一元一次方程应用3
- 格式:docx
- 大小:18.14 KB
- 文档页数:2
沪科版七上数学一元一次方程的应用(第3课时)(30分钟50分)一、选择题(每小题4分,共12分)1.李宽同学需买一副羽毛球拍和若干个羽毛球,正赶上甲、乙两家超市搞促销,甲超市的方案是全部商品一律打九折.乙超市的方案是买一副球拍赠3个羽毛球,李宽在心里算了算,在两家超市花钱一样多,已知羽毛球拍20元/副,羽毛球1元/个,则李宽计划买羽毛球的个数为( )A.8B.9C.10D.11【解析】选C.设李宽计划买x个羽毛球,则(20+x)×0.9=20+(x-3)×1,解得x=10.2.(2014·温州模拟)张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),可知李明上次所买书籍的原价为( )A.148元B.160元C.172元D.180元【解析】选B.设书的原价为x元,根据题意得x-12=20+0.8x,解得x=160,即李明上次所买书籍的原价为160元.【变式训练】某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( )A.购物高于800元B.购物低于800元C.购物高于1 000元D.购物低于1 000元【解析】选C.设购物x元,列方程为0.8x+200=x,解得x=1000,即当购物1000元时,买卡与不买卡花钱同样多,所以当购物高于1000元时,买卡更合算.3.某超市对顾客实行优惠购物,规定如下:(1)若一次性购物不超过100元,则不予优惠.(2)若一次性购物超过100元,但不超过300元,按标价给予九折优惠.(3)若一次性购物超过300元,其中300元以下部分(包括300元)给予九折优惠;超过300元部分给予八折优惠.小李两次去该超市购物,分别付款99元和252元.现在小张决定一次性购买小李分两次购买的物品,他需付款( )A.343元B.333元C.333元或342元D.342元或333.2元【解析】选D.因为小李两次去该超市购物,分别付款99元和252元.所以有两种情况:①第一次付款99元没有享受优惠,即没有打折,第二次享受优惠,所以设第二次实际购物的款数为x,而300×0.9=270>252,所以0.9x=252,所以x=280,所以小李两次去该超市购物实际购物的款数为99+280=379,所以现在小张决定一次性购买小李分两次购买的物品,他需付款300×0.9+79×0.8=333.2(元);②第一次付款99元享受了优惠,即打九折,那么第一次实际购物的款数为99÷0.9=110元,第二次享受优惠,设第二次实际购物的款数为x,而300×0.9=270>252,所以0.9x=252,所以x=280,所以小李两次去该超市购物实际购物的款数为110+280=390,所以现在小张决定一次性购买小李分两次购买的物品,他需付款300×0.9+90×0.8=342(元).所以现在小张决定一次性购买小李分两次购买的物品,他需付款342元或333.2元.二、填空题(每小题4分,共12分)4.(2014·滨州质检)某同学花了30元钱购买了图书馆会员证,只限本人使用,凭证购买入场券每张1元,不凭证购买入场券每张4元,要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过次.【解析】设该同学去图书馆阅览x次使得购会员证与不购会员证花费相同,列方程为4x=30+x,解得x=10,所以要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过10次.答案:105.一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用时间计费;方式B除收月基费20元外,再以每分0.05元的价格按上网所用时间计费.当上网所用时间为分时,两种上网方式的费用一样.【解析】设当上网所用时间为x分时,两种上网方式的费用一样.根据题意,得0.1x=20+0.05x,解得x=400.答案:4006.某学生要购买一种学习用品,该用品在甲、乙两商店的最初标价同为a元,这位学生发现该用品在甲商店现在的标价还是a元,但乙商店现在的标价是在原价a元九折的基础上涨10%得到的价格,则这位学生选择去商店购买该学习用品为好(不考虑其他因素).【解析】乙商店现在的售价为a×90%×(1+10%)=0.99a<a,故去乙商店.答案:乙三、解答题(共26分)7.(12分)(2014·宁夏模拟)某校为激励优秀学生,进行励学活动,如果单独租用45座客车若干辆,恰好坐满;如果单独租用60座客车,则少租一辆,并且余下30个座位.(1)求外出励学的学生人数是多少,单租45座客车需多少辆.(2)已知45座客车租金是250元,60座客车租金是300元,为节省租金,并且保证每个学生有座位,决定同时租用两种客车,使得租车总数比单租45座客车少一辆,问45座客车和60座客车分别租多少辆才能使得租金最少?【解析】(1)设单租45座客车需x辆,则45x=60(x-1)-30,解得x=6,45×6=270(人).答:外出励学的学生人数是270人,单租45座客车需6辆.(2)根据(1)知,两种客车共租5辆,方案有:①45座车1辆,60座车4辆:共有1×45+4×60=285(座),租金1×250+4×300=1450(元).②45座车2辆,60座车3辆:共有2×45+3×60=270(座),租金2×250+3×300=1400(元).③45座车3辆,60座车2辆:共有3×45+2×60=255(座),不满足每人都有座.④45座车4辆,60座车1辆:共有4×45+1×60=240(座),不满足每人都有座.所以,应选择方案②,即租45座车2辆,60座车3辆,租金最少.【变式训练】公园门票价格规定如表:某校初二(1),(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少学生?(3)如果初二(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【解析】(1)1240-104×9=304(元),即可省304元.(2)设(1)班人数x人,则13×x+11×(104-x)=1240,解得x=48,104-48=56,所以(1)班48人,(2)班56人.(3)48×13=624,51×11=561,所以按每张11元的价格买51张最省钱.【培优训练】8.(14分)某果品公司急需将一批不易存放的水果从A市运到B市销售,现有三家运输公司可供选择,这三家运输公司提供的信息如下:根据表格提供的信息回答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A,B两市间的距离(精确到个位).(2)在(1)的条件下,如果这批水果在包装与装卸以及运输过程中的损耗为300元/h,那么要使果品公司支付的总费用(包装与装卸费用、运输费及损耗三项之和)最少,应选择哪家运输公司?【解析】(1)设A,B两市间的距离为xkm,则三家运输公司包装与装卸及运输的费用分别为:甲公司:(6x+1500)元;乙公司:(8x+1000)元;丙公司:(10x+700)元.根据题意,得(8x+1000)+(10x+700)=2(6x+1500),18x+1700=12x+3000,6x=1300,x≈217.答:A,B两市间的距离约为217km.(2)甲公司所需总费用为:6×217+1500+×300=5087(元).乙公司所需总费用为:8×217+1000+×300=4638(元).丙公司所需总费用为:10×217+700+×300=4421(元).因为5087>4638>4421,所以丙公司所需总费用最少. 答:应选择丙运输公司.。
第03讲一元一次方程的实际应用——行程问题、工程问题、配套问题课程标准学习目标①列方程解应用题的基本步骤②行程问题的基本等量关系与类型③工程问题的基本等量关系④配套问题的等量关系1.掌握列方程解应用题的基本步骤并对其数量应用.2.掌握行程问题的基本等量关系与基本类型,并熟练解决相关题目.3.掌握工程问题的基本等量关系并应用.4.掌握配套问题的基本等量关系并应用.知识点01 列方程解应用题的基本步骤1.列方程解应用题的基本步骤:第一步:审题——仔细审题,找出题目中的等量关系.第二步:设未知数——根据题目的等量关系直接或间接设未知数.第三步:列方程——根据未知数以及等量关系列出一元一次方程.第四步:解方程——根据解方程的步骤解方程.第五步:检验作答.知识点02 行程问题1.行程问题的基本等量关系:路程=速度×时间;时间=路程÷速度;速度=路程÷时间.2.行程问题之相遇问题:①甲、乙同时出发相向而行相遇.如图:等量关系:时间:t甲=t乙;路程:s甲+s乙=s总.②甲、乙同地不同时同向而行相遇.v甲>v乙,乙先出发.如图:等量关系路程:s甲=s乙;时间:t快+t先出发=t慢.3.行程问题之相距问题:①甲、乙同时出发相向而行相遇前相距.如图等量关系时间:t甲=t乙;路程:s甲+s乙+s相距=s总.②甲、乙同时出发相向而行相遇后相距.如图:等量关系:时间:t甲=t乙;路程:s甲+s乙−s相距=s总.①甲、乙先后同地出发同向而行相遇前相距.等量关系:时间:t先−时间差=t后;路程:s后+s相距=s先.②甲、乙向后同地出发同向而行相遇后相距.如图:(慢的先出发)等量关系:时间:t先−时间差=t后;路程:s快−s相距=s慢4.火车过桥进洞问题:车头进到火车车尾出:如图:行驶路程=桥长(洞长)+火车长.车尾进到货车车头出:如图:行驶路程=桥长(洞长)-火车长.5.火车追及错车与相遇错车问题:追及错车问题:如图:等量关系:快车行驶的路程-慢车行驶的路程=两车车长之和.相遇错车问题:如图:两车行驶的路程之和=两车车长之和.6.