Collective oscillations in superconductors revisited
- 格式:pdf
- 大小:71.20 KB
- 文档页数:4
原子吸收光谱英文Atomic Absorption Spectroscopy (AAS) is an analytical technique used to identify and quantify the presence of various metallic elements in a sample. This technique involves the use of specific wavelengths of light to determine the concentration of elements present in a sample.In AAS, a sample is atomized and converted into the gaseous state by heating it in a flame or furnace. The analyte atoms in the sample are then excited by exposure to radiation of a specific wavelength. At a certain wavelength, the atoms will absorb the radiation and move to a higher energy level. The amount of radiation absorbed by the analyte atoms is then detected and measured by a detector, which is usually a photomultiplier tube. The amount of radiation absorbed is directly proportional to the concentration of the analyte in the sample.AAS is particularly useful in the detection and quantification of heavy metals such as lead, mercury, and cadmium. These toxic elements can accumulate in human tissues and cause serious health problems, including cancer and neurological disorders. The accurate measurement of their presence in various environmental, biological, and industrial samples is, therefore, essential.One of the greatest advantages of AAS is its ability to detect trace amounts of elements in a sample. This is due to its high sensitivity, which can detect as little as parts per billion (ppb) of an element present in a sample. Another major advantage of AAS is its accuracy, which is crucial when determining the presence of potentially toxic elements in a sample.AAS is a complex analytical technique that requires careful sample preparation, calibration, and standardization. The accuracy and precision of this technique depend on several factors, including the quality of the sample, the choice of analytical wavelength, and the instrument calibration.In summary, Atomic Absorption Spectroscopy is a highly sensitive and accurate analytical technique for the detection and quantification of heavy metals and other metallic elements in a sample. Its potential applications are vast, ranging from environmental monitoring to biomedical research and food safety testing.。
一种粒子探测器的CMOS读出电路设计(英文)
张雅聪;陈中建;鲁文高;赵宝瑛;吉利久
【期刊名称】《半导体学报:英文版》
【年(卷),期】2007(28)2
【摘要】提出了新型的应用于粒子探测器CMOS读出电路中的电荷灵敏放大器和CR-(RC)n半高斯整形器的结构.电荷灵敏放大器采用多晶硅电阻做反馈来减小噪声,仿真发现与传统结构相比,在探测器电容高达150pF时,输入等效噪声电荷数由5036个电子减小到2381个,代价是输出摆幅减小了0·5V.在整形器中,MOS管电阻与多晶硅电阻串联,通过调节MOS管的栅压来改变阻值,以补偿工艺的偏差,在不明显降低线性度的情况下保证了时间常数能够比较精确控制.
【总页数】7页(P182-188)
【关键词】电荷灵敏放大器;整形器;读出电路;噪声优化
【作者】张雅聪;陈中建;鲁文高;赵宝瑛;吉利久
【作者单位】北京大学微电子研究院
【正文语种】中文
【中图分类】TN432
【相关文献】
1.空间粒子探测器中一种微电流测量电路设计 [J], 雷升杰;魏志勇;陈国云;张紫霞;黄三玻;方美华
2.高性能低功耗粒子探测器读出电路设计 [J], 殷树娟;李翔宇
3.非制冷红外焦平面CMOS读出电路设计 [J], 薛惠琼;焦斌斌;何伟;欧毅;陈大鹏;叶甜春
4.一种四采样低噪声CMOS光电探测器读出电路 [J], 袁红辉;陈永平;黄志伟;陈瑶;王欣;陈世军;
5.一种适用于ISFET读出的高精度CMOS运放设计(英文) [J], 张翀;杨海钢;魏金宝
因版权原因,仅展示原文概要,查看原文内容请购买。
REVIEWSa 50S p i k e s s –1b c500 ms–500 50 03–5050 03 –500 5003Time shift (ms)d e f250 ms–100100 01–100100 01 –1001001Time shift (ms)Time shift (ms)Time shift (ms)Time shift (ms)Time shift (ms)50S p i k e s s –10Figure 1 |Synthetic computer-generated spike trains with various correlation patterns.Each panel includes a raster plotR E V I E W S83.Fellous, J.-M. & Sejnowski, T. J. Cholinergic induction ofspontaneous oscillations in the hippocampal slice in theslow (0.5–2 Hz), theta (5–12 Hz) and gamma (35–70 Hz)bands. Hippocampus10, 187–197 (2000).Three kinds of rhythmic activity are observed ina hippocampal slice preparation, and a singleneuromodulator can shift the dynamics from onemode to another. A model for this concentration-dependent switching is developed in the referencebelow.84.Tiesinga, P. H. E., Fellous, J.-M., José, J. V. & Sejnowski, T. J.Computational model of carbachol-induced delta, theta and gamma oscillations in the hippocampus. Hippocampus11, 251–274 (2001).85.Bland, B. H. The physiology and pharmacology ofhippocampal formation theta rhythms. Prog. Neurobiol.26, 1–54 (1986).86.Lisman, J. E. Relating hippocampal circuitry to function:recall of memory sequences by reciprocal dentate–CA3interactions. Neuron22, 233–242 (1999).87.Siapas, A. G. & Wilson, M. A. Coordinated interactionsbetween hippocampal ripples and cortical spindles duringslow-wave sleep. Neuron21, 1123–1128 (1998).88.Hooper, S. L. & Moulins, M. Switching of a neuron from onenetwork to another by sensory-induced changes inmembrane properties. Science244, 1587–1589 (1989). 89.Weimann, J. M. & Marder, E. Switching neurons are integralmembers of multiple oscillatory networks. Curr. Biol.4,896–902 (1994).90.Llinás, R. R. The intrinsic electrophysiological properties ofmammalian neurons: insights into central nervous systemfunction. Science242, 1654–1664 (1988).91.Gray, C. M. & McCormick, D. A. Chattering cells: superficialpyramidal neurons contributing to the generation ofsynchronous oscillations in the visual cortex. Science274,109–113 (1996).92.Lüti, A. & McCormick, D. A. H-current: properties of aneuronal and network pacemaker. Neuron 21, 9–12 (1998).93.Wilson, M. & Bower, J. M. Cortical oscillations and networkinteractions in a computer simulation of piriform cortex.J. Neurophysiol. 67, 981–995 (1992).94.Fuentes, U., Ritz, R., Gerstner, W. & Van Hemmen, J. L.Vertical signal flow and oscillations in a three-layer model ofthe cortex. J. Comput. Neurosci. 3, 125–136 (1996).95.Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J.& Steriade, M. Origin of slow cortical oscillations indeafferented cortical slabs. Cereb. Cortex10, 1185–1199(2000).96.Von der Malsburg, C. in Models of Neural Networks II(eds Domany, E., Van Hemmen, J. L. & Schulten, K.)95–119 (Springer, Berlin, 1994).97.Aertsen, A., Erb, M. & Palm, G. Dynamics of functionalcoupling in the cerebral cortex: an attempt at a model-based interpretation. Physica D 75, 103–128 (1994).98.Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spikesynchronization and rate modulation differentially involvedin motor cortical function. Science278, 1950–1953 (1997).This study exploits a simple, yet creative, behavioural model to study synchronization in the primary motorcortex. Neurons in this area become transientlysynchronized when a stimulus appears, or when it isexpected to appear but it does not. In the formercase, mean firing rates typically change with (butindependently of) synchrony, but in the latter casethey typically do not.99.Hsiao, S. S., Johnson, K. O. & O’Shaughnessy, D. M.Effects of selective attention of spatial form processing inmonkey primary and secondary somatosensory cortex.J. Neurophysiol. 