉煌(1)商周时期的青铜器:技术水平高超,工艺精美。
金属工艺学1.将含碳质量分数小于2.11%的铁碳合金称为钢,含碳质量分数大于2.11%的铁碳合金称为生铁。
2.从加热状态看,可分为平衡加热和非平衡加热。
3.加热缺陷:①过热和过烧②氧化和脱碳③吸气及蒸发④应力和变形4.冷却分为平衡冷却和非平衡冷却5.缩孔和缩松。
液态金属在冷却中,随着温度的降低体积会减小,即产生收缩现象。
当收缩不能得到充分补充(称补缩)时,就会产生缩孔或缩松缺陷。
6.塑性变形:当外力增大,使金属内部应力超过该金属的屈服强度后,即使外力停止作用,金属的变形也不能消失。
7.热处理性:金属材料在改变温度过程中获得所需组织和性能的能力。
8.铸造性:①充型能力。
液态金属充填铸型型腔的能力。
②收缩。
铸件成形过程中,温度变化量很大,收缩现象必定明显表现出来。
③可锻性。
衡量材料通过塑性加工获得优质零件的难易程度的工艺性能。
9.铸造:将液体金属浇入铸型中,冷却凝固后获得铸件的工艺方法。
10.浇注位置:浇注时铸件在铸型中所处的空间位置。
11.分型面:铸型间的接触表面,它的存在有利于铸型的分开和合型。
12.分型面的确定应考虑如下几方面因素:①分型面的确定应能方便、顺利地取出模样或铸件,分型面一般选在铸件的最大截面处。
②分型面的确定应尽量与浇注位置一致,并应尽量满足浇注位置的要求。
③分型面应避免曲折,数量应少,最好是一个且为平面。
④应尽量使型腔全部或大部置于同一个砂型内,最好使型腔或使加工面与基准面位于下型中。
⑤应使型芯数量少,并便于安放和稳定。
13.铸件的孔形和各种内腔大都是靠型芯来成形的,因此型芯的主体轮廓与铸件的孔形或内腔应一致。
14.铸造方法:砂型铸造(普)和特种铸造15.铸造合金主要包括铸铁、铸钢、铸造铝合金、铸造铜合金16.铸铁:①白口铸铁。
大部分碳以化合物形态存在,因其断口呈银白色。
②普通灰口铸铁。
石墨呈片状存在的铸铁。
③可锻铸铁。
石墨呈团絮状存在的铸铁。
17.避免铸造缺陷的合理结构:①铸件壁厚应合理取值。
结晶的必要条件:具有一定的过冷度过冷度△T:理论结晶温度(T0) 与实际结晶温度(Tn)之差。
细化晶粒的方法:增大过冷度变质处理(孕育处理):增加外来晶核细化晶粒的方法振动结晶:将技晶打碎,成为新的晶粒。
同素异晶转变──随着温度的改变,固态金属的晶格也随之改变的现象。
§2.2 铁碳合金的基本组织组元:组成合金的元素,或独立的基本单元。
P15相:合金中具有相同成分和相同结构(相同聚集状态)的均匀部分。
组织:是指合金中一个或多个相的形貌及各相的分布状态。
P15 综合二、合金的结构固溶强化:因形成固溶体而引起合金强度、硬度升高的现象根据溶质原子在溶剂晶格中所占据的位置,可将固溶体分为:间隙固溶体──B存在A晶格的间隙中。
置换固溶体──B置换了晶格中A的位置。
铁碳合金中的固溶体P16金属化合物:金属化合物是各组元按一定整数比结合而成、并具有金属性质的均匀物质。
金属性质:是指具有良好的导电性和导热性及金属的光泽。
P17珠光体(P)──F和Fe3C组成片层相间的机械混合物共晶反应:一定成分的合金,在一定温度下,从液相中同时析出两种不同固相的过程。
共析反应:一定成分的合金,在一定温度下,同时从一种固相析出两种新固相的过程。
铁素体:含碳量的范围为小于0.020%C。
(工业纯铁)铁素体加珠光体:含碳量的范围为0.020~0.77%C。
(亚共析钢)珠光体:含碳量的范围为0.77%C。
(共析钢)珠光体加渗碳体:含碳量的范围为0.77~2.11%C(过共析钢)珠光体的性能随片间距减小其强度和硬度升高,而塑性和韧性有所降低。
临界冷却速度(VK)为过冷奥氏体获得全部马氏体(包括少量A ‘)的最低冷却速度。
P26完全退火[Ac3+(30~50)℃] P26 应用:常用于中碳钢和高碳亚共析钢球化退火[Ac1+(20~30)℃] 应用:主要用于过共析钢及合金工具钢。
