高考不等式问题专题复习
- 格式:doc
- 大小:112.50 KB
- 文档页数:4
专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6B .8 2C .5D .9高频考点二 利用基本不等式解决实际问题【例2】【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.,,,,,,,,【方法技巧】利用基本不等式解决实际问题的三个注意点 (1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】(2020·山西省大同模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km /h )(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y-+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【答案】23+2【解析】∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【答案】92【解析】(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy ,∵x >0,y >0且x +2y =4, ∴4=x +2y ≥22xy ,∴xy ≤2,∴1xy ≥12,∴2+5xy ≥2+52=92.【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6 B .8 2 C .5 D .9【答案】A【答案】∵a >0,b >0,且2a +b =ab -1, ∴a =b +1b -2>0,∴b >2,∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6.当且仅当2(b -2)=3b -2,即b =2+62时取等号.∴a +2b 的最小值为5+26,故选A 。
高三不等式知识点归纳总结不等式在高中数学中占有重要的地位,它是数学中一种常见的关系式。
在高三数学学习过程中,我们需要掌握并灵活运用各种不等式知识点,以提升解题能力。
本文将对高三不等式相关知识进行归纳总结,帮助大家系统地掌握不等式的内容。
一、基本不等式基本不等式是不等式的基础,它通过对大小关系的描述,为其他类型不等式的证明提供了依据。
常见的基本不等式有以下几种:1. 正数不等式:若a>0,则a的平方大于0,即a²>0;a与-b的乘积小于0,即ab<0。
2. 负数不等式:若a<0,则a的平方大于0,即a²>0;a与-b的乘积小于0,即ab>0。
3. 平方不等式:若a>b≥0,则a的平方大于b的平方,即a²>b²。
4. 平均不等式:若a1,a2,...,an为正数,则它们的算术平均大于等于它们的几何平均,即(a1+a2+...+an)/n≥(a1*a2*...*an)^(1/n)。
二、一元一次不等式一元一次不等式是形如ax+b>0或ax+b<0的不等式,其中a和b为常数。
我们可以通过移项和分析a的正负来求解不等式。
1. 求解步骤:a) 对不等式进行变形,将不等式变为ax>c的形式,其中c为常数。
b) 根据a的正负确定不等式的方向,若a>0,则不等式为单调递增,解集为x>c/a;若a<0,则不等式为单调递减,解集为x<c/a。
2. 注意事项:a) 在乘以或除以负数的过程中,需注意不等式方向的变化。
b) 当a为0时,不等式变为bx>c,若b>0,则不等式为恒成立;若b<0,则不等式无解。
三、一元二次不等式一元二次不等式是形如ax²+bx+c>0或ax²+bx+c<0的不等式,其中a、b和c为常数。
我们可以通过求解二次方程和分析a的正负来求解不等式。
高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。
<2222高职高考不等式问题专题复习一、不等式基础题1、不等式 x 2+1>2x 的解集是 ()A.{x|x ≠1,x ∈R}B.{x|x >1,x ∈R}C.{x|x ≠-1 ,x ∈R }D. {x|x ≠0,x ∈R} 2、不等式|x+3|>5 的解集为 ( ) A.{x|x >2|} B.{x|x <-8 或 x >2} C.{x|x >0} D.{x|x >3} 3、二次不等式 x 2 -3x+2<0 的解集为 ()A.{x ︱x ≠0}B.{x ︱1<x<2}C.{x ︱-1<x<2}D. {x ︱x>0}1 14. 已知 a>b ,那么 > a b的充要条件是()A.a 2+b 2≠0B.a>0C.b<0D.ab<05、若 a ≥b ,c ∈R ,则 () A.a 2≥b 2 B.∣ac ∣≥∣bc ∣ C.ac 2≥bc 2 D. a - 3≥b - 36、下列命题中,正确的是 ()A.若 a >b,则 ac 2>bc 2B. 若a> b ,则 a>b1 1C.若 a>b ,则 a bc 2 c 2D.若 a>b ,c>d ,则 ac>bd7、如果 a>0,b>0,那么必有()A. b > 2b - a aB. b ≥ 2b - a aC. b < 2b - a aD. b ≤ 2b - a a8、对任意 a ,b ,c∈R +,都有 ()A. b + c + a> 3 a b c B. b + c + a< 3a b c C. b + c + a ≥ 3a b c D. b + c + a≤ 3a b c9、对任意 x∈R,都有 ( )A.(x-3)2>(x-2)(x-4)B.x 2>2(X+1)C.( x - 3)2 x - 4 > x - 2D. x 2 + 1 > 1 x 2 + 110、已知 0<x<1,都有 ( )A.2x>x 2>xB.2x>x>x 2C. x 2>2x>xD.x > x 2 >2x11 、 若 不 等 式 2x 2-bx+a<0 的 解 集 为 {x ︱ 1<x<5}, 则 a= ( ) A.5 B.6 C.10 D.12x - 3 12、不等式x + 2> 1的解集是()A.{x∣x<-2}B.{x∣x<-2 或 x>3}C.{x∣x>-2}D.{x∣-2<x<3}13、不等式 lgx+lg(2x-1)<1 的解集是 ()A.{x - 2 < x < 5}2 B.{x 0 < x < 5}2C. {x< x < 5 }2D. {x x > 1}214、不等式︱x+2︱+︱x-1︱<4 的解集是()1 2A. { x - 2 < x < 1 }B.{x x < 3}2C. {x - 5 2 < x < 3}2 D. {x x > - 5}215、已知 a 是实数,不等式 2x 2-12x+a≤0 的解集是区间[1,5],那么不等式 a x 2-12x+2≤0 的 解 集 是 () A. [1, 1]5B.[-5,-1]C.[-5,5]D.[-1,1]16、不等式(1+x )(1-︱x ︱)>0 的解集是 ( )A.{x∣-1<x<1}B.{x∣x<1}C.{x∣x <-1 或 x<1}D.{x∣x<1 且 x≠-1} 17、若不等式 x 2 + m (x - 6) < 0 的解集为{x - 3 < x < 2},则 m=()A .2B .-2C .-1D .12x18、函数 y =x 2+ 1的值域为区间()A .[-2,2]B .(-2,2)C .[-1,1]D .(-1,1)a 2 +b 2 19、如果 a>b ,ab=1,则的取值范围为区间( )a - bA .[2 2,+ ∞)B .[17 , 6+ ∞)C . (3,+ ∞)D . (2 , + ∞)17、不等式︱3x -5︱<8 的解集是 . 18、不等式|5x+3|>2 的解集是 .19、不等式|3-2x|-7≤0 的解集是 . 1 3 20 、不等式|6x - |≤ 的解集是.221、不等式4-x -3 2(1 ) x-4>0 的解集是 . 222、不等式log 2 x < log 4 (3x + 4) 的解集是.二、不等式的简单应用23、已知关于 x 的不等式 x 2-ax+a >0 的解集为实数集 R ,则 a 的取值范围是 ( )A.(0,4)B.[2,+∞)C.[0,2)D.(-∞,0)∪(4,+∞) (98 年成人)x 24、函数 y =1 + x 2(x > 0) 的值域是区间.25、 已知方程( k+1) x=3k -2 的解大于 1, 那么常数 k 的取值范围是数集{kx 2 - x - 2 3 ∣}.26、解下列不等式:(x - 6)(3x + 15) (1) > 04 + x三、不等式解答题(2) 23x -1 >2(3) ( 1 )2 x 2+5 x +5 > 1(4) lg(x + 2) - lg(x - 3) > 12 4(5)∣5x -x 2∣>6(6) x + 4≥ 3x 2(7)4x -6x -2×9x <0(8) log 1 (x + 2) > log 1 (3x + 4)24(9) <x 2 x - 1(10) < 22+ 2(11) log 2 (4 + 3x - x 2) > log (4x - 2)5x - 4 (12)≤ 2x + 427、k 取什么值时,关于 x 的方程(k -2)x 2-2x+1=0 有:(1)两个不相等的实数根; (2)两个相等的实数根; (3)没有实数根.28、设实数 a 使得方程 x 2+(a -1)x+1=0 有两个实根 x 1,x 2. (1) 求 a 的取值范围;(2) 当 a 取何值时, 1 1 1 x 2取得最小值,并求出这个最小值.附:参考答案(四)1-16 ABBDC BBCAB CACCAD 17.{x - 1 < x <13318.{x x < -1或x > -1} 519.{x ︱-2≤x ≤5} 20.{x ︱ - 1 6 ≤ x ≤ 1} 21.{x ︱x<-2} 22.{x ︱0<x<4} 23.A324. (0 , 1 ] 2 25.{x ︱ k < -1或k > 3 1} 26.(1){x ︱-5<x<4 或 x>6} (2) {x ︱x> } 2 6x2 2 }(3) {x︱-32<x <-1 } (4) {x︱3<x<32} (5) {x︱x<-1 或2<x<3 或x>6}9(6) {x︱x≥-1} (7) {x︱x> log 2 2 } (8) {x︱-1<x< 0} (9) {x︱x<0 或1<x<3}3(10) {x︱-2<x≤-1 或2≤x<3} 27. (1)k<3 且k≠2 (2)k=3 (3)k>328.(1) a≤-1 或a≥3 (2) a= -1 或3,最小值为2.。