70, 444–447 (1993).100.Burton, H., Sinclair, R. J., Hong, S. Y., Pruett, J. R. & Whang,K. C. T actile-spatial and cross-modal attention effects in thesecond somatosensory and 7b cortical areas of rhesusmonkeys. Somatosens. Mot. Res. 14, 237–267 (1997).101.Johansen-Berg, H. & Lloyd, D. M. The physiology andpsychology of attention to touch. Front. Biosci. 5,D894–904 (2000).102.Salinas, E., Hernández, H., Zainos, A. & Romo, R. Periodicityand firing rate as candidate neural codes for the frequency ofvibrotactile stimuli. J. Neurosci. 20, 5503–5515 (2000).103.Niebur, E. & Koch, C. A model for the neuronalimplementation of selective visual attention based ontemporal correlation among neurons. J. Comput. Neurosci.1, 141–158 (1994).104.Steinmetz, P. N. et al. Attention modulates synchronizedneuronal firing in primate somatosensory cortex. Nature404, 187–190 (2000).A study in which tactile stimuli were delivered andneurons in the secondary somatosensory cortexresponded to them. When attention is focused on thetactile stimuli, the neurons respond more intenselyand become more synchronized than when attentionis directed towards a visual display. So, attentionmight regulate, through changes in synchrony, thestrength of the somatosensory response.105.Moran, J. & Desimone, R. Selective attention gates visualprocessing in the extrastriate cortex. Science229, 782–784(1985).106.Motter, B. C. Focal attention produces spatially selectiveprocessing in visual cortical areas V1, V2, and V4 in thepresence of competing stimuli. J. Neurophysiol. 70,909–919 (1993).107.Connor, C. E., Preddie, D. C., Gallant, J. L. & Van Essen, D. C.Spatial attention effects in macaque area V4. J. Neurosci.17, 3201–3214 (1997).108.McAdams, C. J. & Maunsell, J. H. R. Effects of attention onorientation tuning functions of single neurons in macaquecortical area V4. J. Neurosci. 19, 431–441 (1999).109.Reynolds, J. & Desimone, R. Competitive mechanismssubserve attention in macaque areas V2 and V4.J. Neurosci. 19, 1736–1753 (1999).110.Treue, S. & Martínez-Trujillo, J. C. Feature-based attentioninfluences motion processing gain in macaque visual cortex.Nature399, 575–579 (1999).111.Kastner, S. & Ungerleider, L. Mechanisms of visual attentionin human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).112.Reynolds, J. H., Pasternak, T. & Desimone, R. Attentionincreases sensitivity of V4 neurons. Neuron2,703–714 (2000).113.Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R.Modulation of oscillatory neuronal synchronization byselective visual attention. Science291, 1560–1563 (2001).The responses of visual neurons were comparedwhen attention was directed inside or outside theirreceptive fields, for the same stimulus. Extreme carewas taken to minimize changes in mean firing rateand to measure synchrony in an unbiased way. Whenattention shifts to the recorded neuron’s receptivefield, the unit and its neighbours become moresynchronized with respect to rapid (50-Hz)fluctuations, but less so with respect to slow (10-Hz)fluctuations. Attention seems to cause a complex yetstereotyped change in the dynamics of the localcircuit of visual neurons.114.Frost, J. D. Jr An averaging technique for detection ofEEG–intracellular potential relationships. Electroencephalogr.Clin. Neurophysiol. 23, 179–181 (1967).115.Goto, Y. & O’Donnell, P. Network synchrony in the nucleusaccumbens in vivo. J. Neurosci. 21, 4498–4504 (2001).116.Fries, P., Neuenschwander, S., Engel, A. K., Goebel, R. &Singer, W. Rapid feature selective neuronal synchronizationthrough correlated latency shifting. Nature Neurosci. 4,194–200 (2001).Latencies in the responses evoked by visual stimuliwere measured simultaneously for pairs of neurons.These latencies covaried across trials, with strongercovariations observed for pairs that were moresynchronized in the band around 50 Hz. Covariationsin latency were independent of covariations in firingrate, and were not caused by common input.A functional role for oscillations in the 50-Hz rangeis suggested: to temporally align the responses ofthe synchronized neural population to a forthcomingstimulus.117.Fries, P., Roelfsema, P. R., Engel, A. K., König, P. & Singer, W.Synchronization of oscillatory responses in visual cortexcorrelates with perception in interocular rivalry. Proc. NatlAcad. Sci. USA94, 12699–12704 (1997).A study of V1 responses in an experimental set-upin which firing rates did not vary, but perceptualexperience did. Robust changes in synchrony wereobserved from one perceptual condition to another.Even if the nature of the perceptual process isquestioned, it is remarkable that synchrony in V1 canbe so strongly modulated by changes in internal state.118.Logothetis, N. K. & Schall, J. D. Neuronal correlates ofsubjective visual perception. Science245, 761–763 (1989).119.Leopold, D. A. & Logothetis, N. K. Activity changes in earlyvisual cortex reflect monkeys’ percepts during binocularrivalry. Nature379, 549–553 (1996).120.Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometryof Neuronal Connectivity (Springer, Berlin, 1997).121.White, E. L. Cortical Circuits(Birkhäuser, Boston, 1989).122.Sejnowski, T. J. in Parallel Models of Associative Memory(eds Hinton, G. E. & Anderson, J. A.) 189–212 (LawrenceErlbaum Associates, Hillsdale, New Jersey, 1981).123.Hopfield, J. J. & Brody, C. D. What is a moment? Transientsynchrony as a collective mechanism for spatiotemporalintegration. Proc. Natl Acad. Sci. USA98, 1282–1287(2001).A model for speech recognition in which a set ofsensory units responds, a downstream populationbecomes activated and synchronized, and a thirdpopulation further downstream responds selectivelyto the evoked synchrony patterns. The model showshow oscillations generated centrally could confera functional advantage to a neural circuit.124.Tuckwell, H. C. Introduction to Theoretical NeurobiologyVols 1 & 2 (Cambridge Univ. Press, New York, 1988).125.Koch, C. Biophysics of Computation(Oxford Univ. Press,New York, 1999).AcknowledgementsResearch was supported by the Howard Hughes Medical Institute.We thank P. Steinmetz for providing us with Figure 3, and P. Friesfor providing us with Figure 4. We also thank J. Reynolds andP. Tiesinga for helpful comments.550| |。
专利名称:具有功能化栅电极和基电极的纳米柱场效应和结型晶体管
专利类型:发明专利
发明人:阿迪蒂亚·拉贾戈帕,杰峰·常,奥利佛·普拉特布格,斯蒂芬·彼得里,阿克塞尔·谢勒,查尔斯·L·奇尔哈特
申请号:CN201380039616.3
申请日:20130712
公开号:CN105408740A
公开日:
20160316
专利内容由知识产权出版社提供
摘要:描述了用于分子感测的系统和方法。
描述的分子传感器基于场效应晶体管或双极结型晶体管。
这些晶体管具有带有与基电极或栅电极接触的功能化层的纳米柱。
该功能化层能够结合分子,这会在传感器中引发电信号。
申请人:加州理工学院,赛诺菲美国服务公司
地址:美国加利福尼亚州
国籍:US
代理机构:北京安信方达知识产权代理有限公司
更多信息请下载全文后查看。
饱和磁致伸缩对非晶软磁合金磁性能的影响!时间: 2009年09月23日来源:本站原创作者: 塞外狂生浏览次数: 59研究表明,单纯的纳米晶结构也不能作为优良软磁材料的充要条件,必须使合金在晶化后形成纳米晶结构的同时使材料的饱和磁致伸缩系数λs降低。
而合金的λs值取决于bcc 晶体相和剩余非晶相的λs值及其所占体积分数,Herzer认为:纳米晶材料的磁致伸缩是晶相与非晶相磁致伸缩的平均:λs=vcλsc+(1-vc)λsa其中vc是结晶相所占的体积百分数,λsc和λsa分别是结晶相和剩余非晶相的饱和磁致伸缩系数。