飞行(行船)问题:顺行速度=飞机自身速度+风速(轮船自身速度+水速).逆行速度=飞机自身速度-风速(轮船自身速度-水速).顺行路程=逆行路程.题型考点:①有实际问题抽象出方程.②方程的实际应用.【即学即练1】1.2021年以来,国务院教育督导委员会指出,要加强中小学生作业、睡眠、手机、读物、体质管理.为强健体魄,小鑫和小磊一起相约健身锻炼,两家相距2600米,小鑫以80米/分钟的速度从家出发,10分钟后,小磊以100米/分钟的速度从家出发.问小磊经过多少分钟与小鑫相遇?设小磊经过x分钟与小鑫相遇,可列方程为()B.D.2.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )A. 75+(120-75)x=270B. 75+(120+75)x=270C. 120(x-1)+75x=270D. 120×+(120+75)x=2703.《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为()A. B. C. D.4.甲、乙两车分别从A、B两地同时出发,相向而行,若快车甲的速度为60km/h,慢车乙的速度比快车甲慢 ,A、B两地相距80km,求两车从出发到相遇所行时间,设 后两车相遇,则根据题意列出方程为( )B. x(x﹣4)=80C. 60x+(60﹣4)x=80D. 60x+60(x﹣4)=805.已知,两地相距15千米,甲每小时走5千米,乙每小时走4千米.甲、乙分别从,两地出发,背向而行,请问几小时后,两人相距60千米?设小时后,两人相距60千米,则下面列出的方程中正确的是()A. B.C. D.6.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()【即学即练2】7.甲、乙两车同时从相距462千米的A、B两地相对开出,3小时后相遇.甲、乙两车的速度比是,甲、乙两车每小时分别行多少千米?8.甲乙两地相距480公里,一列慢车从甲地开出,每小时行60公里,一列快车从乙地开出,每小时行140公里.(1)慢车先开1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?9.小彬和小强每天早晨坚持跑步,小彬每秒跑4m,小强每秒跑6m.(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小强站在百米跑道的起点处,小彬站在他前面10m处,两人同时同向起跑,几秒后小强能追上小彬?10.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度.11.一列火车匀速行驶,经过一条长800米的隧道,从车头开始进入隧道到车尾离开隧道一共需要50秒的时间:在隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是18秒,求该火车的长度为多少米?知识点03 工程问题1.基本等量关系:工作总量=工作时间×工作效率;时间=总量÷效率;效率=总量÷时间实际工作时间=计划工作时间-提前完成时间实际工作量=计划工作量题型考点:①有实际问题抽象出方程.②方程的实际应用.【即学即练1】12.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做个“中国结”,可列方程( )13.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件,设原计划每小时生产个零件,则所列方程正确的是()A. B.14.深圳市对市区主干道进行绿化,现有甲、乙两个施工队,甲施工队有15位工人,乙施工队有25位工人,现计划有变,需要从乙施工队借调x名工人到甲施工队,刚好甲施工队人数是乙施工队人数的3倍,则根据题意列出方程正确的是( )A. B.C. D.【即学即练2】15.方程解应用题:整理一批图书,由一个人做要40小时完成,现计划由一部分人先做4小时,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?16.为保障蔬菜基地种植用水,需要修建若干米灌溉水渠,某施工队计划8天完成任务,在完成一半任务后,遭遇了持续的恶劣天气,每天比原来少修建20米,最后完成任务共用了10天,问施工队共需完成修建灌溉水渠多少米?17.某车间计划加工一批产品.如果每小时加工产品10个,就可以在预定时间完成任务;实际加工两个小时后,提高了加工速度,每小时多加工2个,结果提前1小时完成任务.(1)该产品一共有多少个?(2)若该产品销售时按成本价提高后进行标价,按标价的8折销售时,每个产品仍可以获利15元,这批产品总成本为多少元?知识点04 配套问题1.基本等量关系:实际生产比等于配套比.题型考点:①有实际问题抽象出方程.②方程的实际应用.【即学即练1】18.有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A. B. C. D.19.某口罩厂有50名工人,每人每天可以生产500个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排名工人生产口罩面,则下面所列方程正确的是()A. B.C. D.20.某机械厂加工车间有33名工人,平均每名工人每天加工大齿轮5个或小齿轮15个.已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大,小齿轮,才能刚好配套﹖若设加工大齿轮的工人有x名,则可列方程是()A. B.C. D.【即学即练2】21.某机械厂加工车间有84名工人,平均每人每天加工大齿轮9个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?22.列方程,解应用题:新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有40名工人,每人每天可以生产1000个口罩面或1200根耳绳.一个口罩面需要配两根耳绳,为使每天生产的口罩面与耳绳刚好配套,应安排多少名工人生产口罩面?23.某车间有38名工人,每人每天可以生产1200个甲型零件或2000个乙型零件.2个甲型零件要配3个乙型零件,为使每天生产的两种型号的零件刚好配套,应安排生产甲型零件和乙型零件的工人各多少名?24.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是新调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?25.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为()26.我国明代数学家程大位的名著《算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大和尚有x人,则根据题意可列方程为()C. D.27.一条船往返于甲,乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶,已知船在静水中的速度为,平时逆水航行与顺水航行所用的时间比为,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了.则甲,乙两港之间的距离为()B. D.28.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问多久后甲乙相逢?设乙出发x日,甲乙相逢,则可列方程( )29.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程( )A. 240x=150x+12B. 240x=150x﹣12C. 240x=150(x+12)D. 240x=150(x﹣12)30.某车间有28名工人生产螺丝和螺母,每人每天生产1200个螺丝或1800个螺母,现有x个工人生产螺丝,恰好每天生产的螺母和螺丝按配套.为求x,可列方程()A. B.C. D.31.有一项城市绿化整治任务交甲、乙两个工程队完成,已知甲单独做10天完成,乙单独做8天完成,若甲先做1天,然后甲、乙合作x天后,共同完成任务,则可列方程为()32.轮船从港顺流行驶到港,比从港原路逆流返回港少用3小时,若船在静水中的速度为27千米/时,水流的速度为2千米/时,求港和港相距多少千米?设港和港相距千米.根据题意,可列出的方程是()33.整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排 人工作.34.服装厂生产一批学生校服,已知生产1件上衣需要布料1.5米,生产1条裤子需要布料1米.因为裤子旧得快,要求1件上衣和2条裤子配一套.生产这批校服共用了2016米布料,共生产了 套校服.35.甲、乙两人分别从A两地同时相向而行,当甲走出42千米时,乙恰好走完了A、B12千米,则A、B两地之间距离为 千米.36.甲、乙两人从A,B两地同时出发,沿同一条路线相向匀速行驶,出发后经5小时两人相遇.若乙比甲每小时多行驶30千米,相遇后经2小时乙到达A地.则乙行驶的速度为 km/h.37.客车和货车分别从甲乙两站同时相向开出,5前进,当他们相距千米时,客车行了全程的.(1)全程是多少千米?(2)货车行完全程需要多少小时?38.某厂用铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒.为了充分利用材料,要求制成的盒身和盒底恰好配套.现有151张铁皮,最多可做多个包装盒?为了解决这个问题,小敏设计一种解决方案:把这些铁皮分成两部分,一部分做盒身,一部分做盒盖.(1)请探究小敏设计的方案是否可行?请说明理由.