高三不等式知识点归纳总结不等式在高中数学中占据着重要的地位,特别是在高三阶段,不等式的应用和解题技巧成为了必须掌握的知识点之一。
本文将对高三阶段涉及的不等式知识点进行归纳总结,帮助同学们更好地理解和掌握这一部分内容。
一、基本概念1. 不等式符号:大于(>)、小于(<)、大于等于(≥)、小于等于(≤),这些符号用于表示大小关系。
2. 不等式的解:使不等式成立的所有实数构成的集合。
二、一元一次不等式1. 解一元一次不等式的基本步骤:a. 将不等式化为等式;b. 解得不等式的解集;c. 根据不等式符号确定解集。
三、一元二次不等式1. 解一元二次不等式的基本步骤:a. 将不等式化为二次函数的标准形式;b. 求出二次函数的零点,确定抛物线的开口方向;c. 根据抛物线与 x 轴的位置确定不等式的解集。
四、不等式的性质及运算法则1. 不等式的性质:a. 两个不等式的和(或差)仍然是不等式;b. 两个不等式的积(或商)仍然是不等式,但要注意分母不能为零;c. 不等式两边同时加减一个数,不等号的方向不变;d. 不等式两边同时乘以(或除以)同一个正数,不等号的方向不变;e. 不等式两边同时乘以(或除以)同一个负数,不等号的方向相反。
五、绝对值与不等式1. 绝对值的定义与性质:a. |x|表示 x 的绝对值,即 x 的非负值;b. |x|≥a 等价于x≥a 或x≤-a;c. |x|<a 等价于 -a<x<a。
六、不等式的应用1. 不等式在几何中的应用:a. 根据不等式条件确定线段长的范围;b. 判断几何图形的位置关系。
2. 不等式在实际问题中的应用:a. 长方形的周长与面积问题;b. 求解简单的最值问题,如求最大面积、最小周长等。
七、常用不等式1. 阿贝尔不等式:对于非负实数 a1, a2, ..., an 和 b1, b2, ..., bn,有(a1b1 + a2b2 + ... + anbn)² ≤ (a1² + a2² + ... + an²)(b1² + b2² + ... + bn²)。
高考数学专题复习:不等式一、单选题1.已知x ∈R ,则“2x <-”是“220x x +->"的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件2.已知a ,b ∈R ,如果a b >,那么( ) A .11a b> B .1a b> C .22a b >D .11a b ->-3.若0a b <<,则下列不等式中一定成立的是( ) A .a b <B .11a b< C .44a b < D .11a b a<- 4.若,a b c d >>,则下列关系一定成立的是( ) A .ac bd > B .ac bc > C .a c b d +>+D .a c b d ->-5.不等式()20x x -≥的解集是( ) A .()0,1B .()1,0-C .()(),30,-∞-⋃+∞D .(][),02,-∞+∞6.若不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值为( )A .14B .10-C .12D .14-7.设0a b >>,则下列不等式一定成立的是( ) A .11b a a b+<+ B .2211ab a b< C .22ac bc >D .2211a b a b+>+83 )A 3B 3>C 3D .不确定9.已知p :0a b >> q :2211a b<,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.记不等式220x x +->、210(0)x ax a -+≤>解集分别为A 、B ,A B 中有且只有两个正整数解,则a 的取值范围为( )A .1017,34⎛⎫ ⎪⎝⎭B .1017,34⎡⎫⎪⎢⎣⎭C .517,24⎛⎫ ⎪⎝⎭D .517,24⎡⎫⎪⎢⎣⎭11.已知11x y -≤+≤,13x y ≤-≤,则32x y -的取值范围是( ) A .[]28,B .[]3,8C .[]2,7D .[]5,1012.已知bg 糖水中含有ag 糖()0b a >>,若再添加g m 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大).根据这个事实,下列不等式中一定成立的是( )A .a a m b b m+>+B .22m ma m ab m b ++<++ C .()()()()22a m b m a m b m ++<++ D .121313b a ->- 二、填空题13.已知x 、y 都是正数,且满足230x y xy ++=,则xy 的最大值为________. 14.已知正实数x ,y 满足2x y xy +=,则2xx y y++的最小值是________. 15.不等式1x x<的解集为________. 16.已知关于x 的不等式20(,,)ax bx c a b c ++>∈R 的解集为{}|34x x <<,则25c a b++的取值范围为________. 三、解答题17.已知函数()()21f x x a x a =-++,其中a 为实常数.(1)1a =时,求不等式()0f x <的解集;(2)若不等式()2f x x ≥-对任意实数x 恒成立,求a 的取值范围.18.已知函数()()()34f x x m x m =-++. (1)若1m =,求不等式()12f x >-的解集;(2)记不等式()0f x ≤的解集为A ,若4A -∉,求m 的取值范围.19.已知函数()2f x x ax b =++(a ,b R ∈)(1)若关于x 的不等式()0f x >的解集是()1,2,2⎛⎫-∞--+∞ ⎪⎝⎭,求实数a ,b 的值;(2)若2a =-,0b =函数()()x f x kx =-,[]0,2x ∈,不等式()<1F x 恒成立,求实数k 的取值范围;(3)若函数()0f x =在区间()1,2上有两个零点,求()1f 的取值范围.20.已知,,a b c ∈R ,满足a b c >>. (1)求证:1110a b b c c a++>---; (2)现推广:把1c a -的分子改为另一个大于1的正整数p ,使110pa b b c c a++>---对任意a b c >>恒成立,试写出一个p ,并证明之.21.已知关于x 的不等式230x bx c ++-<的解集为(1,2)-.(1)当[2,)x ∈+∞时,求2x bx cx++的最小值;(2)当[1,1]x ∈-时,函数2y x bx c =++的图象恒在直线2y x m =+的上方,求实数m 的取值范围.22.设函数()()()2230f x ax b x a =+-+≠,(1)若3b a =--,求不等式()42f x x <-+的解集;(2)若()14f =,1b >-,求11a ab ++的最小值.参考答案1.A 【分析】利用一元二次不等式的解法求出220x x +->,然后利用充分条件与必要条件的定义进行判断即可. 【详解】解:因为220x x +->,即()()210x x +->,解得2x <-或1x >, 因为()()(),2,21,-∞--∞-+∞,所以“2x <-”是“220x x +->”的充分不必要条件. 故选:A . 2.D 【分析】利用作差可以判断ABC ,利用不等式性质可以判断D. 【详解】对于A ,因为a b >,所以0a b ->,11b aa b ab--=,由于ab 的正负不确定,所以1a与1b的大小不确定,故错误; 对于B ,因为a b >,所以0a b ->, 1a a b b b--=,由于b 的正负不确定,所以 1与ab的大小不确定,故错误; 对于C ,因为a b >,所以0a b ->,()()22a b a b a b -=-+,由于a b +的正负不确定,所以2a 与2a 的大小不确定,故错误;对于D ,因为a b >,所以0a b ->,所以()110a b a b ---=->,所以11a b ->-,正确. 故选:D. 3.D 【分析】结合已知条件,利用做差法逐项证明即可. 【详解】A :因为0a b <<,所以0a b a b -=-+>,所以a b >,故A 错误;B :因为11b aa b ab--=,因为0a b <<,所以0,0b a ab ->>,所以110->a b ,即11a b>,故B 错误;C :因为()()()4422a b a b a b a b -=++-,因为0a b <<,所以220,0,0a b a b a b -<+<+>, 所以440a b ->,即44a b >,故C 错误;D :因为()()()11a a b b a b a a a b a a b ---==---, 因为0a b <<,所以0a b -<, 所以110a b a-<-,即11a b a <-,故D 正确; 故选:D. 4.C 【分析】利用基本不等式的性质,对选项进行一一验证,即可得到答案; 【详解】对A ,当0,0a b c d ac bd >>>>⇒>,故A 错误; 对B ,当0c >时,ac bc >,故B 错误; 对C ,同向不等式的可加性,故C 正确;对D ,若2,1,0,31,4a b c d a c b d ====-⇒-=-=,不等式显然不成立,故D 错误; 故选:C. 5.D 【分析】根据一元二次不等式的解法即可求解. 【详解】()20x x -=的两根为0,2,所以原不等式的解集为:(][),02,-∞+∞,故选:D. 6.D 【分析】根据一元二次方程的根与一元二次不等式的解集之间关系,列出方程组,求得,a b 的值,即可求解. 【详解】由不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,可得11,23-是方程220ax bx ++=的两根,且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得12,2a b =-=-,所以14a b +=-.故选:D. 7.A 【分析】根据不等式的性质判断,错误的不等式可举反例说明. 【详解】因为0a b >>,所以110ab<<,则11a b->-,所以11a b a b->-,故A 正确; 因为0a b >>,0c ≠,所以0b a -<,20c >,20a c +>,2222110a bab a b a b --=>, 2211ab a b∴>,故B 错误; 当0c ,得22ac bc =,故C 错误:取12a =,14b =,可得2194a a +=,211416b b +=,2211a b a b +<+,故D 错误.故选:A . 8.B 【分析】利用平方作差,再判断差的正负即可得解. 