对于Finemet合金,退火时产生的晶化相是含Si约为20at%的Fe-Si固溶体,它自身的λs值约为-6×10-6,剩余非晶相的λs值约为20×10-6,若设晶化相所占的体积分数为vc,则纳米晶合金的λs为:λs=-6×10-6vc+20×10-6(1-vc)若晶化相的体积分数为70%,则纳米晶合金的λs=2×10-6,可见Fe-Cu-Nb-Si-B纳米晶软磁合金具有很低的λs值。
从图可以看出,非晶态Fe73.5Cu1Nb3Sil3.5B9合金形成纳米晶后λs迅速下降。
在Fe73.5Cu1Nb3Si22.5-xBx系列纳米晶合金中,凡随Si含量增加而减小,在Si含量为17at%时,λs=0。
值得注意的是,当λs =0时,纳米晶Fe-Cu-Nb-Si-B软磁合金的软磁性能并不是最佳的,这说明磁致伸缩并非是影响软磁性能的唯一原因。
点击浏览下一页不管纳米晶粒子形成过程如何,在低λs的非晶基体上存在高度分散的均匀、微细晶粒,使磁畴细化,其晶粒尺寸等于或者小于畴壁宽度,使局域各向异性减小。
如果纳米晶的析出引起λs和K的同时下降将会使材料的磁性得到改善。
另外有报道指出关于纳米磁性材料具有优异磁性能的物理机理来源于磁交换耦合作用,这可分为两类:一种是非晶相与纳米相的交换耦合作用,另一种是纳米相与纳米相交换耦合作用。
原子吸收光谱法的英文Title: Atomic Absorption Spectroscopy: Principles and ApplicationsAtomic absorption spectroscopy (AAS) is a powerful analytical technique used to determine the concentration of specific elements in various samples, including metals in environmental, biological, and industrial contexts. This method is widely valued for its sensitivity, precision, and ability to analyze complex mixtures.The principle of atomic absorption spectroscopy is based on the absorption of light by free atoms in the gaseous state. The process begins with the atomization of the sample, which can be achieved through techniques such as flame atomization or graphite furnace atomization. In flame atomization, the sample is introduced into a flame, where it is vaporized and atomized. In graphite furnace atomization, a small amount of the sample is placed in a graphite tube, where it is heated to high temperatures to produce atoms.Once the sample is atomized, a light source, typically a hollow cathode lamp, emits light at a specific wavelength corresponding to the element being analyzed. As the light passes through the vaporized sample, some of it is absorbed by the atoms, leading to a decrease in the intensity of the transmitted light. This decrease is measured using a spectrometer, and the absorbance is directly related to the concentration of the element in the sample.AAS has numerous applications across various fields. In environmental analysis, it is used to detect heavy metals in water and soil, ensuring compliance with safety regulations. In clinical laboratories, AAS helps in determining trace elements in biological fluids, which is crucial for diagnosing health conditions. Additionally, it is widely used in metallurgy and food safety to analyze the composition of alloys and food products.Despite its advantages, AAS also has some limitations.It can only analyze one element at a time, which can be time-consuming when multiple elements need to be measured. Additionally, the presence of interfering substances can affect the accuracy of the results.In conclusion, atomic absorption spectroscopy is an invaluable tool in analytical chemistry, providing accurate and reliable data for various applications. Its ability to detect trace elements with high sensitivity makes it essential in fields ranging from environmental science to healthcare. As technology advances, AAS continues to evolve, promising even more efficient and comprehensive analysis in the future.。
在颞叶癫痫大鼠模型中海马组织中即早基因c—fos的表达该文主要综述现公认的颞叶癫痫模型(氯化锂-匹罗卡品大鼠模型),围绕选择该模型的依据进行分析,对该模型中大鼠的海马及脑脊液组织中即早基因的表达的研究分别分析,对颞叶癫痫的发病机制的探讨,以期指导癫痫的临床治疗。
标签:颞叶癫痫;海马;即早基因据国际抗癫痫联盟统计,癫痫的患病率高达23~190人/10 万,已成为最常见的神经科疾病之一[1]。
尽管随着抗癫痫药物不断更新,治疗方案不断规范,但仍有约30% 的患者接受抗癫痫治疗后痫性发作仍不能得到有效控制。
局灶性癫痫中颞叶癫痫最为常见,近五年研究显示,在新发的癫痫患者中,1/4~1/3左右为颞叶癫痫[2]。
研究氯化锂-匹罗卡品大鼠模型所致的癫痫持续状态所致的颞叶癫痫模型中即早基因的表达以期研究颞叶癫痫的发病机制,其研究现状与进展如下。
1 氯化锂-匹罗卡品致颞叶癫痫大鼠模型的建立早在1983 年Honchar等研究人员在Science 杂志上第一次发表了匹罗卡品大鼠模型,此模型可致痫鼠诱导自发性痫性发作,损伤海马结构中易损区,该鼠致痫模型被公认为是和人类的颞叶癫痫有着相近的特征。
该模型让匹罗卡品不良反应作用所导致的高死亡率得到下降,也提高了癫痫持续状态诱发率,是目前国外较普便使用的一种癫痫模型[3]。
苏曼[4]等实验验证锂-匹罗卡品颞叶癫痫模型建模成功后按照Racine分级和人类的颞叶癫痫具有相近行为学方面的特点,诱发快,发作时容易辨别,具有明确的分期,机体死亡率较低、致痫率较高、操作简单可控而且不会破坏正常的人脑组织结构,是一种较好研究人类癫痫病理学、神经学等多科学的方法。
2 致颞叶癫痫大鼠模型的脑电图在神经电生理领域,研究致颞叶癫痫大鼠模型急性期记录到致癫痫组SD大鼠在海马区爆发长程中出现的棘活动、尖活动及不规则的尖慢复合活动,较背景脑电活动明显突出,与人类癫痫全性发作时脑电图改变一致[4]。
3 致颞叶癫痫大鼠模型的病理学表现人类癫痫的脑部病理学改变表现为海马萎缩、硬化,包括胶质增生和神经元减少,以CA1区和齿状回区域最为明显[5]。
冷原子吸收分光光度法英文Cold atomic absorption spectrophotometry is a sophisticated technique used to measure the concentration of elements in a sample with remarkable precision. This method relies on the principle that atoms absorb specific wavelengths of light, and by analyzing this absorption, the elemental composition can be determined.In the realm of analytical chemistry, this technique is particularly useful for detecting trace amounts of metals in various matrices. The process begins with the atomization of the sample, which is then subjected to a light source of known wavelength. The absorption of light by the cold atomsis measured, and from this, the concentration of the element is calculated.The precision of cold atomic absorption spectrophotometry is unmatched, making it ideal for research and qualitycontrol in industries such as pharmaceuticals, environmental monitoring, and food safety. It offers a non-destructive way to analyze samples, preserving their integrity for further testing if needed.One of the key advantages of this method is its ability to provide highly accurate results with minimal sample preparation. This is particularly beneficial when working with precious or limited samples, where every bit of material is valuable.Moreover, the equipment used in cold atomic absorption spectrophotometry is relatively simple compared to other spectroscopic techniques, which can be complex and require extensive calibration. This simplicity, coupled with its high accuracy, makes it a popular choice among scientists.However, it's worth noting that this method is not without its limitations. It is primarily suited for elements that form volatile compounds and can be easily atomized. Additionally, interferences from other elements or compounds in the sample matrix can affect the accuracy of the results.Despite these limitations, cold atomic absorption spectrophotometry remains a powerful tool in the analytical chemist's arsenal. Its ability to provide precise measurements with minimal sample preparation makes it a valuable technique for a wide range of applications.。