去应力退火(低温退火)操作:将钢件随炉缓慢加热(100~150℃/h)至500~650℃(<A1),经一段时间保温后,随炉缓慢冷却(50~100℃/h) 至300 ~200℃以下出炉。
金属工艺学金属加工的工艺流程金属工艺学:金属加工的工艺流程引言金属工艺学是一门研究金属材料加工工艺的学科,通过对金属材料的性质、加工方法和工艺流程的研究,实现对金属制品的加工和生产。
金属工艺学的发展对于推动工业制造和经济发展具有重要意义。
本文将介绍金属加工的一般工艺流程,包括原材料准备、铸造、锻造、压力加工、切割、焊接和表面处理等环节。
一、原材料准备金属加工的起点是原材料的准备。
原材料通常是金属矿石,经过冶炼和精炼等过程得到金属原料。
这些原料需要经过配料、熔炼和铸锭等步骤,最终得到符合要求的金属材料。
二、铸造铸造是将熔化的金属倒入预先设计的铸型中,通过冷却凝固而形成特定形状的过程。
铸造工艺可以分为砂型铸造、金属型铸造、压力铸造等多种方法。
通过铸造,可以制造出金属铸件,如铸造零件和铸件原型等。
三、锻造锻造是通过对金属进行加热处理和塑性变形,改变其形状和性能的过程。
锻造通常包括两个步骤,即预热和锻造成形。
预热可以提高金属材料的塑性和可锻性,锻造成形则可以得到所需的金属件形状。
四、压力加工压力加工是指通过机械力或液压力对金属进行加工和成形的过程。
常见的压力加工方法包括冲压、拉伸、挤压等。
压力加工可以加工出薄壁件、复杂形状和高精度的金属制品。
五、切割切割是将金属材料分离成所需形状和尺寸的过程。
常见的切割方法有机械切割、火焰切割、激光切割等。
切割可以实现对金属材料的分割、切断和开孔。
六、焊接焊接是将金属材料通过热或者压力连接在一起的过程。
常见的焊接方法有电弧焊、氩弧焊、气焊等。
焊接可以实现金属构件的连接和修复。
七、表面处理表面处理是对金属制品的表面进行改性或者修饰的过程。
常见的表面处理方法有电镀、喷涂、抛光等。
表面处理可以提高金属制品的耐腐蚀性、耐磨性和美观度。
结论金属加工是一项精细而复杂的制造工艺,涉及多个环节和方法。
金属工艺学的研究和应用,不仅可以提高金属制品的质量和性能,还能推动整个工业制造的发展。
1、加热状态分为平衡加热和非平衡加热。
2、冷却状态分为平衡冷却和非平衡冷却。
3、平衡冷却指冷却速度缓慢、各种转变进行的充分、金属各部分间不存在温差的冷却。
4、充型能力的影响因素:金属成分、温度和压力、铸型填充条件。
5、可锻性常用金属的塑性和变形抗力来综合衡量;取决于金属的本质和加工条件。
6、焊接性包括工艺焊接性和使用焊接性。
7、铸造的特点:铸造方法具有较强的适应性、铸造成本低。
8、浇注冒口的作用:排气补缩。
9、分型面的选择因素:1.分型面的确定应能方便、顺利地取出模样或铸件,为此,分型面一般选在铸件的最大截面处。
2.分型面的确定应尽量与浇筑位置一致,并应尽量满足浇筑位置的要求。
3.分型面应避免曲折,数量应少,最好是一个且为平面。
4.应使型芯数量少,并便于安放和稳定。
型芯主要用来形成铸件的内腔。
10、拔模斜度:铸件上垂直分型面的各个侧面应具有斜度,以便于把模样(或型芯)从砂型中(或从芯盒中)取出,并避免破环芯腔(或型芯)。
11、型芯头是型芯的重要组成部分,起到定位和支撑型芯及引导型芯中气体排出的作用。
12、铸造方法主要包括砂型铸造和特种铸造。
13、大多数嵌镶组合件用压力铸造成形。
14、;离心铸造广泛用于生产铸铁管、缸套、滑动轴承及和许多成形铸件。
15、避免铸造缺陷的合理结构:1.铸件壁厚应合理取值2.铸件壁厚力求均匀,避免局部过厚形成热节的结构 3.铸件的各壁之间应均匀过度,两个非加工表面所形成的内角应设计成圆角 4.避免铸件产生翘曲变形和大的水平平面结构(尽量设计成对称结构或增加筋条结构以防止翘曲变形。
)
16、大的水平平面结构,在铸造成形中也会产生浇不足、夹砂等缺陷。
.