【详解】30>0>,则223)(16(160-=+-+==>,3故选:B 9.A 【分析】 根据0a b >>与2211a b<的互相推出情况判断出属于何种条件. 【详解】当0a b >>时,220a b >>,所以2211a b <,所以充分性满足, 当2211a b <时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足, 所以p 是q 的充分不必要条件, 故选:A. 10.B 【分析】求出集合A ,由分析知B ≠∅,求出集合B ,进而得出A B 中有且只有两个正整数解的等价条件,列不等式组即可求解. 【详解】由220x x +->可得:1x >或2x <-,所以{|2A x x =<-或}1x >, 因为A B 中有且只有两个正整数解,所以A B ⋂≠∅, 对于方程210(0)x ax a -+=>,判别式24a ∆=-,所以方程的两根分别为:1x,2x =,所以B x x ⎧⎪=≤≤⎨⎪⎪⎩⎭, 若A B 中有且只有两个正整数解,则134≤⎨⎪≤<⎪⎩即268a a a ⎧-≤⎪⎨--⎪⎩,可得2103174a a a ⎧⎪≥⎪⎪≥⎨⎪⎪<⎪⎩,所以101734a ≤<,当11x =>时,解得02a <<,此时240a ∆=-<,B =∅不符合题意, 综上所述:a 的取值范围为1017,34⎡⎫⎪⎢⎣⎭,故选:B. 11.A 【分析】设()()()()32x y m x y n x y m n x m n y -=+--=-++,利用待定系数法求得,m n ,利用不等式的性质即可求32x y -的取值范围.【详解】设()()()()32x y m x y n x y m n x m n y -=+--=-++, 所以32m n m n -=⎧⎨+=-⎩,解得:1252m n ⎧=⎪⎪⎨⎪=-⎪⎩,1532()()22x y x y x y -=+--,因为11x y -≤+≤,13x y ≤-≤,所以[]1532()()2,822x y x y x y -=+--∈, 故选:A. 12.B【分析】利用已知的事实以及作差法、特殊值法可判断各选项中不等式的正误. 【详解】对于A 选项,由题意可知a a mb b m+<+,A 选项错误; 对于B 选项,作出函数2x y =与y x =的图象如下图所示:由图可知,当0x >时,2x x >,0m >,则2m m >,所以,()()()()()()()()()()22220222mmmm m mma b m a m b a b m a a m b b mb b m b b m ++-++--++-==>++++++,即22mma m ab m b ++<++,B 选项正确; 对于C 选项,()()()()()220a m b m a m b m m b a ++-++=->, 所以,()()()()22a m b m a m b m ++>++,C 选项错误; 对于D 选项,取1a =,2b =,则121113143ba -=<=-,D 选项错误. 故选:B. 13.18. 【分析】根据基本不等式2x y +≥xy 的范围,求出答案. 【详解】因为,0x y >,且230x y xy ++=,所以302xy x y -=+≥(当且仅当2x y =时,取等号)即2030≤+,解得-180xy ≤<, 所以xy 的最大值是18.此时6x =,3y =. 故答案为:18. 【点睛】 关键点点睛:本题的关键点是运用基本不等式把230x y xy ++=转化为2030≤+.14.4 【分析】把给定等式两边都除以xy ,再利用“1”的妙用即可得解. 【详解】因为002x y x y xy >>+=,,,则121y x+=,所以()122422444x x x y x y x y y y x y y x ⎛⎫++=+++=++≥= ⎪⎝⎭,当且仅当24x y y x =时“=”, 由242x y y x x y xy ⎧=⎪⎨⎪+=⎩解得21x y ⎧=+⎪⎨=+⎪⎩所以21x y ⎧=⎪⎨=⎪⎩2x x y y ++有最小值4.故答案为:4.15.()()1,01,-⋃+∞【分析】根据分式不等式以及一元二次不等式解法即可求解.【详解】10,<x x -即21,<0x x- 即2(1)0,<x x -即(1)(1)0>x x x -+,所以()()0110x x x >⎧⎨-+>⎩或()()0110x x x <⎧⎨-+<⎩ 解得1x >或10x -<<所以不等式的解集为()()1,01,-⋃+∞.故答案为: ()()1,01,-⋃+∞16.)+∞【分析】由一元二次不等式的解集与一元二次方程根的关系,应用韦达定理把,b c 用a 表示,化待求式为一元函数,再利用基本不等式得结论.【详解】由不等式解集知0a <,由根与系数的关系知347,3412,b a c a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩7,12b a c a ∴=-=,则225144552466c a a a b a a ++==-+≥=+--当且仅当5246a a -=-,即a =时取等号.故答案为:)+∞.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.(1)∅;(2)[2,2]-.【分析】(1)确定相应二次方程的根,结合二次函数性质可得不等式的解;(2)由一元二次不等式恒成立可得.【详解】(1)由已知不等式为2210x x -+<,而2221(1)0x x x +=-≥-,所以原不等式解集为∅; (2)不等式()2f x x ≥-对任意实数x 恒成立,即2(2)(2)0x a x a -+++≥恒成立,所以2(2)4(2)0a a ∆=+-+≤,解得22a -≤≤.即a 的范围是[2,2]-.18.(1){1x x >或}3x <-;(2)403m m ⎧⎫-<<⎨⎬⎩⎭. 【分析】(1)当1m =时,代入整理得2230x x +->,解之可得解集.(2)由题意得() 40f ->,解之可求得m 的取值范围.【详解】解:(1)当1m =时,() 12f x >-,即(()()35120x x -++>,整理得2230x x +->,解得 >1x 或3x <-,所以()12f x >-的解集为{} 13x x x ><-或.(2)因为4A -∉,所以() 40f ->,即()430m m -->.所以()340 m m +<,解得403m -<<. 即m 的取值范围为403m m ⎧⎫-<<⎨⎬⎩⎭. 19.(1)52a =,1b =;(2)102k -<<;(3)()0,1. 【分析】(1)由()0f x >的解集知,()0f x =的两根为2-和12-,根据韦达定理求得参数值. (2)由题意得,2a =-,0b =,所以()22f x x x =-,不等式恒成立等价于2121x x kx -<--<在[]0,2恒成立.通过讨论x 的值,分离参数1122x k x x x--<<+-在(]0,2恒成立,根据函数单调性,求得最值,从而求得k 的取值范围.(3)方程()0f x =在区间()1,2有两个不同的实根,应满足条件()()2110242012240f a b f a b a a b ⎧=++>⎪=++>⎪⎪⎨<-<⎪⎪∆=->⎪⎩,把条件中的b 用(1)f 和a 表示,从而解得(1)f 的取值范围.【详解】(1)因为()0f x >的解集为()1,2,2⎛⎫-∞--+∞ ⎪⎝⎭, 所以()0f x =的两根为2-和12-, 由韦达定理得()()122122a b ⎧⎛⎫-+-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯-= ⎪⎪⎝⎭⎩, 所以52a =,1b =. (2)由题意得,2a =-,0b =,所以()22f x x x =-,因为()()1f x g x -<在[]0,2恒成立,所以2121x x kx -<--<在[]0,2恒成立.①当0x =时,101-<<满足题意,②当(]0,2x ∈时,1122x k x x x--<<+-在(]0,2恒成立, 即max min1122x k x x x ⎛⎫⎛⎫--<<+- ⎪ ⎪⎝⎭⎝⎭, 因为12y x x =--在(]0,2单调递增,12y x x=+-在(]0,1上单调递减, 在(]1,2上单调递增,所以max 1122x x ⎛⎫--=- ⎪⎝⎭,min120x x ⎛⎫+-= ⎪⎝⎭, 所以102k -<<;(3)因为方程()0f x =在区间()1,2有两个不同的实根,所以()()2110242012240f a b f a b a a b ⎧=++>⎪=++>⎪⎪⎨<-<⎪⎪∆=->⎪⎩, 所以()11b f a =--,所以()()()()21042110424110f a f a a a f a ⎧>⎪++-->⎪⎨-<<-⎪⎪--->⎩, 由()131f a >-->-,由()()24110a f a --->得()()24124f a <+<,得()11f <, 综上所述:()011f <<.所以()1f 的取值范围是()0,1.20.(1)证明见解析;(2)2p =,证明见解析.【分析】(1)由分析法,只需证明111()()0a c a b b c c a -++>---即可, 利用基本不等式即可证明. (2)只需11()()0p a c a b b c c a -++>---,左边24b c a b p p a b b c --=-++---,进而可得结果. 【详解】(1)由于a b c >>,所以0a b ->,0b c ->,0a c ->, 要证1110a b b c c a++>---, 只需证明111()()0a c a b b c c a -++>---.左边111[()()]()a b b c a b b c c a=-+-++--- 130b c a b c a b a b b c b b a---=++≥=>--- (2)要使110p a b b c c a ++>---,只需11()()0p a c a b b c c a -++>---, 左边11[()()]()24p b c a b a b b c p p a b b c c a a b b c--=-+-++=-++------, 所以只需40p ->即可,即4p <,所以可以取2p =,3代入上面过程即可.21.(1)32;(2)(,1)-∞-. 【分析】(1)先求出b 、c ,再利用单调性求最小值;(2)用分离参数法,只需求出2()31h x x x =-+的最小值即可.