原子核物理专业词汇中英文对照表absorption cross-section吸收截面activity radioactivity放射性活度activity活度adiabatic approximation浸渐近似allowed transition容许跃迁angular correlation角关联angular distribution角分布angular-momentum conservation角动量守恒anisotropy各项异性度annihilation radiation湮没辐射anomalous magnetic moment反常极矩anti neutrino反中微子antiparticle反粒子artificial radioactivity人工放射性atomic mass unit原子质量单位atomic mass原子质量atomic nucleus原子核Auger electron俄歇电子backbending回弯bag model口袋模型baryon number重子数baryon重子binary fission二分裂变binging energy结合能black hole黑洞bombarding particle轰击粒子bottom quark底夸克branching ration 分支比bremsstrahlung轫致辐射cascade radiation级联辐射cascade transition级联跃迁centrifugal barrier离心势垒chain reaction链式反应characteristic X-ray特征X射线Cherenkov counter切连科夫计数器coincidence measurement符合剂量collective model集体模型collective rotation 集体转动collective vibration集体震动color charge色荷complete fusion reaction全熔合反应complex potential复势compound-nucleus decay复合核衰变compound-nucleus model复合核模型compound nucleus复合核Compton effect康普顿效应Compton electron康普顿电子Compton scattering康普顿散射cone effect圆锥效应conservation law守恒定律controlled thermonuclear fusion受控热核聚变cosmic ray宇宙射线Coulomb barrier库仑势垒Coulomb energy库伦能Coulomb excitation库仑激发CPT theorem CPT定理critical angular momentum临界角动量critical distance临界距离critical mass临界质量critical volume临界体积daily fuel consumption 燃料日消耗量dalitz pair 达立兹对damage criteria 危害判断准则damage 损伤damped oscillations 阻尼震荡damped vibration 阻尼震荡damped wave 阻尼波damper 减震器damping factor 衰减系数damping 衰减的damp proof 防潮的damp 湿气danger coefficient 危险系数danger dose 危险剂量danger range 危险距离danger signal 危险信号dark current pulse 暗电瘤冲dark current 暗电流data acquisition and processing system 数据获得和处理系统data base 数据库data communication 数据通信data processing 数据处理data reduction equipment 数据简化设备data 数据dating 测定年代daughter atom 子体原子daughter element 子体元素daughter nuclear子核daughter nucleus 子体核daughter nuclide 子体核素daughter 蜕变产物dd reaction dd反应dd reactor dd反应器deactivation 去活化dead ash 死灰尘dead band 不灵敏区dead space 死区dead time correction 死时间校正dead time 失灵时间deaerate 除气deaeration 除气deaerator 除气器空气分离器deaquation 脱水debris activity 碎片放射性debris 碎片de broglie equation 德布罗意方程de broglie frequency 德布罗意频率de broglie relation 德布罗意方程de broglie wavelength 德布罗意波长de broglie wave 德布罗意波debuncher 散束器debye radius 德拜半径debye scherrer method 德拜谢乐法debye temperature 德拜温度decade counter tube 十进计数管decade counting circuit 十进制计数电路decade counting tube 十进管decade scaler 十进位定标器decagram 十克decalescence 相变吸热decalescent point 金属突然吸热温度decanning plant 去包壳装置decanning 去包壳decantation 倾析decanter 倾析器decanting vessel 倾析器decan 去掉外壳decarburization 脱碳decascaler 十进制定标器decatron 十进计数管decay chain衰变链decay coefficient 衰变常数decay constant 衰变常数decay constant衰变常量decay energy衰变能decay factor 衰变常数decay fraction衰变分支比decay heat removal system 衰变热去除系统decay heat 衰变热decay kinematics 衰变运动学decay out 完全衰变decay period 冷却周期decay power 衰减功率decay rate 衰变速度decay scheme衰变纲图decay series 放射系decay storage 衰变贮存decay table 衰变表decay time 衰变时间decay 衰减decelerate 减速deceleration 减速decigram 分克decimeter wave 分米波decladding plant 去包壳装置decladding 去包壳decommissioning 退役decompose 分解decomposition temperature 分解温度decomposition 化学分解decontaminability 可去污性decontamination area 去污区decontamination factor 去污因子decontamination index 去污指数decontamination plant 去污装置decontamination reagent 去污试剂decontamination room 去污室decontamination 净化decoupled band 分离带decoupling 去耦解开decrease 衰减decrement 减少率deep dose equivalent index 深部剂量当量指标deep inelastic reaction深度非弹性反应deep irradiation 深部辐照deep therapy 深部疗deep underwater nuclear counter 深水放射性计数器deep water isotopic current analyzer 深海水连位素分析器de excitation 去激发de exemption 去免除defecation 澄清defective fuel canning 破损燃料封装defective fuel element 破损元件defect level 缺陷程度defectoscope 探伤仪defect 缺陷defence 防护deficiency 不足define 定义definite 确定的definition 分辨deflagration 爆燃deflecting coil 偏转线圈deflecting electrode 偏转电极deflecting field 偏转场deflecting plate 偏转板deflecting system 偏转系统deflecting voltage 偏转电压deflection angle 偏转角deflection plate 偏转板deflection system 偏转系统deflection 负载弯曲deflector coil 偏转线圈deflector field 致偏场deflector plate 偏转板deflector 偏转装置deflocculation 解凝defoamer 去沫剂defoaming agent 去沫剂defocusing 散焦deformation bands 变形带deformation energy 变形能deformation of irradiated graphite 辐照过石墨变形deformation parameter形变参量deformation 变形deformed nucleus 变形核deformed region 变形区域deform 变形degassing 脱气degas 除气degeneracy 简并degenerate configuration 退化位形degenerate gas 简并气体degenerate level 简并能级degenerate state 简并态degeneration 简并degradation of energy 能量散逸degradation 软化degraded spectrum 软化谱degree of acidity 酸度degree of anisotropic reflectance 蛤异性反射率degree of burn up 燃耗度degree of cross linking 交联度degree of crystallinity 结晶度degree of degeneration 退化度degree of dispersion 分散度degree of dissociation 离解度degree of enrichment 浓缩度degree of freedom 自由度degree of hardness 硬度degree of ionization 电离度degree of moderation 慢化度degree of polymerization 聚合度degree of purity 纯度dehumidify 减湿dehydrating agent 脱水剂dehydration 脱水deionization rate 消电离率deionization time 消电离时间deionization 消电离dejacketing 去包壳delay circuit 延迟电路delayed alpha particles 缓发粒子delayed automatic gain control 延迟自动增益控制delayed coincidence circuit 延迟符合电路delayed coincidence counting 延迟符合计数delayed coincidence method 延迟符合法delayed coincidence unit 延迟符合单元delayed coincidence 延迟符合delayed criticality 缓发临界delayed critical 缓发临界的delayed fallout 延迟沉降物delayed fission neutron 缓发中子delayed gamma 延迟性射线delayed neutron detector 缓发中子探测器delayed neutron emitter 缓发中子发射体delayed neutron failed element monitor 缓发中子破损燃料元件监测器delayed neutron fraction 缓发中子份额delayed neutron method 缓发中子法delayed neutron monitor 缓发中子监测器delayed neutron precursor 缓发中子发射体delayed neutron 缓发中子delayed proton缓发质子delayed reactivity 缓发反应性delay line storage 延迟线存储器delay line 延迟线delay system 延迟系统delay tank 滞留槽delay time 延迟时间delay unit 延迟单元delay 延迟delineation of fall out contours 放射性沉降物轮廓图deliquescence 潮解deliquescent 潮解的delivery dosedose 引出端delta electron 电子delta metal 合金delta plutonium 钚delta ray 电子demagnetization 去磁demagnetize 去磁dematerialization 湮没demineralization of water 水软化demineralization 脱盐demonstration reactor 示范反应堆demonstration 示范dempster mass spectrograph 登普斯特质谱仪denaturalization 变性denaturant 变性剂denaturation of nuclear fuel 核燃料变性denaturation 变性denature 变性denaturize 变性denitration 脱硝dense plasma focus 稠密等离子体聚焦dense 稠密的densimeter 光密度计densimetry 密度测定densitometer 光密度计densitometry 密度计量学density analog method 密度模拟法density bottle 密度瓶density effect 密度效应density gradient instability 密度梯度不稳定性density of electrons 电子密度deoxidation 脱氧deoxidization 脱氧departure from nucleate boiling ratio 偏离泡核沸腾比departure from nucleate boiling 偏离泡核沸腾dependability 可靠性dependence 相依dependency 相依dephlegmation 分凝酌dephlegmator 分馏塔depilation dose 脱毛剂量depilation 脱毛depleted fraction 贫化馏分depleted fuel 贫化燃料depleted material 贫化材料depleted uranium shielding 贫铀屏蔽depleted uranium 贫化铀depleted water 贫化水depleted zone 贫化区域deplete uranium tail storage 贫化铀尾料储存depletion layer 耗尽层depletion 贫化;消耗depolarization 去极化depolymerization 解聚合deposit dose 地面沉降物剂量deposited activity 沉积的放射性deposition 沉积deposit 沉淀depression 减压depressurization accident 失压事故depressurizing system 降压系统depth dose 深部剂量depth gauge 测深计depth of focus 焦点深度depthometer 测深计derby 粗锭derivant 衍生物derivate 衍生物derivative 衍生物derived estimate 导出估价值derived unit 导出单位derived working limit 导出工撰限desalinization 脱盐desalting 脱盐descendant 后代desensitization 脱敏desensitizer 脱敏剂desiccation 干燥desiccator 干燥器防潮器design basis accident 设计依据事故design basis depressurization accident 设计依据卸压事故design basis earthquake 