(2)若是你解决这个问题,怎样设计解决方案,使得材料充分利用?请说明理由.39.某公司要生产若干件新产品,需要精加工后,才能投放市场.现在甲、乙两个加工厂都想加工这批产品,已知甲工厂单独加工这批产品比乙工厂单独加工这批产品多用20天,甲工厂每天可加工16件产品,乙工厂每天可加工24件产品.(1)求这个公司要加工新产品的件数.(2)在加工过程中,公司需支付甲工厂每天加工费80元,乙工厂每天加工费120元.公司还需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费.公司制定产品加工方案如下:可由一个工厂单独加工完成,也可由两个工厂合作同时完成.当两个工厂合作时,这名工程师轮流去这两个工厂.请你通过计算帮助公司从所有可供选择的方案中选择一种既省钱,又省时间的加工方案.答案1.D【分析】根据题意列出方程即可求解.【详解】解:设小磊经过x分钟与小鑫相遇,可列方程为故选:D.【点睛】此题考查了一元一次方程的问题,解题的关键是能根据题意列出一元一次方程.2.B【分析】根据相遇问题解答,快车行驶路程加上慢车行驶路程等于全程,即可得到答案【详解】设再经过x小时两车相遇,则75+(120+75)x=270,故选:B【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.3.A【分析】设总路程为1+大雁的路程=总路程即可得出答案.【详解】解:设经过x天相遇,x x=1,)x=1,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.4.C【分析】设 后两车相遇,根据“快车甲的速度为60km/h,慢车乙的速度比快车甲慢 ,A、B两地相距80km,”即可求解.【详解】解:设 后两车相遇,根据题意得:60x+(60﹣4)x=80.故选:C【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.5.C【分析】根据两人相距60千米找出等量关系式列出方程.【详解】根据题意列出等量关系式:,故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是根据题意找出等量关系式列出方程.6.A【分析】设A港和B港相距x千米,根据顺流比逆流少用3小时,列方程即可.【详解】解:设A港和B港相距x千米,,,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.甲、乙两车每小时分别行66千米、88千米【分析】本题主要考查了一元一次方程的实际应用,设甲、乙两车每小时分别行千米、千米,根据路程时间速度列出方程求解即可.【详解】解:设甲、乙两车每小时分别行千米、千米,根据题意得,解得,∴,答:甲、乙两车每小时分别行66千米、88千米.8.(1)快车开出小时后两车相遇;(2)快车开出小时后两车相距600公里.【分析】(1)设快车开出x小时后两车相遇,根据两车行驶路程和为480公里列出方程式即可解题;(2)设快车开出x小时后两车相距600公里,根据快车比慢车每小时多走公里和两车距离增加了公里即可列出方程式,即可解题.(1)小问详解:解:设快车开出x小时后两车相遇,则有,解得:;答:快车开出小时后两车相遇;(2)小问详解:解:设快车开出x小时后两车相距600公里,则有,解得:;答:快车开出小时后两车相距600公里.【点睛】本题考查了一元一次方程的应用,本题中根据每一问的速度和路程列出关于时间的方程式并求解是解题的关键.9.(1)10秒后两人相遇;(2)5秒后小强能追上小彬.【分析】(1)此问利用行程中的相遇问题解答,两人所行路程和等于总路程;(2)此问利用行程中的追及问题解答,两人所行路程差等于两人相距的路程.【详解】解:(1)设x秒后两人相遇根据题意,得(4+6)x=100,解得x=10所以当他们站在百米跑道的两端同时相向起跑,10秒后两人相遇.(2)设y秒后小强能追上小彬根据题意,得6y=4y+10,解得y=5所以5秒后小强能追上小彬.【点睛】此题考查行程问题中相遇问题与追及问题,最基本的数量关系:速度×时间=路程.10.27千米/时【分析】设船在静水中的速度是x,则顺流时的速度为千米/时,逆流时的速度为千米/时,根据往返的路程相等,可得出方程,解出即可.【详解】列方程得:.去括号得:.化简得:.解得:.答:船在静水中的平均速度为27千米/时【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,设出未知数,根据等量关系建立方程.11.该火车的长度为米【分析】利用速度=路程÷时间,结合火车的速度不变,即可得出关于x的一元一次方程,此题得解.【详解】设该火车的长度为米,得:解得,答:该火车的长度为米。
⼈教版七年级上册第3章《⼀元⼀次⽅程》应⽤题分类练习(三)《⼀元⼀次⽅程》应⽤题分类练习(三)⼀.销售问题1.某服装店购进A,B两种新式服装,按标价售出后可获得利润1600元,已知购进B种服装的数量是A种服装数量的2倍,这两种服装的进价、标价如表所⽰:A型B型进价(元/件)60 100标价(元/件)100 160(1)这两种服装各购进了多少件?(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店的利润⽐按标价出售少收⼊多少元?2.华联超市第⼀次⽤7000元购进甲、⼄两种商品,其中甲商品的件数是⼄商品件数的2倍,甲、⼄两种商品的进价和售价如表:(注:获利=售价﹣进价)甲⼄进价(元/件)20 30售价(元/件)25 40 (1)该超市购进甲、⼄两种商品各多少件?(2)该超市将第⼀次购进的甲、⼄两种商品全部卖完后⼀共可获得多少利润?(3)该超市第⼆次以第⼀次的进价⼜购进甲、⼄两种商品,其中甲商品的件数不变,⼄商品的件数是第⼀次的3倍:甲商品按原价销售,⼄商品打折销售,第⼆次两种商品都售完以后获得的总利润⽐第⼀次获得的总利润多800元,求第⼆次⼄商品是按原价打⼏折销售?3.列⽅程解应⽤题:某⽔果店计划购进A、B两种⽔果下表是A、B这两种⽔果的进货价格:⽔果品种A B进货价格(元/kg)10 15(1)若该⽔果店要花费600元同时购进两种⽔果共50kg,则购进A、B两种⽔果各为多少?(2)若⽔果店将A种⽔果的售价定为14元/kg,要使购进的这批⽔果在完全售出后达到50%的利润率,B种⽔果的售价应该定为多少?4.武汉⼤洋百货经销甲、⼄两种服装,甲种服装每件进价500元,售价800元;⼄种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,⼄种服装每件进价为元;(2)若该商场同时购进甲、⼄两种服装共40件,恰好总进价⽤去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉⼤洋百货实⾏“满1000元减500元的优惠”(⽐如:某顾客购物1200元,他只需付款700元).到了晚上⼋点后,⼜推出“先打折”,再参与“满1000元减500元”的活动.张先⽣买了⼀件标价为3200元的⽻绒服,张先⽣发现竟然⽐没打折前多付了20元钱问⼤洋百货商场晚上⼋点后推出的活动是先打多少折之后再参加活动?5.⼀种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过100件部分 2.6元/件超过100件不超过300件部分 2.2元/件超过300件部分2元/件(1)若买100件花元,买300件花元;买380件花元;(2)⼩明买这种商品花了568元,列⽅程求购买这种商品多少件?(3)若⼩明花了n元(n>260),恰好购买0.45n件这种商品,求n的值.⼆.配套问题6.列⽅程解应⽤题:油桶制造⼚的某车间主要负责⽣产制造油桶⽤的圆形铁⽚和长⽅形铁⽚,该车间有⼯⼈42⼈,每个⼯⼈平均每⼩时可以⽣产圆形铁⽚120⽚或者长⽅形铁⽚80⽚.如图,⼀个油桶由两个圆形铁⽚和⼀个长⽅形铁⽚相配套.⽣产圆形铁⽚和长⽅形铁⽚的⼯⼈各为多少⼈时,才能使⽣产的铁⽚恰好配套?7.星光服装⼚接受⽣产⼀些某种型号的学⽣服的订单,已知每3m长的某种布料可做上⾐2件或裤⼦3条,⼀件上⾐和⼀条裤⼦为⼀套,计划⽤750m长的这种布料⽣产学⽣服,应分别⽤多少布料⽣产上⾐和裤⼦才能恰好配套?共能⽣产多少套?8.⾜球表⾯是由若⼲个⿊⾊五边形和⽩⾊六边形⽪块围成的,⿊、⽩⽪块数⽬⽐为3:5,⼀个⾜球表⾯⼀共有32个⽪块,⿊⾊⽪块和⽩⾊⽪块各有多少个?9.包装⼚有⼯⼈42⼈,每个⼯⼈平均每⼩时可以⽣产圆形铁⽚120⽚,或长⽅形铁⽚80⽚,两张圆形铁⽚与⼀张长⽅形铁⽚可配套成⼀个密封圆桶,问每天如何安排⼯⼈⽣产圆形和长⽅形铁⽚能合理地将铁⽚配套?10.⽤铝⽚做听装易拉饮料瓶,每张铝⽚可制瓶⾝16个或瓶底43个,⼀个瓶⾝配两个瓶底.现有150张铝⽚,⽤多少张制瓶⾝,多少张制瓶底,可以正好制成成套的饮料瓶?三.相遇与追击问题11.甲、⼄两⼈同时从A地出发去25km远的B地,甲骑车,⼄步⾏,甲的速度是⼄的速度的3倍,甲到达B地停留40min,然后从B地返回A地,在途中遇见⼄,这时距他们出发的时间恰好为3h.(1)若设⼄的速度为xkm/h,则甲的速度为km/h,甲遇见⼄时,⼄⾛的路程可以表⽰为km,甲⾛的路程可以表⽰为km.(2)两⼈的速度分别是多少?(请⽤⽅程来解决问题)12.“五?⼀”长假⽇,弟弟和妈妈从家⾥出发⼀同去外婆家,他们⾛了1⼩时后,哥哥发现带给外婆的礼品忘在家⾥,便⽴刻带上礼品以每⼩时6千⽶的速度去追,如果弟弟和妈妈每⼩时⾏2千⽶,他们从家⾥到外婆家需要1⼩时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?13.甲、⼄两站相距275千⽶,⼀辆慢车以每⼩时50千⽶的速度从甲站出发开往⼄站.1⼩时后,⼀辆快车以每⼩时75千⽶的速度从⼄站开往甲站.