【详解】(1)因为关于x 的不等式230x bx c ++-<的解集为(1,2)-,解得11b c =-⎧⎨=⎩, 所以22111x bx c x x x x x x++-+==+-,令1()1g x x x =+-,2x ≥,则21()10g x x '=->, 所以函数()g x 在[2,)+∞上单调递增,所以min13()(2)2122g x g ==+-=,所以2x bx c x++的最小值为32. (2)由(1)可知1b =-,1c =,因为当[1,1]x ∈-时,函数2y x bx c =++的图象恒在直线2y x m =+的上方,所以当[1,1]x ∈-时,212x x x m -+>+恒成立,即当[1,1]x ∈-时,231x x m -+>恒成立.令22()3135()24x h x x x +=--=-,易知函数()h x 在[1,1]-上的最小值为(1)1h =-, 所以1m <-,故实数m 的取值范围为(,1)-∞-.【点睛】(1)单调性法求最值是求值域最常用的方法;(2)求参数范围的问题,可以用分离参数法转化为求最值来解决.22.(1)详见解析;(2)34. 【分析】(1)本题首先可通过题意将不等式()42f x x <-+转化为()()110x ax --<,然后分为0a <、0a >两种情况进行讨论,0a >又分为1a =、1a >、01a <<三种情况进行讨论,即可得出结果;(2)本题首先可根据()14f =得出()14a b ++=,然后通过基本不等式得出1114a a a b a+≥++,最后分为0a >、0a <两种情况进行讨论,即可得出结果. 【详解】(1)因为()()223f x ax b x =+-+,所以()42f x x <-+即()22342ax b x x +-+<-+,因为3b a =--,所以不等式可以转化为()2110ax a x -++<,即()()110x ax --<,当0a <时,11a <,()()110x ax --<即()110x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或1x >, 当0a >时,()()110x ax --<即()110x x a ⎛⎫--< ⎪⎝⎭, 若1a =,不等式()110x x a ⎛⎫--< ⎪⎝⎭的解集为∅, 若1a >,则11a<,解得11x a <<, 若01a <<,则11a >,解得11x a <<, 综上所述,不等式的解集为:当0a <时,()1,1,x a ⎛⎫∈-∞+∞ ⎪⎝⎭;当01a <<时,11x x a ⎧⎫<<⎨⎬⎩⎭; 当1a =时,解集为∅;当1a >时,11x x a ⎧⎫<<⎨⎬⎩⎭. (2)因为()14f =,所以()14a b ++=,则()111114144144a a a a b a b a a a b a b a a b a a++++=+=++≥+++++, 当0a >时,1a a =,1514a a b +≥+,当且仅当43a =、53b =时等号成立;当0a <时,1a a =-,1314a ab +≥+,当且仅当4a =-、7b =时等号成立, 综上所述,11a a b ++的最小值为34. 【点睛】易错点睛:本题考查含参数的一元二次不等式的解法以及基本不等式求最值,在求解含参数的一元二次不等式的时候,例如()()110x ax --<,既要注意1和1a的大小关系,也要注意a 的正负,在利用基本不等式求最值时,要注意取等号的情况,考查分类讨论思想,考查计算能力,是难题.。
考点05一元二次方程、不等式(2种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.会从实际情景中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.【知识点】1.二次函数y =ax 2+bx +c (a >0)与一元二次方程ax 2+bx +c =0(a >0),不等式ax 2+bx +c >0(a >0)的解的对应关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数的图象方程的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b 2a没有实数根不等式的解集{x |x ≠-b2a}R 2.分式不等式与整式不等式(1)f (x )g (x )>0(<0)⇔ ;(2)f (x )g (x )≥0(≤0)⇔ .3.简单的绝对值不等式|x |>a (a >0)的解集为,|x |<a (a >0)的解集为.【核心题型】题型一 一元二次不等式的解法对含参的不等式,应对参数进行分类讨论,常见的分类有(1)根据二次项系数为正、负及零进行分类.(2)根据判别式Δ与0的关系判断根的个数.(3)有两个根时,有时还需根据两根的大小进行讨论.命题点1 不含参数的不等式【例题1】(2024·青海·一模)已知集合(){}2lg 23A x y x x ==-++,{}240B x x =-<,则A B È=( )A .()1,3-B .()1,2-C .()2,3-D .()2,2-【变式1】(2024·全国·模拟预测)已知集合{}2|680,{|13}M x x x N x x =-+<=<£,则M N Ç=( )A .{|23}x x ££B .{|23}x x <£C .{|24}x x <£D .{|13}x x <£【变式2】(2024·山东济宁·一模)设集合{}2|60A x x x =--<,{|}B x a x a =-££,若A B Í,则实数a 的取值范围是 .【变式3】(2024·安徽合肥·一模)已知集合{}{}24,11A xx B x a x a =£=-££+∣∣,若A B Ç=Æ,则a 的取值范围是.命题点2 含参数的一元二次不等式【例题2】(2024·云南红河·二模)已知,a b 均为正实数,则“11a b>”是“2223a b ab +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式1】(23-24高三下·陕西安康·阶段练习)在区间[]05,内随机取一个实数a ,则关于x 的不等式()2220x a x a +--<仅有2个整数解的概率为( )A .25B .310C .15D .110【变式2】(2023·江西南昌·三模)函数22e ,0()(2)2,0x ax x f x x a x a x ì->=í-+-+£î,若关于x 的不等式()0f x ³的解集为[2,)-+¥,则实数a 的取值范围是( )A .e 2,2æù-çúèûB .e 0,2éùêúëûC .20,4éùêúëûe D .2e {0},4¥éö+÷êëøU 【变式3】.(2023·湖南·模拟预测)若关于x 的不等式()277x a a x +<+的解集恰有50个整数元素,则a 的取值范围是 ,这50个整数元素之和为 .题型二 一元二次不等式恒成立问题恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R 上恒成立,可用判别式Δ;一元二次不等式在给定区间上恒成立,不能用判别式Δ,一般分离参数求最值或分类讨论.命题点1 在R 上恒成立问题【例题3】(2024·浙江·模拟预测)若不等式()2620kx k x +-+>的解为全体实数,则实数k的取值范围是( )A .218k ££B .182k -<<-C .218k <<D .02k <<【变式1】(23-24高三上·河南·期中)“关于x 的不等式()()2232340a x a x ---+³的解集为R ”是“392a <<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式2】(2023·福建厦门·二模)“()0,4b Δ是“R x "Î,210bx bx -+>成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式3】(23-24高三上·河北邢台·阶段练习)“不等式2210ax ax +-<恒成立”的一个充分不必要条件是( )A .10a -£<B .0a £C .10a -<£D .10a -<<命题点2 在给定区间上恒成立问题【例题4】(2023·浙江宁波·一模)已知函数()2f x x ax b =++,若不等式()2f x £在[]1,5x Î上恒成立,则满足要求的有序数对(,)a b 有( )A .0个B .1个C .2个D .无数个【变式1】(2023·陕西咸阳·模拟预测)已知命题p :任意1,22x éùÎêúëû,使222log log 30x m x -×-£为真命题,则实数m 的取值范围为( )A .(],2-¥B .(],2-¥-C .[]22-,D .[)2,-+¥【变式2】(2023·辽宁鞍山·二模)已知当0x >时,不等式:2160x mx -+>恒成立,则实数m 的取值范围是( )A .()8,8-B .(],8¥-C .(),8¥-D .()8,+¥【变式3】(2024·全国·模拟预测)已知函数2()f x x ax b =++,若对任意[1,5],()2x f x Σ,则所有满足条件的有序数对(,)a b 是 .命题点3 在给定参数范围内的恒成立问题【例题5】(23-24高三上·河南信阳·阶段练习)若210mx -<对于[]0,2m Î恒成立,则实数x 的取值范围为 .【变式1】(2024高三·全国·专题练习)设函数()f x 是定义在(,)-¥+¥上的增函数.若不等式()21(2)--<-f ax x f a 对于任意[0,1]a Î恒成立,求实数x 的取值范围.【变式2】(22-23高三上·山东潍坊·阶段练习)若对于任意[]1,1m Î-,任意R y Î,使得不等式()23613x m x y y +--<-+-成立,则实数x 的取值范围是.【变式3】(2023高三·全国·专题练习)若不等式()2211x m x ->-对任意[]1,1m Î-恒成立,实数x 的取值范围是 .【课后强化】基础保分练一、单选题1.(2024高三·全国·专题练习)已知集合{}{}2450,34A x x x B x a x a =--³=-<<+,若A B =U R ,则实数a 的取值范围为( )A .{}1a a >B .{}12a a <<C .{}2a a <D .{}12a a ££2.(2024·浙江·模拟预测)若不等式()2620kx k x +-+>的解为全体实数,则实数k 的取值范围是( )A .218k ££B .182k -<<-C .218k <<D .02k <<3.