6-二阶常系数齐次微分方程B6561770
- 格式:ppt
- 大小:239.51 KB
- 文档页数:17
二阶常系数齐次微分方程
一、二阶常系数齐次微分方程
二阶常系数齐次微分方程是指二阶以上的齐次微分方程,由一个系数多项式以及与其相乘的根变量组成,系数多项式是有一定特征的特殊多项式。
二、作用
二阶常系数齐次微分方程在工程学、物理学、数学建模等学科领域都有着广泛的应用,可用来描述动量定律、热力学定律、电路理论、声学定律以及被称为时域范数的微分方程等。
三、特点
二阶常系数齐次微分方程的多项式特殊性,使得它有三个确定性特点:一是存在两个有界的根;二是系数多项式一定为复数;三是它一定有解,而解一定是线性无穷组合形式。
四、解法
二阶常系数齐次微分方程求解可以根据等价变换法。
这种方法通过将常系数微分方程转化为一系列积分方程,再将其解得出,就能够获得解析解。
另外,也可以使用解析法来求解,解析法一般采用拉普拉斯变换的方式,来将微分方程转化为一系列的函数,再对函数进行求解,以得出解析解。
五、总结
二阶常系数齐次微分方程是一种二阶以上的齐次微分方程,由一个系数多项式以及与其相乘的根变量组成,在工程学、物理学、数学建模等学科领域都有着广泛的应用,有三个确定性特点:存在两个有界的根、系数多项式一定为复数,它一定有解,而解一定是线性无穷组合形式。
通常可以采用等价变换法和拉普拉斯变换两种方法来求解常系数微分方程,以获得解析解。
二阶常系数齐次线性微分方程的通解证明本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March二阶常系数齐次线性微分方程的通解证明来源:文都教育在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。
一、二阶常系数齐次线性微分方程的通解分析通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为12,λλ,则1)当12λλ≠且为实数时,通解为1212x x y C eC e λλ=+; 2)当12λλ=且为实数时,通解为1112xx y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+;证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++=212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=,令2z y y λ'=-,则11110x dz z z z z c e dxλλλ'-=⇒=⇒=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----⎰⎰=+=+⎰⎰ (1)1)当12λλ≠且为实数时,由(1)式得原方程的通解为21212()121212[]x x x x c y e e C C e C e λλλλλλλ-=+=+-,其中1112c C λλ=-,12C C 和为任意常数。
二阶常微分方程解法二阶常微分方程是数学中常见的方程形式,可以通过不同的方法来求解。
本文将介绍二阶常微分方程的解法,并通过例题来说明具体步骤。
一、齐次二阶常微分方程的解法齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = 0齐次二阶常微分方程的解法步骤如下:1. 首先,设y=e^(λx)为方程的解,其中λ为待定常数。
2. 求解特征方程λ^2 + P(x)λ + Q(x) = 0的根。
设该方程的根为λ1和λ2。
3. 根据特征根λ1和λ2的值,分别列出对应的解y1=e^(λ1x)和y2=e^(λ2x)。
4. 则原方程的通解为y=C1y1 + C2y2,其中C1和C2为任意常数。
例题1:求解二阶常微分方程y'' - 4y' + 4y = 0。
解题步骤:1. 特征方程为λ^2 - 4λ + 4 = 0,解得λ=2。
2. 因此,对应的特解为y1=e^(2x)。
3. 原方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。
二、非齐次二阶常微分方程的解法非齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = f(x)非齐次二阶常微分方程的解法步骤如下:1. 首先,求解对应的齐次方程y'' + P(x)y' + Q(x)y = 0的通解,假设为y=C1y1 + C2y2。
2. 再根据待定系数法,设非齐次方程的特解为y*,代入原方程得到特解的形式。
3. 求解特解形式中的待定系数,并将特解形式代入原方程进行验证。
4. 特解形式正确且验证通过后,非齐次方程的通解为y=C1y1 +C2y2 + y*。
例题2:求解二阶常微分方程y'' - 4y' + 4y = x^2 + 3x + 2。
解题步骤:1. 对应的齐次方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。
微积分Calculus二阶常系数齐次线性微分方程()(1)11()()()()n n n n y P x y P x y P x y f x −−'++++=当均为常数时,称为阶常系数线性微分方程,否则,称为变系数微分方程。
n ()i p x 一n 阶常系数线性微分方程n 阶线性微分方程本节只研究二阶常系数线性微分方程:时,二阶常系数线性齐次微分方程()0f x =时,二阶常系数线性非齐次微分方程()0f x ≠形如的微分方程称为二阶常系数齐次线性微分方程,其中为常数.'''09-24y py qy ++=()p q 、1二阶常系数齐次线性微分方程定理一如果函数都是齐次方程(9-24)的解,则也是方程(9-24)的解,其中为任意常数。
)((2211x x y c y c +)c c 21、y 1(x)和y 2(x)定义一设两个函数在区间内有定义1)若常数,即与不成比例,则称函数在内线性无关.(2)若(常数),即与成比例,则称函数在内线性相关。
定理二若函数是齐次方程(9-24)的两个线性无关的解,则其通解为其中为任意常数。