设计依据地震design dose rate 设计剂量率design of the safeguards approach 保障监督方法设计design power 设计功率design pressure 设计压力design safety limit 设计安全限design temperature rise 设计温度上升design transition temperature 设计转变温度design 设计desmotropism 稳变异构desmotropy 稳变异构desorption 解吸desquamation 脱皮destruction test 破坏性试验destructive distillation 干馏detailed balance principle细致平衡原理detailed decontamination 细部去污detectable activity 可探测的放射性detectable 可检测的detection efficiency 探测效率detection efficiency探测效率detection limit 探测限detection of neutrons from spontaneous fission 自发裂变中子探测detection of radiation 辐射线的探测detection probability 探测概率detection time 探测时间detection 探测detector 1/v 1/v探测器detector efficiency 探测僻率detector foil 探测骗detector noise 探测齐声detector shield 探测屏蔽detector tube 检波管detector with internal gas source 内气源探测器detector 探测器敏感元件detect 探测;检波detergent 洗涤剂determination 确定deterrence of diversion 转用制止detonating gas 爆鸣气detonation altitude 爆炸高度detonation point 爆炸点detonation yield 核爆炸威力detonation 爆炸detoxifying 净化detriment 损害detted line 点线deuteride 氘化物deuterium alpha reaction 氘反应deuterium critical assembly 重水临界装置deuterium leak detector 重水检漏器deuterium moderated pile low energy 低功率重水慢化反应堆deuterium oxide moderated reactor 重水慢化反应堆deuterium oxide 重水deuterium pile 重水反应堆deuterium sodium reactor 重水钠反应堆deuterium target 氘靶deuterium tritium fuel 氘氚燃料deuterium tritium reaction 氘氚反应deuterium 重氢deuteron alpha reaction 氘核反应deuteron binding energy 氘核结合能deuteron induced fission 氘核诱发裂变deuteron neutron reaction 氘核中子反应deuteron proton reaction 氘核质子反应deuteron stripping 氘核涎deuterum moderated pile 重水反应堆deuton 氘核development of uranium mine 铀矿开发development 发展deviation from the desired value 期望值偏差deviation from the index value 给定值偏差deviation 偏差dewatering 脱水dewindtite 水磷铅铀矿dew point 露点dextro rotatory 右旋的diagnostic radiology 诊断放射学diagnostics 诊断diagram 线图dialkyl phosphoric acid process 磷酸二烷基酯萃取法dialysis 渗析dial 度盘diamagnetic effect 抗磁效应diamagnetic loop 抗磁圈diamagnetic substance 抗磁体diamagnetic susceptibility 抗磁化率diamagnetism of the plasma particles 等离子体粒子反磁性diamagnetism 反磁性diamagnet 抗磁体diameter 直径diamond 稳定区;金刚石diaphragm gauge 膜式压力计diaphragm type pressure gauge 膜式压力计diaphragm 薄膜diapositive 透谬片diascope 投影放影器投影仪diathermance 透热性diathermancy 透热性diatomic gas 双原子气体diatomic molecule 二原子分子dibaryon 双重子diderichite 水菱铀矿dido type heavy water research reactor 迪多型重水研究用反应堆dido 重水慢化反应堆dielectric after effect 电介质后效dielectric constant 介电常数dielectric hysteresis 电介质滞后dielectric polarization 电介质极化dielectric strain 电介质变形dielectric strength 绝缘强度dielectric 电介质diesel engine 柴油机diesel oil 柴油difference ionization chamber 差分电离室difference linear ratemeter 差分线性计数率计difference number 中子过剩difference of potential 电压difference scaler 差分定标器differential absorption coefficient 微分吸收系数differential absorption ratio 微分吸收系数differential albedo 微分反照率differential control rod worth 控制棒微分价值differential cross section 微分截面differential cross-section微分截面differential discriminator 单道脉冲幅度分析器differential dose albedo 微分剂量反照率differential energy flux density 微分能通量密度differential particle flux density 粒子微分通量密度differential pressure 压差differential range spectrum 射程微分谱differential reactivity 微分反应性differential recovery rate 微分恢复率differential scattering cross section 微分散射截面differentiator 微分器diffraction absorption 衍射吸收diffraction analysis 衍射分析diffraction angle 衍射角diffraction grating 衍射光栅diffraction instrument 衍射仪diffraction pattern 衍射图diffraction peak 衍射峰值diffraction scattering 衍射散射diffraction spectrometer 衍射谱仪diffraction spectrum 衍射光谱diffraction 衍射diffractometer 衍射仪diffusate 扩散物diffuse band 扩散带diffused junction semiconductor detector 扩散结半导体探测器diffused 散射的diffuseness parameter 扩散性参数diffuse reflection 漫反射diffuser 扩散器diffuse scattering 漫散射diffuse 扩散diffusion approximation 扩散近似diffusion area 扩散面积diffusion barrier 扩散膜diffusion cascade 扩散级联diffusion chamber 扩散云室diffusion coefficient for neutron flux density 中子通量密度扩散系数diffusion coefficient for neutron number density 中子数密度扩散系数diffusion coefficient 扩散系数diffusion column 扩散塔diffusion constant 扩散常数diffusion cooling effect 扩散冷却效应diffusion cooling 扩散冷却diffusion cross section 扩散截面diffusion current density 扩散淋度diffusion current 扩散电流diffusion energy 扩散能diffusion equation 扩散方程diffusion factory 扩散工厂diffusion kernel 扩散核diffusion layer 扩散层diffusion length 扩散长度diffusion length扩散长度diffusion mean free path 扩散平均自由程diffusion plant 扩散工厂diffusion pump 扩散泵diffusion rate 扩散速率diffusion stack 务马堆diffusion theory 扩散理论diffusion time 扩散时间diffusion 扩散diffusivity 扩散系数digital analog converter 数模转换器digital computer 数字计算机digital data acquisition and processing system 数字数据获取与处理系统digital data handling and display system 数字数据处理和显示系统digital recorder 数字记录器digital time converter 数字时间变换器dilation 扩胀dilatometer 膨胀计diluent 稀释剂dilute solution 稀溶液dilute 冲淡dilution analysis 稀释分析dilution effect 稀释效应dilution method 稀释法dilution ratio 稀释比dilution 稀释dimensional change 尺寸变化dimension 尺寸diminishing 衰减dimorphism 双晶现象di neutron 双中子dineutron 双中子dingot 直接铸锭dip counter tube 浸入式计数管dipelt 双重线dipole dipole interaction 偶极子与偶极子相互酌dipole layer 偶极子层dipole momentum 偶极矩dipole moment 偶极矩dipole radiation 偶极辐射dipole transition 偶极跃迁dipole 偶极子di proton 双质子dirac electron 狄拉克电子dirac equation 狄拉克方程dirac quantization 狄拉克量子化dirac theory of electron 狄拉克电子论direct and indirect energy conversion 直接和间接能量转换direct contact heat exchanger 直接接触式换热器direct conversion reactor study 直接转换反应堆研究direct conversion reactor 直接转换反应堆direct current 直流direct cycle integral boiling reactor 直接循环一体化沸水堆direct cycle reactor 直接循环反应堆direct cycle 直接循环direct digital control 直接数字控制direct energy conversion 能量直接转换direct exchange interaction 直接交换相互酌direct exposure 直接辐照direct fission yield 原始裂变产额direct interaction 直接相互酌directional correlation of successive gamma rays 连续射线方向相关directional counter 定向计数器directional distribution 方向分布directional focusing 方向聚焦directional 定向的direction 方向direct isotopic dilution analysis 直接同位素稀释分析directly ionizing particles 直接电离粒子directly ionizing radiation 直接电离辐射direct measurement 直接测量direct radiant energy 直接辐射能direct radiation proximity indicator 直接辐射接近指示器direct radiation 直接辐射direct reaction 直接反应direct reaction直接反应direct use material 直接利用物质direct voltage 直羚压direct x ray analysis 直接x射线分析dirft tube 飞行管道dirt column 尘土柱dirty bomb 脏炸弹disadvantage factor 不利因子disagreement 不一致disappearence 消失discharge chamber 放电室discharge current 放电电流discharge in vacuo 真空放电discharge potential 放电电压discharge tube 放电管discharge voltage 放电电压discharge 放电discomposition 原子位移discontinuity 非连续性discontinuous 不连续的disc operating system 磁盘操椎统discrepancy 差异discrete energy level 不连续能级discrete spectrum 不连续光谱discrete state 不连续态discrete 离散的discrimination coefficient 甄别系数discriminator 鉴别器disinfectant 杀菌剂disintegrate 蜕衰disintegration chain 放射系disintegration constant 衰变常数disintegration curve 衰变曲线disintegration energy 衰变能disintegration