(2024·云南红河·二模)已知,a b 均为正实数,则“11a b>”是“2223a b ab +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2024高三·全国·专题练习)若不等式()()222240a x a x -+--<对一切x ÎR 恒成立,则实数a 的取值范围是( )A .(],2-¥B .[]22-,C .(]2,2-D .(),2-¥-5.(23-24高三下·湖南衡阳·阶段练习)条件p 是q 的充分不必要条件是( )A .函数()y f x =定义域为A ,p :()0f x ¢³在A 上成立.q :()y f x =为增函数;B .p :2R,30x x x a "Î-+>成立,q :12a a +-最小值为4;C .p :函数2()2441f x ax x =+-在区间(1,1)-恰有一个零点,q : 1184a -<<;D .p :函数()cos 2cos sin 2sin f x x x j j =+为偶函数(x ÎR ),q :π(Z)k k j =Î6.(2024高三·全国·专题练习)已知,a b ÎR 且0ab ¹,若()()()20x a x b x a b ----³在0x ³上恒成立,则( )A .0a <B .0a >C .0b <D .0b >二、多选题1.(23-24高三上·湖南邵阳·阶段练习)已知0a >,0b >,且27a b +=,若223a b t +£恒成立,则实数t 的值可能为( )A .20B .21C .49D .502.(2024高三·全国·专题练习)(多选)下列命题正确的是( )A .若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0B .若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为RC .不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0D .若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集三、填空题1.(23-24高三下·上海·阶段练习)设0a >,若关于x 的不等式20x ax -<的解集是区间()0,1的真子集,则a 的取值范围是 .2.(23-24高三下·河北保定·开学考试)已知集合(){}(){}2log 32,540A x x B x x x =-<=--³,则A B =I .四、解答题1.(2024·全国·模拟预测)已知函数()2f x x a =-,且()f x b £的解集为[]1,3-.(1)求a 和b 的值;(2)若()f x x t £-在[]1,0-上恒成立,求实数t 的取值范围.2.(2024高三·全国·专题练习)(1)解关于实数x 的不等式:2(1)0x a x a -++<.(2)解关于实数x 的不等式:210x ax -+<.3.(2024·全国·模拟预测)已知函数()21f x x =+.(1)求不等式()()11f x f x -->的解集;(2)若()()()1h x f x f x =+-,且存在x ÎR 使不等式()221a a h x +-³成立,求实数a 的取值范围.综合提升练一、单选题1.(2023·辽宁鞍山·二模)若对任意的2(0,),10x x mx Î+¥-+>恒成立,则m 的取值范围是( )A .(2,2)-B .(2,)+¥C .(,2)-¥D .(,2]-¥2.(2023高三·全国·专题练习)已知命题p :“∀x ∈R ,(a +1)x 2-2(a +1)x +3>0”为真命题,则实数a 的取值范围是( )A .-1<a <2B .a ≥1C .a <-1D .-1≤a <23.(2024·陕西西安·模拟预测)已知集合{{}2N 40A x y B y y =Î==-£∣,∣,则集合A B Ç中元素的个数为( )A .1B .2C .3D .44.(23-24高三上·重庆长寿·期末)已知函数2()2f x ax x a =-+,对1,22x éùÎêúëû都有()0f x ³成立,则实数a 的取值范围是( )A .[)1,¥+B .4,5¥éö+÷êëøC .4,15éùêúëûD .4,5¥æù-çúèû5.(23-24高三上·内蒙古通辽·阶段练习)已知命题0:p x $ÎR ,()200110x a x +-+<,若命题p 是假命题,则a 的取值范围为( )A .13a ££B .13a -<<C .13a -££D .02a ££6.(23-24高三下·山东菏泽·阶段练习)已知条件q :“不等式()()224210a x a x -++-³的解集是空集”,则条件p : “21a -£<”是条件q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2024·天津河西·一模)“2x x £”是“11x³”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.(2023·广东广州·三模)定义{},max ,,p p q p q q p q³ì=í<î,设函数(){}2max 22,2x f x x ax a =--+,若R x $Î使得()0f x £成立,则实数a 的取值范围为( ).A .(][),01,-¥+¥U B .[][)1,01,-È+¥C .()(),11,-¥-È+¥D .[]1,1-二、多选题1.(23-24高三上·浙江绍兴·期末)已知R a Î,关于x 的一元二次不等式()()220ax x -+>的解集可能是( )A .2x x a ì>íî或}2x <-B .{}2x x >-C .22x x a ìü-<<íýîþD .22x x a ìü<<-íýîþ2.(2024·广东深圳·模拟预测)下列说法正确的是( )A .不等式24510x x -+>的解集是114x x x ìü><íýîþ或B .不等式2260x x --£的解集是322x x x ìü£-³íýîþ或C .若不等式28210ax ax ++<恒成立,则a 的取值范围是ÆD .若关于x 的不等式2230x px +-<的解集是(),1q ,则p q +的值为12-3.(22-23高三上·河北唐山·阶段练习)若()()240ax x b -+³对任意(],0x Î-¥恒成立,其中a ,b 是整数,则+a b 的可能取值为( )A .7-B .5-C .6-D .17-三、填空题1.(2024高三·全国·专题练习)已知R a Î,函数()2222,022,0x x a x f x x x a x ì++-£=í-+->î若对任意[)–3,x Î+¥,()f x x £恒成立,则a 的取值范围是.2.(23-24高三上·河南·阶段练习)若命题“x $ÎR ,()()221110a x a x -+--³”为假命题,则a 的取值范围为 .3.(23-24高三下·上海闵行·阶段练习)设集合2{|41}A x x =£,{|ln 0}B x x =<,则A B =I .四、解答题1.(2024高三·全国·专题练习)已知集合A ={x |x 2-4x -5≤0},B ={x |2x -6≥0},M =A ∩B .(1)求集合M ;(2)已知集合C ={x |a -1≤x ≤7-a ,a ∈R },若M ∩C =M ,求实数a 的取值范围.2.(23-24高三上·河南南阳·阶段练习)二次函数()f x 满足(1)()2f x f x x +-=,且(0)1f =(1)求()f x 的解析式;(2)在区间[1,1]-上,函数()y f x =的图象恒在直线y m =的上方,试确定实数m 的取值范围.3.(2024高三·全国·专题练习)设函数()f x ax =,其中0a >.解不等式()1f x £;4.(2024高三·全国·专题练习)已知f (x )=2,02,0xx x x ìïíï<î…求f (f (x ))≥1的解集.5.(2023·河南开封·模拟预测)已知函数()f x 满足()()()()2213221R f x f x x a x a x +-=+--+Î.(1)讨论()f x 的奇偶性;(2)设函数()()()ln 1h x x f x x éù=+³ëû,求证:[)(){}1,yy h x ¥+Í=∣.拓展冲刺练一、单选题1.(2024高三·全国·专题练习)已知集合{}2120A x x x =--<,(){}2R log 51B x x =Î-<,则()A B =R I ð( )A .{}34x x -<£B .{}34x x -£<C .{}4x x ³D .{}45x x £<2.(23-24高三下·陕西安康·阶段练习)在区间[]05,内随机取一个实数a ,则关于x 的不等式()2220x a x a +--<仅有2个整数解的概率为( )A .25B .310C .15D .1103.(2023·福建厦门·二模)不等式2210ax x -+>(R a Î)恒成立的一个充分不必要条件是()A .2a >B .1a ³C .1a >D .102a <<4.(2023·全国·模拟预测)已知函数()3sin f x x x =+,若不等式()220f x ax -+³恒成立,则实数a 的最大值为( )A B .2C .D .4二、多选题5.(2023·全国·模拟预测)已知平面向量,a b r r 满足||2a =r ,||4b =r ,且对任意的实数t ,都有b ta b a +³-r r r恒成立,则下列结论正确的是( )A .4a b -r r 与b r垂直B .(3)27a b b +×=r rrC .14a b a b l l -+-rr r r 的最小值为D .12a b a b l l ---r rr r 的最大值为6.(23-24高三上·辽宁葫芦岛·阶段练习)若关于x 的不等式()277x a a x +<+的解集恰有50个整数元素,则下列各选项正确的是( )A .a 的值可能为-43B .这50个整数元素之和可能为-925C .a 的值可能为57.5D .这50个整数元素之和可能为1625三、填空题7.(2022高三上·河南·专题练习)已知:11p x -<,()2:10q x a x a -++£,若p 是q 的必要不充分条件,则实数a 的取值范围是 .8.(23-24高三上·江苏·阶段练习)已知二次函数()()1y ax x a =--.甲同学:0y >的解集为()1,,a a æö-¥+¥ç÷èøU ;乙同学:0y <的解集为()1,,a a æö-¥+¥ç÷èøU ;丙同学:y 的对称轴大于零.在这三个同学的论述中,只有一个假命题,则a 的范围为 .9.