特征方程法假设方程有形如的解,则代入方程后得特征根因为,故有特征方程2二阶常系数齐次线性微分方程解法二阶常系数齐次线性方程特征方程为1)特征方程有两个不等的实根,则是方程的两个线性无关的解,故齐次方程的通解为2)特征方程有两相等的实根,则一特解为,设另一特解为得齐次方程的通解为3)特征方程有一对共轭复根,y1=e(α+iβ)x,y2=e(α−iβ)x重新组合y1=12(y1+y2)=eαx cosβxy 2=12i(y1−y2)=eαx sinβx得齐次方程的通解为二阶常系数齐次线性方程的特征方程,特征根特征根通解形式实根实重根共轭复根特征方程为求方程的通解。
解解得特征根故所求通解为二相关练习例一特征方程为求方程的通解。
解解得故所求通解为例二特征方程为求解初值问题解特征根为通解为将条件代入得故所求特解为例三。
二阶齐次线性微分方程
二阶线性微分方程是指未知函数及其一阶、二阶导数都是一次方的二阶方程,简单称为二阶线性方程。
二阶线性微分方程的求解方式分为两类,一是二阶线性齐次微分方程,二是线性非齐次微分方程。
如果一个二阶方程中,未知函数及其一阶、二阶导数都是一次方的,就称它为二阶线性微分方程,简单称为二阶线性方程。
二阶线性微分方程的解方式分成两类,一就是二阶线性齐次微分方程,二就是线性非齐次微分方程。
前者主要就是使用特征方程解,后者在对应的齐次方程的吉龙德上加之直和即为非齐次方程的吉龙德。
齐次和非齐次的微分方程的吉龙德都涵盖一切的求解。
二阶线性微分方程定义:y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) 方程称作二阶线性微分方程
当 f ( x ) = 0 恒成立时,称该方程为二阶线性齐次方程;
当 f ( x ) ≠ 0 指该方程为二阶线性非齐次方程。
定理:若 y 1 , y 2 是二阶线性齐次方程y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 的解,则 y = c 1 y 1 + c 2 y 2 ( c 1 , (c1,c 2 ∈ r ) 仍
是它的解。
第七章常微分方程7.10 二阶常系数齐次线性微分方程数学与统计学院赵小艳1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 二阶常系数齐次线性微分方程的形式 )(1)1(1)(t F x a x a x a x n n n n =++++-- n 阶常系数线性微分方程的标准形式21=++x a x a x 二阶常系数齐次线性方程的标准形式.,,,,121均为实常数其中n n a a a a - )1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- ,2211x C x C x +=则其通解为,,21解是其线性无关的两个特若x x .,21为任意常数其中C C 解的结构1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法,t e x λ=设则 ()0212=++t e a a λλλ得 0212=++a a λλ特征方程 ,2422111a a a -+-=λ,11t e x λ=,22t e x λ=且它们线性无关,通解为 .,)(212121为任意常数其中C C e C e C t x tt ,λλ+=特征根为: ,2422112a a a ---=λ情形1 有两个不相等的实根 )0(>∆,021=++x a x a x 对于对应特解 ,,21解是其线性无关的两个特若x x ,2211x C x C x +=则其通解为.,21为任意常数其中C C 待定系数法2 二阶常系数齐次线性微分方程的解法,11t e x λ=,2121a -==λλ情形2 有两个相等的实根 )0(=∆故一特解为 ,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,)(12t e t u x λ=设另一特解为特征根为 2121,)()('1112t t e t u e t u x λλλ+= ,)()('2)("1112112tt t e t u e t u e t u x λλλλλ++=,11t e x λ=情形2 有两个相等的实根 )0(=∆故一特解为 通解为 (),te t C C t x 121)(λ+=,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,0=''u 得(),t t u =取,12t te x λ=则特征根为 2121(),21C t C t u +=,)(12t e t u x λ=设另一特解为0=0=.,21为任意常数其中C C ,2121a -==λλ,1βαλi +=,2βαλi -=,)(1t i e x βα+=t i e x )(2βα-=情形3 有一对共轭复根 )0(<∆由解的性质 ()21121x x x +=,cos t e t βα=()21221x x ix -=.sin t e t βα=通解为 (),sin cos 21t βC t βC e x t α+=特征根为 2121对应特解为 t e i t e t t ββααsin cos -=.,21为任意常数其中C C .,21线性无关且x x.044的通解求方程=++x x x解 特征方程为 ,0442=++λλ,221-==⇒λλ故所求通解为 ().221te t C C x -+=例1 解 特征方程为 ,0522=++λλ,2121i ±-=⇒,λ故所求通解为 ().2sin 2cos 21x C x C e y x +=-.052的通解求方程=+'+''y y y 例2 021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为()().00,2004422的解满足初始条件求='==++y y y x y x y d d d d 解 特征方程为 ,01442=++λλ.212,1-=⇒λ故所求通解为 x e x C C y 2121)(-+=例3 ()()得由00,20='=y y ,21=C .12=C 为方程满足初始条件的解.22121x x xe e y --+=021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法01)1(1)(=+'+++--x a x a xa x n n n n 特征方程为 0111=++++--n n n n a a a λλλ 特征方程的根 相对应的线性无关的特解 重根是若k λt k t t et te e λλλ1,,,- 重是若共轭复根k i βα±.sin ,,sin ,sin ,cos ,,cos ,cos 11t βe t t βte t βe t βe tt βte t βe t αk t αt αt αk t αt α-- 注意: n次代数方程有n 个根, 而特征方程的每个根都对应着一个特解. 