heat 衰变热disintegration of elementary particles 基本粒子衰变disintegration particle 衰变粒子disintegration probability 衰变概率disintegration product 蜕变产物disintegration rate 衰变速度disintegration scheme 蜕变图disintegration series 蜕变系disintegrations per minute 衰变/分disintegrations per second 衰变/秒disintegration 蜕变disk source 圆盘放射源dislocation edge 位错边缘dislocation line 位错线dislocation 位错dismantling 解体disorder scattering 无序散射disorder 无序dispersal effect 分散效应dispersal 分散disperser 分散剂dispersing agent 分散剂dispersion fuel element 弥散体燃料元件dispersion fuel 弥散体燃料dispersion 分散dispersive medium 色散媒质displacement current 位移电流displacement kernel 位移核displacement law of radionuclide 放射性核素位移定律displacement law 位移定律displacement spike 离位峰displacement 替换displace 位移;代替disposal of radioactive effluents 放射性瘤液处置disposition 配置disproportionation 不均disruption 破坏disruptive instability 破裂不稳定性disruptive voltage 哗电压dissipation of energy 能消散dissipation 耗散dissociation constant 离解常数dissociation energy 离解能dissociation pressure 离解压dissociation 离解dissociative ionization 离解电离dissolution 溶解dissolver gas 溶解气体dissolver heel 溶解泣滓dissolver 溶解器distance control 遥控distant collision 远距离碰撞distillate 蒸馏液distillation column 蒸馏塔distillation method 蒸馏法distillation tower 蒸馏塔distillation 蒸馏distilled water 蒸馏水distiller 蒸馏器distilling apparatus 蒸馏器distilling flask 蒸馏瓶distorted wave Born approximation,DWBA扭曲波波恩近似distorted wave impulse approximation 畸变波冲动近似distorted wave theory 畸变波理论distorted wave 畸变波distortionless 不失真的distortion 畸变distributed ion pump 分布式离子泵distributed processing 分布式处理distributed source 分布源distribution coefficient 分配系数distribution factor 分布因子distribution function 分布函数distribution law 分配定律distribution of dose 剂量分布distribution of radionuclides 放射性核素分布distribution of residence time 停留时间分布distribution ratio 分配系数distribution 分布distrubited constant 分布常数disturbance 扰动disturbation 扰动diuranium pentoxide 五氧化二铀divergence of ion beam 离子束发散divergence problem 发散问题divergence 发散divergent lens 发射透镜divergent reaction 发散反应diversing lens 发射透镜diversion assumption 转用假定diversion box 转换箱diversion hypothesis 转用假设diversion path 转用路径diversion strategy 转用战略diversion 转向divertor 收集器divider 分配器division of operating reactors 反应堆运行部division 刻度djalmaite 钽钛铀矿document information system 文献情报体系doerner hoskins distribution law 德尔纳霍斯金斯分配定律dollar 元domain 磁畴dome 圆顶水柱dominant mutation 显性突变donut 环形室doping control of semiconductors 半导体掺杂物第Dopper effect多普勒效应doppler averaged cross section 多普勒平均截面doppler broadening 多普勒展宽doppler coefficient 多普勒系数doppler effect 多普勒效应doppler free laser spectroscopy 无多普勒激光光谱学doppler shift method 多普勒频移法doppler width 多普勒宽度dosage measurement 剂量测定dosage meter 剂量计dosage 剂量dose albedo 剂量反照率dose build up factor 剂量积累因子dose commitment 剂量负担dose effect curve 剂量效应曲线dose effect relationship 剂量效应关系dose equivalent commitment 剂量当量负担dose equivalent index 剂量当量指标dose equivalent limit 剂量当量极限dose equivalent rate 剂量当量率dose equivalent 剂量当量dose equivalent剂量当量dose fractionation 剂量分割dose limit 剂量极限dose measurement 剂量测量dose meter 剂量计dose modifying factor 剂量改变系数dose of an isotope 同位素用量dose prediction technique 剂量预报技术dose protraction 剂量迁延dose rate meter 剂量率测量计dose ratemeter 剂量率表dose rate 剂量率dose reduction factor 剂量减低系数dose response correlation 剂量响应相关dose unit 剂量单位dose 剂量dosifilm 胶片剂量计dosimeter charger 剂量计充电器dosimeter 剂量计dosimetry applications research facility 剂量测定法应用研究设施dosimetry 剂量测定法dotted line 点线double beam 双射束double beta decay 双衰变double bond 双键double charged 双电荷的double clad vessel 双层覆盖容器double compton scattering 双康普顿散射double container 双层容器double contingency principle 双偶然性原理double decomposition 复分解double differential cross section 二重微分截面double focusing mass spectrometer 双聚焦质谱仪double focusing 双聚焦double-humped barrier双峰势垒double ionization chamber 双电离室double precision 双倍精度double probe 双探针double pulse 双脉冲double resonance spectroscopy 双共振光谱学double resonance 双共振double scattering method 双散射法doublet splitting 双重线分裂doublet 电子对double walled heat exchanger 双层壁换热器doubling dose 加倍剂量doubling time meter 倍增时间测量计doubling time 燃料倍增时间doubly charged 双电荷的doubly closed shell nuclei 双闭合壳层核doughnut 环形室downcomer 下降管down quark下夸克down time 停机时间downwards coolant flow 下行冷却剂流downwind fall out 下风放射性沉降物draft 通风drain tank 排水槽draught 通风drell ratio 多列尔比dressing of uranium ore 铀矿石选矿dressing 选矿drier 干燥器drift instability 漂移不稳定性drift mobility 漂移率drift speed 漂移速度drift transistor 漂移晶体管drift velocity 漂移速度driven magnetic fusion reactor 从动磁核聚变反应堆driver fuel 驱动燃料drive voltage 控制电压drop reaction 点滴反应drop 点滴dry active waste 干放射性废物dry analysis 干法分析dry box 干箱dry criticality 干临界dry distillation 干馏dryer 干燥器dry friction 干摩擦dry ice 干冰drying oil 干性油drying oven 烘干炉drying 干燥dry out 烧干dry reprocessing 干法再处理dry way process 干法过程dry well 干井dt fuel cycle dt燃料循环dt reactor dt反应堆dual cycle boiling water reactor system 双循环沸水反应堆系统dual cycle reactor 双循环反应堆dual decay 双重放射性衰变dual energy use system 能量双重利用系统duality 二重性dual purpose nuclear power station 两用核电站dual purpose reactor 两用反应堆dual temperature exchange separation process 双温度交换分离法dual temperature exchange 双温度交换duant d形盒ductile brittle transition temperature 延性脆性转变温度ductility 延伸性duct 管dummy load 仿真负载dumontite 水磷铀铅矿dump condenser 事故凝汽器dump tank 接受槽dump valve 事故排放阀dump 烧毁元件存放处dunkometer 燃料元件包壳破损探测器duplet 电子对duration of a scintillation 闪烁持续时间duration 持续时间dust chamber 集尘室dust cloud 尘埃云dust collector 集尘器dust cooled reactor 粉尘冷却反应堆dust monitor 灰尘监测器dust sampler 灰尘取样器dust trap 集尘器dye laser 染料激光器dynamical friction 动摩擦dynamic behaviour 动态dynamic characteristic 动特性dynamic equilibrium ratio 动态平衡比dynamic equilibrium 动态平衡dynamic pressure 动压dynamic process inventory determination 动态过程投料量测定dynamic stabilization 动力稳定dynamic viscosity 动力粘滞系数dynamitron 地那米加速器并激式高频高压加速器dynamometer 测力计dynamo 发电机dyne 达因dynode 倍增电极dysprosium 镝dystectic mixture 高熔点混合物elastic scattering cross-section弹性散射截面elastic scattering弹性散射electronic stopping电子阻止elementary particle基本粒子EMC effect EMC效应endothermic reaction吸能反应energy conservation能量守恒energy loss能量损失energy resolution能量分辨率evaporation model蒸发模型even-even nucleus偶偶核exchange force交换力excitation curve激发曲线excitation function 激发函数excited state激发态exothermic reaction放能反应experimental Q-wave实验Q值exposure照射量fabrication 制造facility attachment 设施附属文件facility practice 设施实行facility safeguards approach 设施的保障监督方法facility 设施factor of porosity 孔隙率factor of stress concentration 应力集中因数factor 系数fading 阻尼failed can detection 破损燃料探测failed element indicator 破损元件指示器failed element monitor 破损元件监测器failed element 破损元件failed fuel detection and location 破损燃料探测和定位failed fuel detection 破损燃料探测failed fuel detector 破损燃料探测器fail safe instrument 故障时安全运行的仪器fail safe operation 安全运行failsafe 故障自动保险的failure checking 故障检查failure free operation 无故障运行failure mode 故障种类failure of parity conservation 宇称守恒的破坏failure prediction 故障预测fall back 回落falling stream method 降哩fallout