(2024高三·全国·专题练习)已知函数2()f x x ax b =++,若对任意[]()1,5,2x f x Σ,则所有满足条件的有序数对(),a b 是 .10.(23-24高三上·全国·阶段练习)对任意的x ÎR ,不等式()()()2222714613817x x m x x x x -+³-+-+恒成立,则实数m 的取值范围为 .四、解答题11.(23-24高三上·福建莆田·阶段练习)解关于x 的不等式:()()2220R ax a x a -++<Î.12.(2024高三·全国·专题练习)设函数()21f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围;(2)若对于[]1,3x Î,()5f x m <-+恒成立,求实数m 的取值范围.13.(2023·陕西咸阳·模拟预测)已知函数21()32ln 2f x x x x =-+.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)(ⅰ)若对于任意12,[1,3]x x Î,都有12()()22f x f x m -£-,求实数m 的取值范围;(ⅱ)设21()()2g x f x x =+,且12()()0g x g x +=,求证:1272x x +>.14.(23-24高三上·天津南开·期中)设函数2()(0,1)x xa b f x a a a -=>¹且是定义域为R 的奇函数,且()y f x =的图象过点31,2æöç÷èø.(1)求a ,b 的值;(2)设2()()(),g x x p x q p q =--<,若(),(())()0x f g x f mxg x ¢"Î-+£R (()g x ¢为函数()g x 的导数),试写出符合上述条件的函数()g x 的一个解析式,并说明你的理由.。
高中数学《不等式》期末考知识点(1)一、选择题1.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B .455C .5D .25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.2.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( ) A .3B .2(51)-C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.3.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .4.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.5.若33log (2)1log a b ab +=+42a b +的最小值为( )A .6B .83C .163D .173【答案】C 【解析】 【分析】由33log (2)1loga b ab +=+213b a+=,且0,0a b >>,又由12142(42)3a b a b b a ⎛⎫+=++ ⎪⎝⎭,展开之后利用基本不等式,即可得到本题答案.【详解】因为33log (2)1loga b ab +=+()()3333log 2log 3log log 3a b ab ab +=+=,所以,23a b ab +=,等式两边同时除以ab 得213b a+=,且0,0a b >>,所以121182116 42(42)()(8)(8216)3333a ba b a bb a b a+=++=++≥+=,当且仅当82a bb a=,即2b a=时取等号,所以42a b+的最小值为163.故选:C.【点睛】本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题. 6.若实数,x y满足不等式组2,36,0,x yx yx y+≥⎧⎪-≤⎨⎪-≥⎩则3x y+的最小值等于()A.4B.5C.6D.7【答案】A【解析】【分析】首先画出可行域,利用目标函数的几何意义求z的最小值.【详解】解:作出实数x,y满足不等式组236x yx yx y+≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由20x yx y+-=⎧⎨-=⎩得(1,1)A,由3z x y=+得3y x z=-+,平移3y x=-,易知过点A时直线在y上截距最小,所以3114minz=⨯+=.故选:A.【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.7.在下列函数中,最小值是2的函数是( ) A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()2f x =D .()42xx f x e e=+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误; C. ()2f x ==,故()3f x ≥,C 错误; D. ()4222xx f x e e =+-≥=,当4xxe e =,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.8.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122yx ⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yxx y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.11.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( )A B .5C .3D .52【答案】D 【解析】 【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可. 【详解】解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方, 则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方, 解得,2252d ⎛⎫==; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.12.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式231233tan tan ββ≤=+当且仅当3tan 3β=时等号成立, 因为,22ππαβ⎛⎫-∈- ⎪⎝⎭,且函数tan y x =在区间,22ππ⎛⎫-⎪⎝⎭上单调递增, 则αβ-的最大值为6π. 故选:B . 【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.13.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.14.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4C .6D .7【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值.【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径,设AB x =,AC y =,AD z =,球半径为R ,因为三棱锥外接球的表面积为8π,则284R π=π, 解得2R =,所以体对角线为2, 所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y z S x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4,故选:B.【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.15.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞B .[5,)+∞C .(,4]-∞D .[4,)+∞ 【答案】C【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x ≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.16.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A .3B .2C .2D .32【答案】B【解析】【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C A B ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1B B =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B -=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B .【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.17.已知实数,x y满足线性约束条件120xx yx y≥⎧⎪+≥⎨⎪-+≥⎩,则1yx+的取值范围为()A.(-2,-1]B.(-1,4]C.[-2,4) D.[0,4]【答案】B【解析】【分析】作出可行域,1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,(1,3)A,3(1)410QAk--==-,过Q与直线0x y+=平行的直线斜率为-1,∴14PQk-<≤.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1yx+表示动点(,)P x y与定点(0,1)Q-连线斜率,由直线与可行域的关系可得结论.18.若变量x,y满足2,{239,0,x yx yx+≤-≤≥则x2+y2的最大值是A.4 B.9 C.10 D.12【答案】C【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.19.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( )A .log 3log 3a b >B .336a b +>C .133ab a b ++>D .b a a b > 【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以23323323236a b a b a b ab ++>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.20.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D【解析】【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解.【详解】 Q 数列{}n a 为等差数列, ∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立;当10a <时,11322a d a =--≥=1a =立; ∴实数d的取值范围为(,)-∞⋃+∞.故选:D.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.。