3 高阶常系数齐次线性微分方程的解法.2211n n x C x C x C x +++= 通解为特征根为.2,1321-===λλλ故所求通解为 ()t e t C C x 21+=解 ,0233=+-λλ特征方程为 ()(),0212=+-λλ().0233的通解求方程=+-x x x 例4 特征根为 .,,154321i i -====-=λλλλλ故所求通解为 ()()t.t C C t t C C sin cos 5432++++解 ,01222345=+++++λλλλλ特征方程为 ()(),01122=++λλ()()().022345的通解求方程=+++++x x x x x x 例5 .e C t 23-+t e C x -=1。
二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又x r r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ''-2y '-3y =0的通解.解 所给微分方程的特征方程为r 2-2r -3=0, 即(r +1)(r -3)=0.其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为y =C 1e -x +C 2e 3x .例2 求方程y ''+2y '+y =0满足初始条件y |x =0=4、y '| x =0=-2的特解.解 所给方程的特征方程为r 2+2r +1=0, 即(r +1)2=0.其根r 1=r 2=-1是两个相等的实根, 因此所给微分方程的通解为y =(C 1+C 2x )e -x .将条件y |x =0=4代入通解, 得C 1=4, 从而y =(4+C 2x )e -x .将上式对x求导,得y'=(C2-4-C2x)e-x.再把条件y'|x=0=-2代入上式,得C2=2.于是所求特解为x=(4+2x)e-x.例3 求微分方程y''-2y'+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0.特征方程的根为r1=1+2i,r2=1-2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n-1)+p2 y(n-2) +⋅⋅⋅+p n-1y'+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n-1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y', D2y=y'', D3y=y''',⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r1,2=α±iβ对应于两项:eαx(C1cosβx+C2sinβx);k重实根r对应于k项:e rx(C1+C2x+⋅⋅⋅+C k x k-1);一对k重复根r1,2=α±iβ对应于2k项:eαx[(C1+C2x+⋅⋅⋅+C k x k-1)cosβx+( D1+D2x+⋅⋅⋅+D k x k-1)sinβx].例4 求方程y(4)-2y'''+5y''=0 的通解.解这里的特征方程为r4-2r3+5r2=0,即r2(r2-2r+5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0. 解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β.因此所给微分方程的通解为)2sin 2cos (212x C x C ey x βββ+=)2sin 2cos (432 x C x C e x βββ++-.。
二阶常系数线性微分方程的考点-成考专升本·高数一复习资料!考点1 二阶常系数线性齐次方程y"+py'+qy=0解的结构若函数y₁,y₂为该方程两个线性无关的解,即y₁≠ky₂,则该方程的通解为y=C₁y₁+C₂y₂.考点2 二阶常系数线性非齐次方程y”+py'+qy=f(z)解的结构若y*为方程y”+py'+qy=f(x)的一个特解,ӯ=C₁y₁+C₂y₂为与其对应的齐次方程y”+py'+qy=0的通解,则y*+y为方程y”+py'+qy=f(x)的通解.若y₁是方程y”+py'+qy=f1(x)的解,y₂是方程y”+py'+qy=f₂(x)的解,则y₁十y₂是方程y”+py'+qy=f₁(x)+f₂(x)的解.考点3 二阶常系数线性齐次方程y”+py'+qy=0通解的求法先写出与其对应的特征方程r²+pr+q=0.1.若特征方程有两个不等实根r₁,r₂,则齐次方程的通解为ӯ=C₁eʳ1ˣ”+C₂er₂x.2.若特征方程有一重根r,则齐次方程的通解为ӯ=(C₁x+C₂)eʳˣ.3.若特征方程无实根,或者说有一对共轭复根r₁=α+iβ,r₂=α-iβ,则齐次方程的通解为ӯ=eᵃˣ(C₁cosβx+C₂sinβx) .考点4 二阶常系数线性非齐次方程y”+py'+qy=f(x)通解的求法1.先求出与其对应的齐次方程y”+py'+qy=0的通解y.2.再求出非齐次方程的特解y*,则该方程的通解为y=ӯ+y*.3.特解y*的求法(1) 若f(x) =Pn(x) eᵃˣ,则方程的特解可设为y*=xӯᴷQn(x) eᵃˣ,其中Qn(x)与Pn(x)是同次多项式,系数待定,且k=0,α不是特征根,k=1,α为单独特征根,k=2,α为二重特征根.(2) 若f(x)=eᵃˣ(Acosβx+Bsinβx),则方程的特解可设为y*=xᴷeᵃˣ(A₁cosβx+B₁sinβx)。