那么快车开出后⼏⼩时与慢车相遇?14.已知甲⼄两⼈在⼀个200⽶的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4⽶,⼄平均每秒跑6⽶,若甲⼄两⼈分别从A、C两处同时相向出发(如图),则:(1)⼏秒后两⼈⾸次相遇?请说出此时他们在跑道上的具体位置;(2)⾸次相遇后,⼜经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪⼀条段跑道上?15.⼩刚和⼩强从A、B两地同时出发,⼩刚骑⾃⾏车,⼩强步⾏,沿同⼀条路线相向匀速⽽⾏,出发后2h两⼈相遇,相遇时⼩刚⽐⼩强多⾏进24km,相遇后0.5h⼩刚到达B 地,两⼈的⾏进速度分别是多少?相遇后经过多少时间⼩强到达A地?四.年龄问题16.古希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他⽣命的六分之⼀是幸福的童年;再活了他⽣命的⼗⼆分之⼀,两颊长起了细细的胡须;他结了婚,⼜度过了⼀⽣的七分之⼀;再过五年,他有了⼉⼦,感到很幸福;可是⼉⼦只活了他⽗亲全部年龄的⼀半;⼉⼦死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:(1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄;(3)⼉⼦死时丢番图的年龄.17.今年⼩李的年龄是他爷爷年龄的五分之⼀,⼩李发现:12年之后,他的年龄变成爷爷的年龄三分之⼀.求⼩李爷爷今年的年龄.参考答案1.解:(1)设A种服装购进x件,则B种服装购进2x件,(100﹣60)x+2x(160﹣100)=1600,解得:x=10,∴2x=20,答:A种服装购进10件,B种服装购进20件;(2)打折后利润为:10×(100×0.8﹣60)+20×(160×0.7﹣100)=200+240=440(元),少收⼊⾦额为:1600﹣440=1160(元),答:服装店的利润⽐按标价出售少收⼊1160元.2.解:(1)设第⼀次购进⼄种商品x件,则购进甲种商品2x件,根据题意得:20×2x+30x=7000,解得:x=100,∴2x=200件,答:该超市第⼀次购进甲种商品200件,⼄种商品100件.(2)(25﹣20)×200+(40﹣30)×100=2000(元)答:该超市将第⼀次购进的甲、⼄两种商品全部卖完后⼀共可获得利润2000元.(3)⽅法⼀:设第⼆次⼄种商品是按原价打y折销售根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,解得:y=9答:第⼆次⼄商品是按原价打9折销售.⽅法⼆:设第⼆次⼄种商品每件售价为y元,根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,解得:y=36×100%=90%答:第⼆次⼄商品是按原价打9折销售.⽅法三:2000+800﹣100×3=1800元∴=6,∴×100%=90%,答:第⼆次⼄商品是按原价打9折销售.3.解:(1)设购进A⽔果x千克,则购进B⽔果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A⽔果30千克,购进B⽔果20千克;(2)设B种⽔果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种⽔果的售价应该定为24元/千克.4.解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为=60%.∵⼄种服装商品每件售价1200元,可盈利50%.∴⼄种服装每件进价为=800(元),故答案为:60%,800;(2)设甲种服装进了x件,则⼄种服装进了(40﹣x)件,由题意得,500x+800(40﹣x)=27500,解得:x=15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y折之后再参加活动.①打折后价格满2000元少于3000元=3200﹣3×500+20.解得:y=8.5.②打折后价格满1000元少于2000元,解得y=6.9(不合题意,舍去).③打折后价格不满1000元3200×,解得y=5.3(不合题意,舍去).答:先打⼋五折再参加活动.5.解:(1)买100件花:2.6×100=260(元)买300件花:2.6×100+2.2×200=700(元)买380件花:2.6×100+2.2×200+2×80=860(元)故答案为:260,700,860(2)设购买这种商品x件因为花费568<700,所以购买的件数少于300件.260+2.2(x﹣100)=568解得:x=240答:购买这种商品240件(3)①当260<n≤700时260+2.2(0.45n﹣100)=n解得:n=4000(不符合题意,舍去)②当n>700时700+2(0.45n﹣300)=n解得:n=1000综上所述:n的值为10006.解:设⽣产圆形铁⽚的⼯⼈为x⼈,则⽣产长⽅形铁⽚的⼯⼈为42﹣x⼈,根据题意可列⽅程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:⽣产圆形铁⽚的有24⼈,⽣产长⽅形铁⽚的有18⼈.7.解:设做上⾐需要xm,则做裤⼦为(750﹣x)m,故可做上⾐×2,做裤⼦×3,由题意得,=750﹣x,解得:x=450,答:⽤450m做上⾐,300m做裤⼦恰好配套.=300(套),因此共做300套.8.解:设⿊⾊⽪块有3x个,则⽩⾊⽪块有5x 个,根据题意列⽅程:3x+5x=32,解得:x=4,则⿊⾊⽪块有:3x=12个,⽩⾊⽪块有:5x=20个.答:⿊⾊⽪块有12个,⽩⾊⽪块有20个.9.解:设安排x⼈⽣产长⽅形铁⽚,则⽣产圆形铁⽚的⼈数为(42﹣x)⼈,由题意得:120(42﹣x)=2×80x,去括号,得5040﹣120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42﹣18=24(⼈);答:安排24⼈⽣产圆形铁⽚,18⼈⽣产长⽅形铁⽚能合理地将铁⽚配套.10.解:设⽤x张铝⽚做瓶⾝,则⽤(150﹣x)张铝⽚做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则⽤150﹣86=64张铝⽚做瓶底.答:⽤86张铝⽚做瓶⾝,则⽤64张铝⽚做瓶底.11.解:(1)若设⼄的速度为xkm/h,则甲的速度为3xkm/h,甲遇见⼄时,⼄⾛的路程可以表⽰为3xkm,甲⾛的路程可以表⽰为(3﹣)×3x=7xkm.(2)7x+3x=25×2,10x=50,x=5,3x=15.答:甲的速度是15千⽶/⼩时,⼄的速度是5千⽶/⼩时.故答案为:3x,3x,7x.12.解:设哥哥追上弟弟需要x⼩时.由题意得:6x=2+2x,解这个⽅程得:.∴弟弟⾏⾛了=1⼩时30分<1⼩时45分,未到外婆家,答:哥哥能够追上.13.解:设快车开出后x⼩时与慢车相遇.由题意得:50(1+x)+75x=275,解得:.答:快车开出后⼩时与慢车相遇.14.解:(1)设x秒后两⼈⾸次相遇,依题意得到⽅程4x+6x=100.解得x=10.甲跑的路程=4×10=40⽶,答:10秒后两⼈⾸次相遇,此时他们在直道AB上,且离B点10⽶的位置;(2)设y秒后两⼈再次相遇,依题意得到⽅程4y+6y=200.解得y=20.答:20秒后两⼈再次相遇;(3)第1次相遇,总⽤时10秒,第2次相遇,总⽤时10+20×1,即30秒,第3次相遇,总⽤时10+20×2,即50秒,第100次相遇,总⽤时10+20×99,即1990秒,则此时甲跑的圈数为1990×4÷200=39.8,200×0.8=160⽶,此时甲在AD弯道上.15.解:设⼩刚的速度为xkm/h,则相遇时⼩刚⾛了2xkm,⼩强⾛了(2x﹣24)km,由题意得,2x﹣24=0.5x,解得:x=16,则⼩强的速度为:(2×16﹣24)÷2=4(km/h),2×16÷4=8(h).答:两⼈的⾏进速度分别是16km/h,4km/h,相遇后经过8h⼩强到达A地.16.解:设丢番图的寿命为x岁,由题意得:x+x+x+5+x+4=x,解得:x=84,⽽×84+×84+×84+5=38,即他38岁时有了⼉⼦.他⼉⼦活了x=42岁.84﹣4=80岁.答:丢番图的寿命是84岁;丢番图开始当爸爸时的年龄是38;⼉⼦死时丢番图的年龄是80岁.17.解:设爷爷今年的年龄是x岁,则今年⼩李的年龄是x岁,依题意,得:x+12=(x+12),解得:x=60.答:爷爷今年60岁.。
一元一次方程应用题(3)学习目标:进一步学习实际问题与一元一次方程的应用问题,深入全面探究行程问题,还有年龄问题、浓度问题、利息问题、数字问题等。
学习重难点:掌握不同类型问题的数量关系和相等关系,熟练解一元一次方程应用题的一般步骤。
行程问题一、一般行程问题(相遇与追击问题)例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙……直到甲、乙相遇,求小狗所走的路程。
例3、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为17.5千米/时,乙的速度为15千米/时,经过几小时两人相距32.5千米?练习1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。