不等式选讲高考导航考试要求重难点击命题展望1.理解绝对值的几何意义,并能用它证明绝对值三角不等式等较简单的不等式.①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.能用绝对值的几何意义解几类简单的绝对值型不等式,如|ax+b|≤c或|ax+b|≥c,以及|x-a|+|x-b|≥c或|x-a|+|x-b|≤c类型.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法和放缩法.4.了解数学归纳法的原理及其使用范围,会用它证明一些简单不等式及其他问题.5.了解柯西不等式的几种不同形式:二维形式(a2+b2)(c2+d2)≥(ac+bd)2、向量形式|α|·|β|≥|α·β|、一般形式∑∑∑===•nininiiiiibaba112122)(≥,理解它们的几何意义.掌握柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.6.了解排序不等式的推导及意义并能简单应用.7.会用数学归纳法证明贝努利不等式:.)1,0,1>(>1)1(的正整数为大于nxxnxx n≠-++本章重点:不等式的基本性质;基本不等式及其应用、绝对值型不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用.本章难点:三个正数的算术——几何平均不等式及其应用;绝对值不等式的解法;用反证法、放缩法证明不等式;运用柯西不等式和排序不等式证明不等式.本专题在数学必修5“不等式”的基础上,进一步学习一些重要的不等式,如绝对值不等式、柯西不等式、排序不等式以及它们的证明,同时了解证明不等式的一些基本方法,如比较法、综合法、分析法、反证法、放缩法、数学归纳法等,会用绝对值不等式、平均值不等式、柯西不等式、排序不等式等解决一些简单问题.高考中,只考查上述知识和方法,不对恒等变形的难度和一些技巧作过高的要求.知识网络§1 绝对值型不等式典例精析题型一解绝对值不等式【例1】设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>3;(2)若f(x)>a对x∈R恒成立,求实数a的取值范围.【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1). 【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域; (2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3. 题型二 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围 【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|. 由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立,不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为∅;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件.若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a xf (x )的最小值为a -1,由题意有a -1≥2,故a ≥3.综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.§2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证: lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得lga +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c2≥lg ac . 而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1. 【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0. 故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a +b )2.【证明】因为a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1. 求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立, 即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).① 因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0).(1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa -1e -1]上单调递增,在[aa-1e -1,+∞)单调递减.(2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g (x )=ln(1+x )x (x >0),则g ′(x )=x1+x -ln(1+x )x 2=x -(1+x )ln(1+x )x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.§3 不等式的证明(二)典例精析题型一 用放缩法、反证法证明不等式【例1】已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.【证明】 方法一:(放缩法) 因为a +b =1,所以左边=(a +2)2+(b +2)2≥2[(a +2)+(b +2)2]2=12[(a +b )+4]2=252=右边.方法二:(反证法)假设(a +2)2+(b +2)2<252,则 a 2+b 2+4(a +b )+8<252.由a +b =1,得b =1-a ,于是有a 2+(1-a )2+12<252.所以(a -12)2<0,这与(a -12)2≥0矛盾.故假设不成立,所以(a +2)2+(b +2)2≥252.【点拨】 根据不等式左边是平方和及a +b =1这个特点,选用重要不等式a 2 + b 2≥ 2(a + b 2)2来证明比较好,它可以将具备a 2+b 2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0, 求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明: 设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22. 【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2,(k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22. 所以(k +1)(k +2)2<a k +1<(k +2)22.故当n =k +1时,不等式也成立.综合①②知当n ∈N *,都有n (n +1)2<a n <(n +1)22.【点拨】 在用放缩法时,常利用基本不等式n (n +1)<n +(n +1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n (2n -1)2(2n +1)2,…,S n 为其前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081,观察上述结果推测出计算S n 的公式且用数学归纳法加以证明. 【解析】猜想S n =(2n +1)2-1(2n +1)2(n ∈N +).证明:①当n =1时,S 1=32-132=89,等式成立.②假设当n =k (k ≥1)时等式成立,即S k =(2k +1)2-1(2k +1)2.则S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2.即当n =k +1时,等式也成立.综合①②得,对任何n ∈N +,等式都成立. 题型三 用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量.(1)求a n 的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a 1=a (1+14)-b =54a -b ,a 2=54a 1-b =54(54a -b )-b =(54)2a -(54+1)b ,a 3=54a 2-b =(54)3a -[(54)2+(54+1)]b ,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54-4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立.由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时) (2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时).