density 放射性沉降物密度fallout monitoring 沉降物监测fallout particle 沉降粒子fallout pattern 沉降物分布型式fallout radioactive material 放射性沉降物fallout sampling network 沉降物取样网fallout shelter 沉降物掩蔽所fall out 放射性沉降fall time 下降时间false alarm probability 假报警几率false curvature 假曲率false scram 错误信号紧急停堆family 系fano's theorem 法诺定理faraday cage 法拉第笼faraday constant 法拉第常数faraday cup 法拉第笼farad 法拉far field 远场far infra red radiation 远红外辐射far ultraviolet radiation 远紫外辐射farvitron 线振质谱仪fast acting control rod 快动棕制棒fast advantage factor 快中子有利因子fast amplifier 宽频带放大器fast and thermal reactor burnup computer code 快和热反应堆燃耗计算机代码fast breeder reactor 快中子增殖反应堆fast breeder 快中子增殖反应堆fast burst reactor facility 快中子脉冲反应堆装置fast burst reactor 快中子脉冲反应堆fast ceramic reactor 陶瓷燃料快堆fast chamber 快速电离室fast chopper 快中子选择器fast coincidence unit 快符合单元fast coincidence 快符合fast compression cloud chamber 快压缩云室fast conversion 快中子转换fast cosmic ray neutron 宇宙射线的快中子fast critical assembly 快中子临界装置fast cross section 快中子截面fast detector 快速探测器fast effect 快中子倍增效应fast electron 快电子fast exponential experiment 快中子指数实验装置fast fissionability 快中子致裂变性fast fission effect factor 快中子裂变效应系数fast fission region 快中子裂变区fast fission 快中子裂变fast flux test facility 快中子通量试验装置fast flux 快中子通量fast fragment 快碎片fast killing dose 快速杀伤剂量fast leakage factor 快中子泄漏因子fast mean free path 快中子平均自由程fast medium 快中子介质fast multiplication effect 快中子倍增效应fast multiplication factor 快中子倍增因子fast neutron activation method 快中子活化法fast neutron breeder reactor 快中子增殖反应堆fast neutron breeding 快中子增殖fast neutron calibration 快中子刻度fast neutron collimator 快中子准直器fast neutron counter tube 快中子计数管fast neutron cycle 快中子增殖循环fast neutron detector 快中子探测器fast neutron diffusion length 快中子扩散长度fast neutron dose equivalent 快中子剂量当量fast neutron dosimeter 快中子剂量计fast neutron fission cross section 快中子裂变截面fast neutron fission increase rate 快中子裂变增加率fast neutron fluence 快中子积分通量fast neutron generator 快中子发生器fast neutron non leakage probability 快中子不泄漏几率fast neutron range 快中子区fast neutron reaction 快中子反应fast neutron reactor 快中子裂变反应堆fast neutron selector 快中子选择器fast neutron spectrometer 快中子谱仪fast neutron 快中子fast plutonium reactor 快中子钚反应堆fast radiochemistry 快速放射化学fast reaction 快速核反应fast reactor core test facility 快堆堆芯试验装置fast reactor physics 快速反应堆物理学fast reactor test assembly 快堆试验装置fast reactor thermal engineering facility 快堆热工程研究设施fast reactor 快中子裂变反应堆fast region 快中子区fast setback 迅速下降fast slow coincidence circuit 快慢符合电路fast sub critical assembly 快中子次临界装置fast test reactor 快中子试验反应堆fast thermal coupled reactor 快热耦合反应堆fast zero power reactor 快中子零功率反应堆fatal dose 致命剂量fatalities 死亡事故fatigue fracture 疲劳断裂fatigue limit 疲劳极限fatigue test 疲劳试验fatigue 疲劳faulted condition 损伤状态faulty fuel assembly 破损燃料组件fault 故障favorable geometry 有利几何条件fb 快中子增殖反应堆fcc 核燃料循环成本fcf 核燃料循环设施feather analysis 费塞分析feather's empirical formula 费瑟经验公式feather's rule 费瑟规则feed adjustment tank 进料蝶槽feedback circuit 反馈回路feedback control 反馈控制feedback loop 反馈回路feedback ratio 反馈比feedback signal 反馈信号feedback 反馈feed end 加料端feed material 给料物质feed plant 核燃料生产工厂feed pump 给水泵feed stage 给料段feed water control system 给水控制系统feedwater equipment 给水设备feedwater flow control 给水量控制feed water 给水feed 供给ferganite 水钒铀矿fermat's principle 费马原理fermi acceleration 费米加速fermi age equation 费米年龄方程fermi age theory 费米年龄理论fermi age 费米年龄fermi beta decay theory 费米衰变理论fermi characteristic energy level 费米能级fermi constant 费米常数fermi dirac gas 费米狄拉克气体fermi dirac statistics 费米狄拉克统计学fermi distribution function 费米狄拉克分布函数fermi distribution 费米分布fermi energy 费米能级fermi function 费米函数Fermi function费米函数fermi gas model 费米气体模型fermi gas 费米气体Fermi interaction F相互作用fermi interaction 费米相互酌fermi intercept 散射长度fermi level 费米能级fermi limit 费米能级fermion 费米子fermi particle 费米子fermi perturbation 费米微扰fermi plot 费米线图fermi potential 费米势fermi reactor 费米中子反应堆fermi resonance 费米共振fermi selection rules 费米选择定则fermi's golden rule 费米黄金法则fermi spectrum 费米谱fermi statistics 费米统计fermi surface 费米面fermi temperature 费米温度fermi theory of cosmic ray acceleration 费米宇宙射线加速理论fermi transition 费米跃迁fermium 镄fermi 费米。
原子吸收光谱的英文原子吸收光谱的英文是"atomic absorption spectroscopy"。
这是一种分析技术,用于测量和确定样品中各种金属元素的浓度。
这种技术基于原子的能级跃迁,当样品中的金属离子吸收特定波长的光时,其能级会从低能级跃迁至高能级,从而生成吸收光谱。
以下是23句中英双语例句:1. Atomic absorption spectroscopy is commonly used in analytical chemistry to determine the concentration of metal ions in samples.原子吸收光谱常用于分析化学中,用于测定样品中金属离子的浓度。
2. The atomic absorption spectrum of each metal elementis unique and can be used for identification purposes.每种金属元素的原子吸收光谱是独特的,可用于鉴定目的。
3. Atomic absorption spectroscopy is a sensitive method for detecting trace amounts of metals in environmental samples.原子吸收光谱是一种敏感的方法,可用于检测环境样品中微量金属。
4. The technique of atomic absorption spectroscopy involves the use of a specific light source, such as ahollow-cathode lamp.原子吸收光谱技术涉及使用特定的光源,例如中空阴极灯。
5. Atomic absorption spectroscopy can be used in various industries, including pharmaceutical, environmental, and food industries.原子吸收光谱可应用于各个行业,包括制药、环境和食品行业。
射频电场缀饰下铯Rydberg原子的电磁感应透明光谱韩玉龙;刘邦;张侃;孙金芳;孙辉;丁冬生【期刊名称】《物理学报》【年(卷),期】2024(73)11【摘要】采用全红外光激发Rydberg原子的方案,选择探测光(852 nm)、缀饰光(1470 nm)和耦合光(780 nm),利用三光子激发方式实现了Cs原子Rydberg态(49P_(3/2))的制备.实验上,观测到射频电场作用下|7S_(1/2)?→|49P_(3/2)?Rydberg跃迁形成的电磁感应透明(EIT)效应,实现对Rydberg原子的光学探测,根据EIT光谱的变化来探究射频电场的幅度和频率对光谱的影响.研究表明,随着射频电场幅度的增强,观察到光谱现象从越发明显的ac Stark能移逐步过渡到复杂混合态的多个调制边带,并根据EIT主峰的频移进一步讨论频率对铯泡中电场屏蔽的影响.采用将低频电场调制到射频电场的方式,实现了基于Rydberg原子的50 Hz—1 kHz范围内电场解调,并对解调信号的幅度和频率进行拟合,保真度达到95%.研究结果对Rydberg原子射频光谱探测和低频电场的可溯源测量等提供有价值的参考.【总页数】7页(P119-125)【作者】韩玉龙;刘邦;张侃;孙金芳;孙辉;丁冬生【作者单位】安徽信息工程学院通识教育与外国语学院;中国科学技术大学【正文语种】中文【中图分类】O56【相关文献】1.Rydberg原子的微波电磁感应透明-Autler-Townes光谱2.弱射频场中Rydberg原子的电磁感应透明3.Rydberg原子的电磁诱导透明光谱的噪声转移特性4.调制激光场中Rydberg原子的电磁感应透明5.基于冷里德堡原子电磁感应透明和Autler-Townes分裂的原子矢量微波电场计因版权原因,仅展示原文概要,查看原文内容请购买。
Φ300mm碘化铯晶体发光非均匀性与生长界面的关系
任国浩;陈晓峰;李焕英;吴云涛;张卫东;樊加荣
【期刊名称】《人工晶体学报》
【年(卷),期】2015(0)12
【摘要】报道了迄今为止国内首次生长出的最大直径(300 mm)碘化铯CsⅠ(Tl)闪烁晶体,并采用X射线和137Cs所发射的-射线为激发源分别测试了该晶体不同部位的发光强度,分析了这些部位的铊离子浓度,并对发光强度与铊离子浓度及其空间关系进行了讨论,认为该晶体在水平面上的发光不均匀性反映出生长界面具有凸向上的特征,进而提出调节温度场对改善均匀性具有重要作用。
【总页数】4页(P3375-3378)
【关键词】CsI(Tl)晶体;光输出;Tl离子浓度;非均匀性;生长界面
【作者】任国浩;陈晓峰;李焕英;吴云涛;张卫东;樊加荣
【作者单位】中国科学院上海硅酸盐研究所
【正文语种】中文
【中图分类】O614.115;O78
【相关文献】
1.闪烁晶体碘化铯在紫外光和X射线激发下的发光特性 [J], 吴正龙;王金梅;王亚芳;陈鸾;杨百瑞
2.界面动力学对微重力下溶液法晶体生长的生长界面和溶解界面稳定性的影响 [J], 朱振和
3.纯碘化铯(CsI)晶体的发光与光衰减特性研究 [J], 任国浩;宋朝晖;张子川;张侃;杨帆;李焕英;陈晓峰
4.PbF2:Gd晶体的发光强度与发光均匀性研究 [J], 任国浩;沈定中;王绍华;刘光煜;倪海洪;殷之文
5.碘化铯晶体中Pb2+基聚集相的发光性质 [J], 冯锡淇;赵建林
因版权原因,仅展示原文概要,查看原文内容请购买。