3、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?4、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?5、甲、乙两人环湖竞走比赛,环湖一周400米,乙每分钟走80米,甲的速度是乙的速度的,现甲、乙两人相距100米,多少分钟后两人首次相遇?二、环行跑道与时钟问题:例1、在6点和7点之间,什么时刻时钟的分针和时针重合?例2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?练习1、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵成平角;⑶成直角;4、某钟表每小时比标准时间慢3分钟。
6.4 一元一次方程的应用(3)班级姓名学号【学习目标/难点重点】会解决有关行程问题的实际应用问题,一、课前复习:1.路程、速度、时间三者关系:路程=,时间=,速度= .2.相遇问题、追及问题相向而行相遇时的等量关系:快者的路程慢者的路程=两人初相距的路程;同向而行追及时的等量关系:快者的路程慢者的路程=两人初相距的路程.例题1:甲、乙两站间的路程为360㎞,一列慢车从甲站开出,每小时行驶48㎞;一列快车从乙站开出,每小时行驶72㎞.1)两列火车同时开出,相向而行,经过多少小时相遇?2)快车先开25分钟,两车相向而行,慢车行驶了多少小时相练习1:甲、乙两人骑自行车同时从相距65㎞的两地相向而行,2小时相遇,甲比乙每小时多骑2.5㎞,求乙的速度?例题2:如右图:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点出发,问几分钟后,小丽与小杰第一次相遇?变式1:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点反向而跑,问几分钟后,小丽与小杰第一次相遇?变式2:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点出发,问几分钟后,小丽与小杰第一次相遇?课课精炼一、填空题1.A、B两地相距320千米,甲、乙两车分别以32千米/小时和48千米/小时的速度同时从A、B两地相向出发,x小时后相遇,则列方程为 .2.一环形跑道长400米,甲练习跑步,平均每分钟跑120米;乙骑自行车,每分钟行驶280米.若两人同时同向从同地出发,经过x分钟相遇,则列方程为 .二、选择题3.甲、乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑5米那么甲追上乙需()A.15秒B.13秒C.10秒D.9秒三、应用题4.在800米圆形跑道上有两人练中长跑,甲每分钟跑220米,乙每分钟跑280米.1)若两人同时同地反向起跑,几分钟后第一次相遇?2)若两人同时同地同向起跑,几分钟后第一次相遇?5.甲、乙两地相距160km,一人骑自行车从甲地出发,速度为20km/h;另一人骑摩托车从乙城出发,速度是自行车速度的3倍,两人同时出发,相向而行,经过多少时间相遇?6.在航模比赛中,第一架飞机比第二架飞机少飞行480米,已知第一架飞机的速度比第二架飞机的速度快1米/秒,两架飞机在空中飞行的时间分别为12分和16分,求两架飞机的各飞行了多少距离?7.一队学生去校外进行野外长跑训练。
第13讲一元一次方程的实际应用(三)【板块一】积分问题方法技巧1.根据已知条件或积分表中隐含的条件,得出胜1场,平1场,负1场所得的积分.2.相等关系:胜场总积分十平场总积分十负场总积分=最终积分.题型一已知胜1场,平1场,负1场的积分【例1】某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?【练1】为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九(1)班在8场比赛中得到13分,问九(1)班胜、负场数分别是多少?题型二通过积分表求胜1场,平1场,负1场的积分【例2】下表为中国足球超级联赛第27轮部分积分榜:(1(2)若第27轮后,某队积分54分,胜场是负场的整数倍,问该队胜几场?【练2】下表是欧洲足球冠军杯第一阶段G组赛(每个队分别与其它三个队进行主客比赛各一场,即每个队进行6场比赛)积分表的一个部分,本次足球小组赛中切尔西队总积分为多少分?针对练习11.爷爷和孙子下棋,爷爷赢一盘记2分,孙子赢一盘记3分,平局时爷爷记0分,孙子记2分,下了14盘后两人得分相等(其中平局2盘),则爷爷赢了()A.6盘B.7盘C.8盘D.9盘2.当今世界杯足球赛的积分如下:赢一场得3分,平一场得1分,输一场得0分,某小组四个队进行单循环赛后,其中某队积7分,若该队赢了x场,平了y场,则(x,y)是()A.(1,4)B.(2,1)C.(0,7)D.(3,-2)3.小明是班级的篮球明星,在一场比赛中,他一人独得23分(没有罚球得分),如果他投进2分球比3分球多4个,那么他在这场比赛中投进的2分球有个.4.某次综合实践竞赛共有26道题目,规则是:答对1题得3分,答错1题扣1分,不答得0分,第一小队共有5题没有回答,得了51分,那么该队共答对了道题.5.在一次有7个队参加的足球循环赛(每两个队之间赛且只赛一场)中,规定胜一场记3分,平一场记1分,负一场记0分,某队在这次循环赛中所胜场数比负场数多2场.结果共积11分,问该队战平几场?【板块二】分段计费问题◇方法技巧◇1.常见的分段收费:水费,电费,煤气费,个人所得税,打折销售等.2.相等关系:第一段费用十第二段费用+…=总费用.题型一分段计费问题【例3】为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?【练3】为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份用电量,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?题型二打折销售问题【例4】已知A,B两家商店的随身听的单价相同,书包的单价也相同,随身听和书包的单价之和为452元,且随身听的单价比书包的单价的4倍少8元.(1)问随身听和书包的单价各是多少元?(2)现在这两家商店搞促销,促销方式如下:商店A:所有的商品打八折销售;商店B:每购物满100元,立即返还25元(例如,购物205元,则立即返还50元).小明身上带了400元钱,想买随身听和书包各一个,那么,他应该选择在哪一家商店购买更省钱?【练4】某原料供应商对购买其原料的顾客实行如下优惠办法:①一次购买金额(称为应付款,下向)不超过1万元不予优惠;②一次购买金额超过1万元,但不超过3万元,给九折优惠;③一次购买金额超过3万元的,其中3万元九折优惠,超过3万元的部分给予八折优惠.(1)若顾客第一次购买原料应付款8000元,第二次应付款24000元,则实际共付款元;若他是一次购买同样数量的原料,则实际付款元;(2)某厂因库容原因,第一次在该供应商处购买原料实际付款若干元,第二次购买实际付款26100元,如果他是一次购买同样数量的原料,则实际付款可少付金额为1540元,只知第一次购买的原材料应付款不超过1万元,问第一次到底花费多少钱?针对练习21.某出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是()A.13 B.11 C.9 D.72.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米,按每立方米a 元收费;用水超过10立方米的,超过部分加倍收费.某职工6月份缴水费16a元,则该职工6月份实际用水量为( )A.13立方米B.14立方米C.15立方米D.16立方米3.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费( )A.60元B.66元C.75元D.78元4.行李托运费用的计算方法:当行李的重量不超过40千克时,每千克收费1元;超过40千克时,超过的部分每千克2元,某旅客托运了x千克的行李.(1)请用x的代数式表示托运行李的费用;(2)当x=60时,求托运行李的费用.【板块三】方案设计问题◆方法技巧◆1.选择方案时,先列一元一次方程求出两种方案费用相等时,变量的取值,再根据题意,选择合理的方案.2.设计最佳方案时,经常将题目中提供的两种方案结合起来,才能设计出最佳方案.题型一选择购物商场方案【例5】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?【练5】国庆节期间,某地的李老师带领部分生物兴趣小组的同学租用商务车到微山湖湿地公园进行野外生物调查,每张车票原价是30元,甲车车主说:“乘坐我的车可以打折8折(即原价的80%)优惠”.乙车车主说:“乘坐我的车只要超过6人,超过的人数一律按半价收费.”(1)如果李老师带领x(x>6)名同学去微山湖湿地公园则租用甲车和乙车的费用分别是多少元?(2)如果李老师带领10名同学去微山湖湿地公园,则租用哪辆车比较合算?(3)如果租用甲车和乙车的费用相等,试估算出李老师应带几名同学去(直接写出答案,不必写过程)题型二选择购买门票方高【例6】公园门票价格规定如下表:某校七(1)都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【练6】为庆祝“六一“儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.题型三设计生产天数方案【例7】一牛奶制品厂现有鲜奶9吨.若将这批鲜奶制成酸奶销售,则加工1吨鲜奶可获利1200元;若制成奶粉销售,则加工1吨鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3吨;若专门生产奶粉,则每天可用去鲜奶1吨.由于受人员和设备的限制,酸奶和奶粉两种产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕,假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?