三+平面任意力系
- 格式:ppt
- 大小:3.90 MB
- 文档页数:51
平面任意力系
平面任意力系是探究力学问题中采用的一种数学模型。
该模型被广泛用于研究坐标系内的任意力的作用的原点以及其对物体的影响。
它是一种理论模型,用于理解物体在任意力作用下的受力方向和大小。
平面任意力系以三个坐标轴x, y以及z为基础,以这三个轴上的一组受力大小作为决定物体位置、速度和加速度的参数来描述它。
在静力学中,平面任意力系经常被用来模拟物体受若干外力作用下的质点力学运动。
假设物体受到x轴、y轴和z轴上的n条外力作用,其受力状态可以用平面任意力系来描述。
这些外力在平面任意力系上唯一确定,根据它们的方向以及大小可以计算得到受力物体的转动惯量和转矩。
在运动学中,平面任意力系也被用来描述物体的位置、速度和加速度情况。
根据物体受到的初始加速度以及力学运动的运动方程,可以求得物体在任意时刻的位置、速度和加速度。
这也可以看作是在一组外力的作用下,物体在平面任意力系中运动的过程,通过求解平面任意力系可以计算出物体在任意时刻的位置、速度和加速度。
平面任意力系是一个复杂的理论模型,但它可以简单有效地用于模拟坐标系内多外力作用情况下物体受力情况以及物体的运动状态,在力学和运动学方面都显示出其重要的应用价值。
第三章平面任意力系一、要求1、掌握平面任意力系向一点简化的方法。
会应用解析法求主矢和主矩。
熟知平面任意力系简化的结果。
2、深入理解平面任意力系的平衡条件及平衡方程的三种形式。
3、能熟练地计算在平面任意力系作用下物体和物体系的平衡问题。
4、理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法。
二、重点、难点1、本章重点:平面任意力系向作用面内任一点的简化,力系的简化结果。
平面任意力系平衡的解析条件,平衡方程的各种形式。
物体及物体系平衡问题的解法。
2、本章难点:主矢与主矩的概念。
物体系的平衡问题。
三、学习指导1、力的平移定理,是力系向一点简化的理论基础。
一个力平移后,它对物体的作用效果发生了改变,要想保持原来力的作用效果,必须附加一个力偶。
2、平面任意力系向一点简化的方法:平面任意力系向一点简化,是依据力的平移定理,将作用在物体上的各力向任一点(称为简化中心)平移,得到作用在简化中心的一个平面汇交力系和平面力偶系(附加力偶系)。
两个力系合在一起与原力系等效。
这样,一个复杂的力系就分解成了两个简单的力系。
然后,分别求平面汇交力系的合力和平面力偶系的合力偶,则原力系由作用在简化中心的一个力和一个力偶所代替,该力的大小和方向等于力系的主矢,该力偶的力偶矩等于力系的主矩。
于是,平面任意力系的简化就成了计算力系的主矢和主矩的问题。
3、主矢和主矩:平面任意力系中,各力的矢量和称为力系的主矢,即平面任意力系中,各力对于简化中心的力矩的代数和称为力系的主矩,即关于主矢和主矩,需要弄清楚以下几点:(1)主矢不是力,主矩不是力偶。
主矢和主矩是描述平面任意力系对物体作用效果的量。
(2)主矢是自由矢量,只有大小和方向,描述平面任意力系使物体平动的作用效果。
平面任意力系的主矩是代数量,只有大小和正负,描述平面任意力系使物体绕点转动的作用效果。
(3)主矢与简化中心的选择无关。
从这个意义上讲,主矢是力系的一个不变量。
主矩与简化中心的选择有关。
第三章平面任意力系3.1 平面任意力系的简化·主矢与主矩3.2 平面任意力系的平衡条件与平衡方程3.3 物体系统的平衡·静定与静不定问题3.4 平面简单桁架的内力计算3.1 平面任意力系的简化·主矢与主矩所谓平面任意力系是指力系中各力的作用线在同一平面内且任意分布的力系,简称平面力系。
在实际工程中经常会遇到平面任意力系的情形,例如,下图所示的曲柄连杆机构,受力F ,矩为M 1,M 2的力偶以及支座反力F Ax ,F Ay 和F N 的作用,这些力及力偶构成平面任意力系。
3、固定端(或插入端)约束FAxFAyM AA4、平面任意力系的简化结果分析(1)简化为一个力偶当F R = 0,M O ≠0则原力系合成为合力偶,其矩为∑=)(i O O M M F 此时主矩与简化中心选择无关,主矩变为原力系合力偶。
由此很容易证得平面任意力系的合力矩定理:平面任意力系的合力对作用面内任一点的矩等于力系中各力对同一点的矩的代数和。
即∑=)()(R i O O M M F F 当F R ’= 0,M O = 0则原力系平衡。
(3)平面力系平衡例题3-3考虑一小型砌石坝的1m长坝段,受重力和的静水压力作用。
已知h = 8 m,a= 1.5 m,b= 1 m,P1=600 kN,P2=300 kN,单位体积的水重γ = 9.8 kN/m3。
求(1)将重力和水压力向O点简化的结果,(2)合力与基线OA的交点到点O的距离x,以及合力作用线方程。
解:(1)以点O 为简化中心,求主矢∑=′x RxF F ()()kNF F yxR1.95322=+=′∑∑F 329.0cos =′=∑RxF F θ944.0cos −=′=∑RyF F β°±=79.70θ°±°=21.19180β故主矢在第四象限内,与x 轴的夹角为°−79.70F R ’M O θβkN 6.313=22121h qh γ==kN P P F F y Ry 90021−=−−==′∑(2)以点O 为简化中心,求主矩F R ’M O θβ()()()q M P M P M M O O O O ++=21bP a P hh 212321−+×−=γmkN ⋅−= 27.236表明主矩的方向与假设方向相反,及主矩的方向为顺时针。