可调谐二极管激光吸收光谱技术英文When it comes to the field of spectroscopy, tunable diode laser absorption spectroscopy (TDLAS) is a cutting-edge technique that's got researchers excited. It's kind of like having a super-sensitive ear for chemicals in the airor gases in a pipe.TDLAS uses lasers that can be tuned to specific wavelengths, which is cool because different gases absorb light at different wavelengths. So, by tuning the laser,you can target a specific gas and measure its concentration. It's like using a laser pointer to find a needle in a haystack, but in this case, the "needle" is a gas molecule.One of the coolest things about TDLAS is that it'sreal-time. You can monitor gas concentrations continuously, which is great for safety applications or process control. And because it's so sensitive, it can detect even tiny amounts of gases.The setup for TDLAS isn't too complicated. You have your tunable laser, some optics to direct the laser beam, and a detector to measure the light that's absorbed. But don't let the simplicity fool you, it's a powerful tool.TDLAS has applications in a wide range of fields, from environmental monitoring to industrial process control.It's a great way to keep an eye on emissions from factories or monitor.。
a r X i v :c o n d -m a t /9712086v 1 [c o n d -m a t .s u p r -c o n ] 8 D e c 1997Collective oscillations in superconductors revisited S.N.Artemenko and A.F.Volkov February 1,2008Abstract In the recent paper [1]Ohashi and Takada (OT)made statements that in the clean limit considered by us [2],weakly damped collective oscillations in superconductors do not exist due to the Landau damping and their spectrum differs from that obtained in Ref.[2].In this Comment we would like to note that these statements arise as a result of a misunderstanding of the term ”clean”case.OT considered the limit ωτ>1,meanwhile Artemenko and Volkov analysed the case τT >1,but ωτ<1(!).All these problems were discussed in the review article [3]which was,presumably,unknown to OT.Collective oscillations (CO)in the superconductors,the search for which had continued since the fifties,were observed in experiments by Carlson and Goldman [4]more than two decades ago.The theoretical explanation for weakly damped CO propagating in superconductors has been suggested in Refs.[2],[5].Schmid and Sch¨o n [5]considered the dirty limit (τT <1,τis the elastic scattering time),and Artemenko and Volkov [2]analysed the ”clean”case (τT >1).It was shown that in both cases CO has a sound-like spectrum and can exist only near T c .The general theory of CO for both clean and dirty cases was developed by Ovchinnikov [6]later.The oscillation spectrum can be found from an equation analogous to the continuity equation for,e.g.superfluid component and from an expression for the condensate current.Since the condensate density has a different form in the dirty and clean case,the velocity of CO and the range of their existence are different.All these problems were discussed in detail in the review articles [3],[7],[8].In spite of this there is still a misunderstnding in the literature about CO.For example,in the recent paper [1]Ohashi and Takada reconsidered the problem of CO (in their view the problem of CO in superconductors is not solved yet)and made the following statements 1.CO in clean superconductors are strongly damped due to the Landau damping,2.the spectrum of the CO in clean superconductors differs from that obtained in Ref.[2].In this Comment we would like to note that statement 1.is not new.The importance of the Landau damping and the absence of the weakly damped CO in the limit ωτ>1was noted in Ref.[3].Correspondingly,the spectrum found in Ref.[1]in this limit does not coincide with the spectrum found in Ref.[2]because the form of the spectrum in this high frequency limit was not presented in Ref.[2]at all (it is of little physical interest as mode is higly damped due to a strong Landau damping).Therefore statement 2.arose due to misunderstanding of the meaning ”clean”case.In Ref.[2]”clean”case meant that τT >1,but ωτ<1(!).Meanwhile considering ”clean”case Ogashi and Takada mean the high fregency limit ωτ>1.Below we discussbriefly the problem of CO in superconductors and how their spectrum depend on the screening by quasiparticles.If the plasma frequency is smaller,than the energy gap∆(like in layered superconductors),the plasma mode continuosly transforms into the Carlson-Goldman mode as temperature increases[9].Plasma mode takes place when frequency of dielectric relaxation due to quasiparticle currents is smaller,than the plasma frequency,that is the perturbations of charge densitiy are not screened.Then the superconducting current is compensated by the displacemnt current.At higher temperatures the density of quasiparticles becomes large enough to screen the charge density oscillations totally,and superconducting current is compensated by the current of quasiparticles.In this case oscillations of quasiparticle branch imbalance play an important role.The latter case corresponds to the Carlson-Goldman mode.However,it was shown[10]that in the case of d-pairing intensive relaxation of the branch imbalance due to elastic scattering results in the strong damping of the Carlson-Goldman mode.The statements made above may be illustrated by a transparent and very simple way.Let us consider for simplisity a superconductor with s-pairing.The expression for current density atω≪1/τin the limit Dk2≪ωhas the formj=c2∂t−σ1∂µ4π∂E∂t =γ(∂τe)κ2∂t∂x−σ2∂2µεand frequencyof dielectric relaxationωr=4πσ/ε.At low temperaturesωp≫ωr quasiparticle conductivitiesare small.From Poisson’s equation wefindµ=0,and from(1)we getω2≈ω2p−ωωr. This equation is strict provided the plasma frequency is smaller,than the gap,however,the result is very similar in the opposite case as well.At high temperatures,near T c,ωp≪ωr, and the displacement current can be neglected and Poisson’s equation reduces to the neutrality condidtion.Thus,quasiparticles screen the perturbations of the charge density,and quasiparticle current compensates the superconducting current.This makes the mode soft.Wefind that the region of low damping is limited by conditionsτe,c2σNλ2Tκ2λ2.Using in these equations expressions for1/λ2,describing the density of superconducting electrons in the clean and dirty limits,T cτ≫1and T cτ≫1,respectively,we get the results of papers [2]and[5]for corresponding limits:V=v 3π2T atτe,1T2≪ω≪1T,V=v 3atτe,∆2[6]Yu.N.Ovchinnikov,Zh.Eksp.Teor.Fiz.72773(1977)[7]A.M.Kadin and A.M.Goldman,in Nonequilibrium superconductivity,Eds rkin andngenberg,North-Holland,Amsterdam,1986,p.253[8]G.Sch¨o n,in Nonequilibrium superconductivity,Eds rkin and ngenberg,North-Holland,Amsterdam,1986,p.589[9]S.N.Artemenko and A.G.Kobelkov.JETP Lett.58445(1993).[10]S.N.Artemenko and A.G.Kobelkov.Phys.Rev.B55,9094(1997).[11]P.A.Lee,T.M.Rice and P.W.Anderson,Solid State Commun22,703(1974).[12]Y.Kurihara,J.Phys.Soc.Jpn49,852(1980)[13]S.N.Artemenko and A.F.Volkov,Zh.Eksp.Teor.Fiz.802018(1981)[Sov.Phys.JETP531050(1981)][14]S.N.Artemenko and W.Wonneberger,J.Phys.I France6,2079(1996)。