【练7】某公司以每吨600元的价格收购了100吨某种药材,若直拉在市场上销售每吨的售价为1000元,该公司决定加工后再出售,相关信息如下表所示:(受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利多少元?(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利多少元?(3)若部分粗加工,部分精加工,恰好10天完成,可获利多少元?针对练习31.为庆祝文峰商场正式营业三周年,商场推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠;方案二:如交纳300元会费成为该商场会员,则所有商品价格可获九折优惠.以x(元)表示商品价格.(1)若按方案一购买,需付款元(用含x的代数式表示),若按方案二购买,需付款元(用含x的代数式表示);(2)若某人计划在商场购买价格为5880元的电视机一台,请分析选择哪种方案更省钱.2.某开发公司生产若干件某种新产品需要加工后才能投放市场.现有甲、乙两个加工厂都想加工这批产品.已知甲、乙两个工厂每天分别能加工这种产品16件和24件,且知单独加工这批产品甲厂比乙厂要多用20天,又知若由甲厂单独做,公司需付甲厂每天费用80元;若由乙厂单独做,公司需付乙厂每天费用120元. (1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个厂家单独完成,也可以由两个厂家同时合作完成,但在加工过程中,公司派一名工程师到厂进行技术指导,并由公司为其提供每天5元的午餐补助费,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.。
一元一次方程应用题8种类型引言一元一次方程是初中数学中最基础、最常见的方程类型之一。
在实际生活中,我们可以经常遇到一些问题需要用到一元一次方程来求解。
本文将介绍一元一次方程应用题的8种类型,并通过具体例子进行解析。
通过学习这些例题,我们可以更好地理解一元一次方程的应用。
类型一:简单乘除法在这类问题中,我们可以利用一元一次方程来解决乘除法的运算问题。
举例如下:例题一:小明买了三个相同价格的苹果,花了50元。
那么每个苹果的价格是多少?解析:设每个苹果的价格为x元,则有3x = 50。
解这个方程,得到每个苹果的价格为50/3 = 16.67元。
类型二:加减法在这类问题中,我们可以利用一元一次方程来解决加减法的运算问题。
举例如下:例题二:在一张长方形的图纸上,长所占的比例是宽的2倍。
如果长为8厘米,那么宽是多少?解析:设宽为x厘米,则有8 = 2x。
解这个方程,得到宽为4厘米。
类型三:平均数在这类问题中,我们可以利用一元一次方程来解决平均数的问题。
举例如下:例题三:小明连续三天每天跑步,第一天跑了3公里,第三天跑了7公里,三天的平均距离是5公里。
那么第二天跑了多少公里?解析:设第二天跑了x公里,则有(3 + x + 7)/3 = 5。
解这个方程,得到第二天跑了5公里。
类型四:速度在这类问题中,我们可以利用一元一次方程来解决速度问题。
举例如下:例题四:小红骑自行车去学校的路上,遇到了红绿灯,等了30秒后才能继续骑行,这时她发现她在等红绿灯的时候又走了200米。
如果她骑自行车的速度是10米/秒,那么她离开红绿灯时与红绿灯的距离是多少?解析:设她离开红绿灯时与红绿灯的距离为x米,则有10 * 30 = x + 200。
解这个方程,得到她离开红绿灯时与红绿灯的距离是500米。
类型五:价格打折在这类问题中,我们可以利用一元一次方程来解决打折问题。
举例如下:例题五:商场举办打折活动,凡购买两件以上商品的顾客可以享受8折优惠。
新人教版七年级数学上册 3.4 《一元一次方程的应用》教学设计3一. 教材分析新人教版七年级数学上册3.4《一元一次方程的应用》是学生在掌握了方程的解法和基本性质的基础上进行学习的内容。
这一节内容主要让学生学会如何运用一元一次方程解决实际问题,培养学生的数学应用能力。
教材通过实例引入方程,使学生了解方程在实际生活中的重要性,进而引导学生掌握一元一次方程的解法和应用。
二. 学情分析学生在学习本节内容前,已经掌握了方程的基本概念和性质,对解一元一次方程也有一定的了解。
但部分学生可能对实际问题转化为方程的能力较弱,对生活中的实际问题缺乏敏感度。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.让学生掌握一元一次方程的应用,能够将实际问题转化为方程,并求解。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:让学生学会将实际问题转化为方程,并求解。
2.难点:如何引导学生将实际问题转化为方程,培养学生解决实际问题的能力。
五. 教学方法1.采用问题驱动法,让学生在解决实际问题的过程中,自然而然地引入方程。
2.使用实例讲解,让学生直观地了解方程在实际生活中的应用。
3.采用分组讨论法,让学生在小组内共同探讨实际问题的解决方法,培养学生的团队协作能力。
4.运用引导发现法,引导学生发现实际问题与方程之间的联系,培养学生自主学习的能力。
六. 教学准备1.准备相关的实际问题,用于引导学生学习一元一次方程的应用。
2.准备多媒体教学设备,用于展示实例和讲解。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如购物问题、速度问题等,引导学生发现这些问题都可以用方程来表示。
让学生认识到方程在实际生活中的重要性。
2.呈现(10分钟)教师通过讲解实例,向学生展示如何将实际问题转化为方程,并求解。
一元一次方程的应用(3)教学设计一、内容和内容解析:1. 内容: 行程问题.2. 内容解析:行程问题在生活中有广泛的应用.教科书以此为载体展现了利用线段图分析数量关系、建立方程的策略,丰富学生利用方程解决实际问题的经验.行程问题涉及一个常见的基本数量关系“路程=速度Ⅹ时间”,由此可以导出其他关系.二、目标和目标解析:1.目标:(1)知识技能:找到等量关系,列出方程.(2)数学思考:分析题意,怎么找到等量关系.(3)解决问题:通过画线段图,找到等量关系.(4)情感态度:通过行程问题的学习,用到了转化的数学思想,加强了学生对于文字语言、图形语言和符号语言之间的转化.2.目标解析:达成目标的标志是:学生会画线段图,能找到等量关系,会列出方程解决实际问题.三、教学问题诊断分析:学生虽然学过用一元一次方程来解决实际问题,但是对于方程的应用未必深刻.本节课将使用一元一次方程解决行程问题,继续加深学生对方程思想的理解.重点 : 根据“行程问题”的等量关系,列方程.难点:正确分析实际问题中的等量关系.四、教学过程设计:1 情境导入:通过观看小视频,我们了解到:某某县存在大型的粮食生产基地,让学生对于家乡有自豪感,启迪学生要热爱自己的家乡,进行德育教育.从中产生了一个问题:某某县目前拥有很大规模的小麦生产基地.有一批小麦需要甲、乙两个运输车往加工厂运送.甲车速度为40千米/小时,乙车速度为60千米/小时.甲车从基地先走0.5小时后,乙车再走.问:乙车多长时间能追上甲车?教师问: 这个问题容易直接列出算式计算吗?引出:需要借助方程来解决实际问题.复习:用一元一次方程解决实际问题的一般步骤是什么?来看一段微课。
我们已经知道了一般步骤,学已致用,一块来解决一个问题吧:2 新课探知:小明每天在早上7:50之前赶到距家1000米的学校,一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘带语文课本,于是,爸爸立即以180米/分钟的速度去追小明,并且在途中追上了他.(1). 爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?思考:1.我们可以设爸爸追上小明用了x分钟.2.小明行走的路程分为两段?分别用代数式80×5,80x来表示. 小明爸爸行走路程用代数式180x来表示.3.由题意得:两个人走的路程相同.4.这个问题的等量关系是小明行走的路程等于小明爸爸走的路程(文字语言)(学生自主完成,小组合作,展示)教师点评,给出线段图和解答步骤.强调画线段图是得到等量关系的重要方法.解:(1)设爸爸追上小明用了x分钟根据题意,得:180x=80x+80×5解这个方程,得:x=4答:爸爸追上小明用了4分钟.(2) 180×4=720(米)1000-720=280(米)答:追上小明时,距离学校还有280米.变式1:如果小明爸爸立即以120米/分钟的速度去追小明(其他条件不变),小明爸爸在上学途中能追上小明吗?(学生自主完成,小组合作,展示)老师给出线段图和解答过程.解:设爸爸追上小明用了x分钟根据题意,得:120x=80x+80×5解这个方程,得:x=10120×10=1200(米)因为1200>1000,所以爸爸在上学途中没追上小明.变式 2 放学后,小明以80米 /分钟的速度从学校往家走,小明的爸爸以120米/分钟的速度从家往学校走,几分钟后两人会相遇?(学生自主完成,小组合作,展示)老师给出线段图和解答过程。