(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a 2+1>||a ,n (n +1)>n ; (2)将分子或分母放大(或缩小);(3)利用基本不等式,如n (n +1)<n +(n +1)2;(4)利用常用结论,如k +1-k =1k +1+k <12k,1k 2<1k (k -1)=1k -1-1k ; 1k 2>1k (k +1)=1k -1k +1(程度大); 1k 2<1k 2-1=1(k -1)(k +1)=12(1k -1-1k +1) (程度小). 3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.§4 柯西不等式和排序不等式典例精析题型一 用柯西不等式、排序不等式证明不等式【例1】设a 1,a 2,…,a n 都为正实数,证明:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .【证明】方法一:由柯西不等式,有(a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1)(a 2+a 3+…+a n +a 1)≥ (a 1a 2·a 2+a 2a 3·a 3+…+a n a 1·a 1)2=(a 1+a 2+…+a n )2. 不等式两边约去正数因式a 1+a 2+…+a n 即得所证不等式.方法二:不妨设a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n. 由排序不等式有a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n =a 1+a 2+…+a n , 故不等式成立.方法三:由均值不等式有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式. 【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2b ac b c b b a ++++•+2b a a c a c b a ++++•+2c b ac a c c b ++++•=9) 所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4(当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x 2+2y 2+3z 2)[32+(2)2+(13)2]≥(3x +2y ·2+3z ·13)2≥(3x +2y +z )2,所以(3x +2y +z )2≤12,即-23≤3x +2y +z ≤23,当且仅当x =-9317,y =-3317,z =-317时,3x +2y +z 取最小值,最小值为-2 3. 题型三 不等式综合证明与运用【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【证明】(1)当x ≥1时,1≤x ≤x 2≤…≤x n ,由排序原理:顺序和≥反序和得 1·1+x ·x +x 2·x 2+…+x n ·x n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1, 即1+x 2+x 4+…+x 2n ≥(n +1)x n .①又因为x ,x 2,…,x n ,1为序列1,x ,x 2,…,x n 的一个排列,于是再次由排序原理:乱序和≥反序和得1·x +x ·x 2+…+x n -1·x n +x n ·1≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即x+x3+…+x2n-1+x n≥(n+1)x n,②将①和②相加得1+x+x2+…+x2n≥(2n+1)x n.③(2)当0<x<1时,1>x>x2>…>x n.由①②仍然成立,于是③也成立.综合(1)(2),原不等式成立.【点拨】分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a、b、c,则a+b+c=3,且这三个正三角形面积和S满足:3S=34(a2+b2+c2)(12+12+12)≥34(a+b+c)2=934⇒S≥334.当且仅当a=b=c=1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a2+b2≥2ab.有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇。
高考不等式问题专题复习
一、不等式基础题
1、不等式x 2+1>2x 的解集是 ( ) A.{x|x ≠1,x ∈R} B.{x|x >1,x ∈R}
C.{x|x ≠-1 ,x ∈R }
D. {x|x ≠0,x ∈R} (00年成人) 2、不等式|x+3|>5的解集为 ( ) A.{x|x >2|} B.{x|x <-8或x >2}C.{x|x >0} D.{x|x >3} (01年成人) 3、二次不等式x 2 -3x+2<0的解集为 ( ) A.{x ︱x ≠0} B.{x ︱1<x<2} C.{x ︱-1<x<2} D. {x ︱x>0}(02年成人) 4.已知a>b ,那么
b
a 1
1 的充要条件是 ( ) A.a 2+b 2≠0 B.a>0 C.b<0 D.ab<0 (02年高职) 5、若a ≥b ,c ∈R ,则 ( )
A.a 2≥b 2
B.∣ac ∣≥∣bc ∣
C.ac 2≥bc 2
D. a - 3≥b -
3
6、下列命题中,正确的是 ( ) A.若a >b ,则ac 2>bc 2 B.若2
2c
b
c a >,则a>b C.若a>b ,则
b
a 1
1< D.若a>b ,c>d ,则ac>bd 7、如果a>0,b>0,那么必有 ( )
A.a b a b ->22
B.a b a b -≥22
C.a b a b -<22
D.a b a b -≤22
8、对任意a ,b ,c∈R +,都有 ( ) A.
3>++c a b c a b B.3<++c a b c a b C.3≥++c a b c a b D.3≤++c a b c a b
9、对任意x∈R,都有 ( )
A.(x-3)2
>(x-2)(x-4) B.x 2
>2(X+1) C.2432->--x x x )( D.11
1
22>++x x
10、已知0<x<1,都有 ( )
A.2x>x 2>x
B.2x>x>x 2
C. x 2>2x>x
D.x > x 2 >2x 11、若不等式2x 2-bx+a<0的解集为{x ︱1<x<5},则a= ( ) A.5 B.6 C.10 D.12 (02年高职) 12、不等式
12
3
>+-x x 的解集是 ( ) A.{x∣x<-2} B.{x∣x<-2或x>3} C.{x∣x>-2} D.{x∣-2<x<3}
13、不等式lgx+lg(2x-1)<1的解集是 ( )
A.}252{<
<-x x B.}250{<<x x C. }2521{<<x x D. }2
1{>x x 14、不等式︱x+2︱+︱x-1︱<4的解集是 ( ) A.}{12<<-x x B.}23{<
x x C. }2
325{<<-x x D. }25
{->x x
15、已知a 是实数,不等式2x 2
-12x +a≤0的解集是区间[1,5],那么不等式a x 2
-12x+2≤0
的解集是 ( ) A.]1,
5
1[ B.[-5,-1] C.[-5,5] D.[-1,1]
16、不等式(1+x )(1-︱x ︱)>0的解集是 ( ) A.{x∣-1<x<1} B.{x∣x<1} C.{x∣x <-1或x<1} D.{x∣x<1且x≠-1}
17、不等式︱3x -5︱<8的解集是____ ____. (97年成人) 18、不等式|5x+3|>2的解集是_____ ___. (98年成人) 19、不等式|3-2x|-7≤0的解集是____ _______. (99年成人) 20 、不等式|6x -
21|≤23
的解集是___ _______. (00年成人)
21、不等式x
-4-3x )2
1(-4>0的解集是 .
22、不等式)4+3(log <log 42x x 的解集是 .
二、不等式的简单应用
23、已知关于x 的不等式x 2-ax+a >0的解集为实数集R ,则a 的取值范围是 ( ) A.(0,4) B.[2,+∞) C.[0,2) D.(-∞,0)∪(4,+∞) (98年成人)
24、函数
)0>(+1=
2
x x x
y 的值域是区间 .
25、已知方程(k+1)x=3k -2的解大于1,那么常数k 的取值范围是数集{k ∣ }. 三、不等式解答题
26、解下列不等式: (1)04)
153)(6(>++-x
x x (2)22213>-x
(3)4
1
)2
1(5
522>
++x x (4)1)3lg()2lg(>--+x x
(5)∣5x -x 2∣>6 (6)34
2
≥+x x
(7)4x -6x -2×9x <0 (8))43(log )2(log 4
12
1+>+x x
(9)1
23-<x x (10)222<--x x
27、k 取什么值时,关于x 的方程(k -2)x 2-2x+1=0有:
(1)两个不相等的实数根; (2)两个相等的实数根; (3)没有实数根.
28、设实数a 使得方程x 2+(a -1)x+1=0有两个实根x 1,x 2. (1) 求a 的取值范围; (2) 当a 取何值时,22
2111x x +取得最小值,并求出这个最小值.
附:参考答案(四)
1-16 ABBDC BBCAB CACCAD 17.}3131{<
<-x x 18.}5
1
1{->-<x x x 或 19.{x ︱-2≤x ≤5} 20.{x ︱3
1
61≤≤-
x } 21.{x ︱x<-2} 22.{x ︱0<x<4} 23.A 24.]21,0( 25.{x ︱231>-<k k 或} 26.(1) {x ︱-5<x<4或x>6} (2) {x ︱x>61} (3) {x ︱123-<<-x } (4) {x ︱3<x<9
32
} (5) {x ︱x<-1或2<x<3或x>6}
(6) {x ︱x ≥-1} (7) {x ︱x>2log 3
2} (8) {x ︱-1<x< 0} (9) {x ︱x<0或1<x<3}
(10) {x ︱-2<x ≤-1或2≤x<3} 27. (1)k<3且k ≠2 (2)k=3 (3)k>3 28.(1) a ≤-1或a ≥3 (2) a= -1或3,最小值为2.。