17、高温型砂的膨胀受到低温型砂的阻碍,致使铸件形状不准、缺肉和产生夹砂缺陷。
18、凡垂直分型面的非加工表面都应设计出斜度(称结构斜度),以利于造型时拔模,并确保型腔质量。
19、实现无屑加工,从而能大大节省材料。
20、塑形加工常用方法:自由锻模锻板料冲压轧制挤压拉拔。
21、模锻:在高强度金属锻模上预先制出与锻件形状一致的模镗,使胚料在模镗内受压变形的锻造方法。
22、模锻斜度:便于从模镗中取出锻件。
模锻斜度一般为5度~15度。
23、可增大锻件强度,使锻造时金属易于充满模镗,避免锻模上的内尖角处产生裂纹,减缓锻模外尖角处的磨损,从而提高锻模的使用寿命。
24、模锻件的热处理一般是用正火或退火。
25、冲压生产的基本工序有分离工序和变形工序。
26、设计落料模时,应先按落料件确定凹模刃口尺寸,取凹模作设计基准件,然后根据间隙Z确定凸模尺寸。
27、设计冲孔模时,先按冲孔件确定凸模刃口尺寸,取凸模作设计基准件,然后根据间隙Z确定凹模尺寸。
28、变形工序:拉深弯曲胀形翻边。
29、电弧热使工件和焊芯同时溶化形成熔池。
30、药皮受热分解产生大量的保护气体,保护融溶化金属。
31、电焊条有焊芯和药皮(涂料)两部分组成。
32、焊条药皮的作用:提高电弧燃烧的稳定性,防止空气对溶化金属的有害作用,保证焊缝金属的脱氧和加入合金元素,以保证焊缝金属的化学成分和力学性能。
33、防止焊接变形的方法:(焊前)1.合理布置焊缝2.合理的焊接次序3.反变形法4.刚性加持法(焊后)机械矫正法或火焰加热矫正法
34、电阻焊分为电焊、缝焊、对焊三种形式。
35、中、高碳刚的焊接,随着含碳质量分数的增加,淬硬倾向越加明显,焊接性逐渐变差。
36、切削三要素:1.切削速度2.进给量(工件转一转时车刀沿进给运动方向移动的距离)3.背吃刀量。
37、刃倾角是主切削刃S与基面P间的夹角。
精加工取正粗加工可正可负。
38、影响积屑瘤的因素是工件材料和切削速度。
39、切削时塑形变形较大,容易产生积屑瘤;塑形较小,硬度高的材料,不易产生积屑瘤,或所产生积屑瘤的高度相对较小;切削脆性材料时所形成的崩碎切屑不与前刀面剧烈摩擦,因此一般不产生积屑瘤。
40、切削速度对积屑瘤的影响主要是通过切削温度和摩擦系数起作用的。
41、刀具磨损的三种形式:前刀面磨损后刀面磨损前后刀面磨损。
42、外圆表面是轴类、盘套类零件的主要表面或辅助表面,常用的加工方法有车削和磨削。
如若精度要求高可采用精密加工方法。
43、在前、后顶尖上装夹轴类零件时,两端是用中心孔的锥面做定位基准面。
44、钻孔的工艺特点:1.容易引偏2.排屑困难3.不易散热。
45、铰孔是在扩孔或半精镗的基础上进行的,是较普遍的精加工方法之一。
46、镗孔主要加工箱体类零件上的孔系。
47、孔系镗削。
箱体类零件上的孔系除有同轴度的要求外,还常有孔距精度的要求以及轴线间的平行度和垂直度要求。
48、镗削可有效地校正原孔的轴线偏斜。
49、拉孔是用拉刀对已钻或粗镗后的孔进行精加工。
拉孔不能加工台阶孔和盲孔。
50、顺铣有利于提高刀具耐用度和工件夹持的稳定性,可以提高工件的加工质量。
51、刨削的工艺特点:1. 加工精度低2.生产率低3.加工成本低
52、常见的螺纹加工方法:攻螺纹套螺纹车螺纹铣螺纹磨螺纹等。
也用滚压方法加工螺纹。
53、插齿、滚齿、铣齿的比较:1.插齿和滚齿的精度基本相同,且都比铣齿高;2.插齿齿面的表面粗糙度Ra值较小;3.插齿的成产率低于滚齿而高于铣齿。
54、剃齿是用剃齿刀在剃齿机上进行的,主要用于加工插齿或滚齿后未经淬火的直齿和螺旋齿圆柱齿轮。
55、特种加工:直接利用电能、电化学能、光能及声能等进行加工的方法。