一、解答题(共30小题)1、(2005•安徽)张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.2、(2004•玉溪)某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?3、(2004•宜昌)小资料煤炭属于紧缺的不可再生资源,我国电能大部分来源于用煤炭火力发电,每吨煤平均可发2500度(千瓦时)电.全国2003年发电量约为19000亿度,从发电到用电的过程大约有1%的电能损耗.问题:(1)若全国2003年比2002年的发电量增长了15%,则通过计算可知2002年发电量约为多少亿度?(结果保留5个有效数字)(2)有资料介绍全国2002年发电量约为165百亿度,对比由(1)得到的结果,这两个值是否有一个错误?请简要说明你的认识;(3)假设全国2004年预估社会用电需求比上年的用电量增加m亿度,若采取节电限电措施减少预估用电需求的4%后,恰好与2004年的计划发电量相等,而2004年的计划发电量比上年的发电量增加了m亿度,请你测算2004年因节减用电量(不再考虑电能损耗)而减少的用煤量最多可能达到多少?4、(2004•徐州)我市某乡规定:种粮的农户均按每亩年产量750公斤、每公斤售价1.1元来计算每亩的年产值.年产值乘农业税的税率就是应缴的农业税,另外还要按农业税的20%上缴“农业税附加”(“农业税附加”主要用于村级组织的正常运转需要).(1)去年我市农业税的税率为7%,王老汉一家种了10亩水稻,他一共要上缴多少元?(2)今年,国家为了减轻农民负担,鼓励种粮,降低了农业税税率,并且每亩水稻由国家直接补贴20元(可抵缴税款).王老汉今年仍种10亩水稻,他掰着手指一算,高兴地说:“这样一减一补,今年可以比去年少缴497元.”请你求出今年我市的农业税的税率是多少?(要有解题过程)5、(2004•潍坊)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?6、(2004•遂宁)阅读以下材料:滨江市区内的出租车从2004年“5•1”节后开始调整价格.“5•1”前的价格是:起步价3元,行驶2千米后,每增加1千米加收1.4元,不足1千米的按1千米计算.如顾客乘车2.5千米,需付款3+1.4=4.4元;“5•1”后的价格是:起步价2元,行驶1.4千米后,每增加600米加收1元,不足600米的按600米计算,如顾客乘车2.5千米,需付款2+1+1=4元.(1)以上材料,填写下表:(2)小方从家里坐出租车到A地郊游,“5•1”前需10元钱,“5•1”后仍需10元钱,那么小方的家距A地路程大约_________.(从下列四个答案中选取,填入序号)①5.5千米②6.1千米③6.7千米④7.3千米.7、(2004•黄冈)(1)在2004年6月的日历中(见图),任意圈出一竖列上相邻的三个数,设中间的一个为a,则用含a的代数式表示这三个数(从小到大排列)分别是_________;(2)连续的自然数1至2004按图中的方式派成一个长方形阵列,用一个正方形框出16个数(如图)①图中框出的这16个数之和是_________;②在上图中,要使一个正方形框出的16个数之和分别等于2000、2004,是否可能?若不可能,试说明理由.若有可能,请求出该正方形框出的16个数中的最小数与最大数.8、(2004•海淀区)2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提9、(2004•常州)某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?10、(2004•长春)小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.11、(2003•资阳)已知有12名旅客要从A地赶往40千米外的火车站B乘车外出旅游,列车还有3个小时从B站出站,且他们只有一辆准载4人的小汽车可以利用.设他们的步行速度是每小时4千米,汽车的行驶速度为每小时60千米.(1)若只用汽车接送,12人都不步行,他们能完全同时乘上这次列车吗?(2)试设计一种由A地赶往B站的方案,使这些旅客都能同时乘上这次列车.按此方案,这12名旅客全部到达B 站时,列车还有多少时间就要出站?(所设方案若能使全部旅客同时乘上这次列车即可.若能使全部旅客提前20分钟以上时间到达B站,可得2分加分,但全卷总分不超过100分.)注:用汽车接送旅客时,不计旅客上下车时间.12、(2003•盐城)到2002年底,沿海某市共有未被开发的滩涂约510万亩,在海潮的作用下,如果今后二十年内,滩涂平均每年以2万亩的速度向东淤长增加.为了达到既保护环境,又发展经济的目的,从2003年初起,每年开发0.8万亩.(1)问多少年后,该市未被开发的滩涂总面积可超过528万亩?(2)由于环境得到了保护,预计该市的滩涂旅游业每年将比上一年增加收入200万元;开发的滩涂,从第三年起开始收益,每年每亩可获收入400元.问:要经过多少年,仅这两项收入将使该市全年的收入比2002年多3520万元?13、(2003•无锡)某商场为提高彩电销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额=基本工资+奖励工资.每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如表1所示.(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲本月的销售额为多少元?(2)依法纳税是每个公民应尽的义务,根据我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”.表2是缴纳个人所得税税率表,若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后实际得到的工资为1275元,又知A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,请问销售员乙本月销售A型彩电多少台?14、(2003•宁夏)列方程(组)解下列应用题:(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂六、七两月产量平均增长的百分率是多少?15、(2003•湖州)“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利_________元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利_________元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.16、(2003•桂林)阅读下列材料:十六大提出全面建设小康社会.国际上常用恩格尔系数(记作n)来衡量一个国家和地区人民生活水平的状况,它的计算公式为:n=×100%,各类家庭的恩格尔系数如下表所示:根据上述材料,解答下列问题:某校初三学生对我市一个乡的农民家庭进行抽样调查.从1997年至2002年间,该乡每户家庭消费支出总额每年平均增加500元,其中食品消费支出总额每年平均增加200元.1997年该乡农民家庭平均刚达到温饱水平,已知该年每户家庭消费支出总额平均为8000元.(1)1997年该乡平均每户家庭食品消费支出总额为多少元?(2)设从1997年起m年后该乡平均每户的恩格尔系数为n m(m为正整数),请用m的代数式表示该乡平均每户当年的恩格尔系数n m,并利用这个公式计算2003年该乡平均每户的恩格尔系数.(百分号前保留整数)(3)按这样的发展,该乡将于哪年开始进入小康家庭生活?该乡农民能否实现十六大提出的2020年我国全面进入小康社会的目标?17、(2003•广东)某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价﹣进货价).问该文具每件的进货价是多少元?18、(2003•北京)在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“一环路车流量为每小时4000辆”;乙同学说:“三环路比二环路车流量每小时多800辆”;丙同学说:“二环路车流量的3倍与三环路车流量的差是一环路车流量的2倍”.请你根据他们所提供的信息,求出高峰时段二环路、三环路的车流量分别是多少辆?19、(2002•漳州)为赴韩国观看中国足球队参加世界杯比赛,8名球迷分别乘坐两辆小汽车一起赶入飞机场.其中一辆小汽车在距机场15千米的地方出了故障,此时,距规定到达机场的时间仅剩42分钟,但唯一可以使用的交通工具只有一辆小汽车,连司机在内限乘坐5人.这辆汽车分两批送这8人去机场,平均速度60千米/时.现拟两种方案,问是否都能使8名球迷在规定的时间内赶到机场?请通过计算说明理由.方案一:小汽车送走第一批人后,第二批人在原地等待汽车返回接送;方案二:小汽车送走第一批人的同时,第二批人以5千米/时的平均速度往机场方向步行,等途中遇返回的汽车时上车前行.(此问必须用一元一次方程来解)20、(2002•宜昌)在“三峡明珠”宜昌市蕴含着丰富的水电、旅游资源,建有三峡工程等多座大型水电站,随着2003年三峡工程首批机组发电,估计当年将有200万人次来参观三峡大坝(参观门票按每张50元计)由此获得的旅游总收入可达到7.02亿元,相当于当年三峡工程发电总收入的26%,(每度电收入按0.1元计),据测算,每度电可创产值5元,而每10万元产值就可以提供一个就业岗位,待三峡工程全部建成后,其年发电量比2003年宜昌市所有水电站的年发电总量还多了75%,并且是2003年宜昌市除三峡工程以外的其它水电站的年发电量总和的4倍,(1)旅游部门测算旅游总收入是以门票为基础,再按一定比值确定其它收入(吃、住、行、购物、娱乐的收入),两者之和即为旅游总收入,请你确定其它收入与门票收入的比值;(2)请你评估三峡工程全部完工后,由三峡工程年发电量而提供的就业岗位每年有多少个?21、(2002•宜昌)近年来,宜宾市教育技术装备水平迅速提高,特别是以计算机为核心的现代化装备取得了突破性发展,中小学每百人计算机拥有量在全省处于领先位置,全市中小学装备领先的总台数由1996年的1040台直线上升到2000年的11600台,若1997到2000年每年比上一年增加的计算机台数都相同,按此速度继续增加,到2003年宜宾市中小学装备计算机的总台数是多少?22、(2002•深圳)我国很多城市水资源缺乏,为了加强居民的节水意识,合理利用水资源,很多城市制定了用水收费标准.A市规定了每户每月的标准用水量,不超过标准用水量的部分按每立方米1.2元收费,超过标准用水量的部分按每立方米3元收费.该市张大爷家5月份用水9立方米,需交费16.2元.A市规定的每户每月标准用水量是多少立方米?23、(2002•汕头)“水是生命之源”,某市自来水公司为鼓励企业节结用水,按以下规定收取水费:若每户每月用水不超过40吨,则每吨水按1元收费,若每户用水超过40吨,则超过部分按每吨1.5元收费.另外,每吨用水加收0.2元的城市污水处理费.自来水公司收费处规定用户每两个月交一次用水费用(注:用水费用=水费+城市污水处理费).某企业每月用水都超过40吨,已知今年三、四两个月一共交水费640元,问:(1)该企业三、四两个月共用水多少吨?(2)这两个月平均用水费用每吨多少元?24、(2002•陕西)某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该产品每件的成本价应降低多少元?25、(2002•宁德)为了鼓舞中国国奥队在2008年奥运会上取得好成绩,曙光体育器材厂赠送给中国国奥队一批足球.若足球队每人领一个则少6个球,每二人领一个则余6个球,问这批足球共有多少个?某队员领到足球后十分高兴,就仔细研究起足球上的黑白块(如图),结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?26、(2002•南昌)有一个只许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟到达学校,从节省时考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?27、(2002•泸州)某校组织师生去参观三峡工程建设,如果单独租用30座客车若干辆,则好坐满;如果单独租用40坐客车,可少租一辆,且余20个坐位,求该校参观三峡建设的人数.28、(2002•金华)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加.(1)根据图中所提供的信息,回答下列问题:2006年底的绿地面积为_________公顷,比2005年底增加了_________公顷;在2004年,2005年,2006年这三年中,绿地面积增加最多的是_________年;(2)为满足城市发展的需要,计划到2008年底使城区绿地总面积达到72.6公顷,试求2008年底绿地面积对2006年底的增长率.29、(2002•河北)如下图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?30、(2001•宁夏)列方程解应用题:某工程公司要在银川市铺设一条地下天然气管道,为使工程提前5天完成,需将原定的工作效率提高10%,那么原计划完成这项工程需要多少天?答案与评分标准一、解答题(共30小题)1、(2005•安徽)张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.考点:一元一次方程的应用。
第3课时比例问题和其他问题【知识与技能】1.通过分析复杂问题的已知量和未知量之间的相等关系,从而建立方程模型解决实际问题.2.掌握运用一元一次方程解决实际问题的一般步骤.【过程与方法】通过学习列方程解决实际问题,感知数学在生活中的作用,发展分析问题,解决问题的能力.【情感态度】结合本课教学特点,对学生进行爱心教育.【教学重点】找出问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.【教学难点】找等量关系.一、情境导入,初步认识为了帮助地震灾区重建家园,校委会在学校进行了募捐,七、八、九年级的同学都参加了募捐.七年级捐款数是捐款总数的16,八年级捐款数是捐款总数的13,九年级捐款1200元,三个年级共捐款多少元?【教学说明】学生从非常熟悉的例子中感受数学与生活的紧密联系.二、思考探究,获取新知1.运用一次方程解决比例问题教材第96页例5的相关问题.【教学说明】学生观察、分析,结合图中信息,解决下面的问题.【归纳总结】利用方程解决实际问题时,不仅要注意列、解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.2.用一元一次方程解决工程问题问题3一项工程甲单独做需要40天完成,乙单独做需要50天完成,现由甲先单独做4天,然后甲、乙两人合作完成这项工程,求甲一共做了多少天?【教学说明】学生通过思考、分析,尝试完成.【归纳结论】对于工程问题,一般有工作效率×工作时间=工作总量,当工作总量没有具体数值时,一般看作“1”.3.一元一次方程解决实际问题的一般步骤问题4用一元一次方程解决实际问题的一般步骤是什么?【教学说明】学生结合前面的例子,归纳用一元一次方程解决实际问题的一般步骤.三、运用新知,深化理解1.甲队有32人,乙队有28人,现从乙队抽调部分人到甲队,使甲队人数是乙队人数的2倍.则要抽调的人数为________人.2.某车间有20名工人,生产螺栓和螺母,每人每天能生产螺栓12个或螺母16个,如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套,则x =________.3.小彬用172元钱买了两种书,共10本,单价分别为18元,10元,每种书小彬各买了多少本?4.一项任务,甲单独做20小时完成,乙单独做12小时完成,现由甲单独做4小时,剩下的甲、乙合做,还要几小时完成?【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决数量分配问题的工程问题的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.3.设单价18元的书买了x 本,则单价为10元的书买了(10-x )本,由题意得: 18x +10×(10-x )=172,解得x =9,则10-x =1.所以单价18元的买了9本,单价10元的买了1本.4.设还要x 小时完成,由题意得: 11141202012x=⎛⎫⨯++ ⎪⎝⎭. 解得x =6,还要6小时完成.四、师生互动,课堂小结1.师生共同回顾运用一元一次方程解决比例问题,工程问题及运用一元一次方程解决实际问题的一般步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.1.布置作业:从教材第97页“练习”和“习题3.2”中选取.2.完成练习册中本课时的相应作业.本节课从与学生运用一元一次方程解决比例、工程问题,到归纳运用一元一次方程解决实际问题的一般步骤,培养学生动手、动脑习惯,提升学生综合运用知识的能力,激发学生学习的兴趣.幂的乘方与积的乘方A组1.计算:(1)(a3)3;(2)(x6)5;(3)-(y7)2;(4)-(x2)3;(5)(am)3;(6)(x2n)3m。
一元一次方程应用题(3)班级姓名
销售问题: 售价=标价×折扣 利润=售价-进价
1.一件商品按成本价提高100%后,按八折销售,售价为320元,这件商品的成本价是多少?每件可赢利多少?
练习:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
利润率=进价
利润以利润列等量关系: 售价-进价=进价×利润率 售价=进价+利润 售价=进价×(1+利润率)
2. 为了搞活经济,商场将一种商品按标价的9折出售,仍可获利10%(相对于成本价),若商品标价33元,那么该商品进价为多少元?
练习:某种品牌电风扇的标价为165元,若降价以九折出售,仍可获利10%,那么该商品的成本价是多少?
3.某商品的进价为300元,按标价的8折销售时,利润率为20%,商品的标价为多少元?
练习:一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?
4.某商品的进价为80元,标价为200元,折价销售时的利润率为75%,此商品是按几折销售的?
练习:商品按进价加价20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打几折?
5. 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
作业: 1.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
2.某产品按原价提高40%后打八折销售,每件商品赚270元,问该商品原标价多少元?现销售价是多少?
3. 某种商品标价为226元,现打七折出售,仍可获利13%,这种商品的进价是多少?
4.某进货价为100元的商品标价为150元,老板要求以5%的利润率出售,售货员可以优惠打几折出售该商品?
5.某商店一次卖出两台不同品牌的产品,其中一台赚了12%,另一台赔了12%,且这两件商品的售价均为3080元,问该商店本次交易的盈利情况.
银行利率问题:
利息=本金×年利率×年期本息和=本金+利息=本金+本金×年利率×年期
1.莉莉的叔叔将打工挣来的25000元钱存入银行,整存整取三年,年利率为3.24%,三年后本金和利息共有元?
2.爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后取5405元,他开始存了多少元?
3.赵先生购买了100000元的某公司5年期债券,5年后得到本息和为121000元,这种债券的年利率是多少?。